JPH0798017A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH0798017A
JPH0798017A JP5264376A JP26437693A JPH0798017A JP H0798017 A JPH0798017 A JP H0798017A JP 5264376 A JP5264376 A JP 5264376A JP 26437693 A JP26437693 A JP 26437693A JP H0798017 A JPH0798017 A JP H0798017A
Authority
JP
Japan
Prior art keywords
magnetic bearing
bearing device
superconductor
motor
primary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5264376A
Other languages
Japanese (ja)
Inventor
Yoichi Kanemitsu
陽一 金光
Yuji Shirao
祐司 白尾
Kazuki Sato
一樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP5264376A priority Critical patent/JPH0798017A/en
Publication of JPH0798017A publication Critical patent/JPH0798017A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a magnetic bearing device which has a rotational body having short axial length, high bending characteristic frequency, and uses superconducting material for reducing weight of the rotational body. CONSTITUTION:In a magnetic bearing device, superconductors 7 are fixed to a rotational body, and a rotary shaft is supported by pinning effect and Meissner effect under a non-contact condition. The rotational body is composed of a stator 10 having a primary coil of a rotary driving motor and the superconductors 7 arranged opposingly to the stator 10 via a gap. Number of the superconductors 7 corresponds to number of poles of spatial moving magnetic field formed by the primary coil of the motor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気軸受装置に係り、特
に軸変位の検出用センサが不要で、回転軸の軸制御が不
要な超伝導材料を利用した磁気軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device, and more particularly to a magnetic bearing device using a superconducting material which does not require a sensor for detecting axial displacement and does not require axial control of a rotary shaft.

【0002】[0002]

【従来の技術】図8は、超伝導材料を回転体に固定し、
ピン止め効果およびマイスナー効果によって非接触で回
転軸を支持する磁気軸受装置で支持された回転系を示
す。回転軸1には羽根車等の回転体2が固設され、モー
タ3により回転される。回転軸1は上部の第一磁気軸受
装置4および下部の第2磁気軸受装置5によって支持さ
れている。この磁気軸受装置4,5では、回転軸1には
永久磁石6が固定され、ステータ側には超伝導バルク材
7が固定され、永久磁石6と超伝導バルク材7とは対面
して配置されている。超伝導バルク材7のピン止め効果
およびマイスナー効果によって、非接触で回転軸1は軸
方向及び半径方向に支持されている。
2. Description of the Related Art In FIG. 8, a superconducting material is fixed to a rotating body,
2 shows a rotating system supported by a magnetic bearing device that supports a rotating shaft in a non-contact manner by a pinning effect and a Meissner effect. A rotary body 2 such as an impeller is fixed to the rotary shaft 1 and is rotated by a motor 3. The rotating shaft 1 is supported by an upper first magnetic bearing device 4 and a lower second magnetic bearing device 5. In the magnetic bearing devices 4 and 5, the permanent magnet 6 is fixed to the rotating shaft 1, the superconducting bulk material 7 is fixed to the stator side, and the permanent magnet 6 and the superconducting bulk material 7 are arranged to face each other. ing. Due to the pinning effect and the Meissner effect of the superconducting bulk material 7, the rotary shaft 1 is supported in the axial direction and the radial direction without contact.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の磁
気軸受装置は、図8に示す様に超伝導磁気軸受4,5と
モータ3はそれぞれ別々に設置されており、モータを構
成する部材とそのスペースが必要であり、回転体の軸方
向長さが長くなり、回転体の曲げ固有振動数が低下す
る、回転体重量が大きくなる等の問題点があった。
However, in the conventional magnetic bearing device, the superconducting magnetic bearings 4 and 5 and the motor 3 are separately installed as shown in FIG. However, there is a problem that the axial length of the rotating body becomes long, the bending natural frequency of the rotating body decreases, and the weight of the rotating body becomes large.

【0004】本発明は、係る従来技術の問題点に鑑みて
為されたもので、回転体の軸方向長さが短く、回転体の
曲げ固有振動数が高く、且つ回転体重量を小さくするこ
とのできる超伝導材料を用いた磁気軸受装置を提供する
ものである。
The present invention has been made in view of the above-mentioned problems of the prior art. The axial length of the rotating body is short, the bending natural frequency of the rotating body is high, and the weight of the rotating body is small. The present invention provides a magnetic bearing device using a superconducting material that can be manufactured.

【0005】[0005]

【課題を解決するための手段】本発明の磁気軸受装置
は、超伝導体を回転体に固定し、ピン止め効果及びマイ
スナー効果によって被接触で回転軸を支持する磁気軸受
装置において、回転駆動用モータの一次側コイルを備え
たステータと、該ステータにギャップを介して対面する
ように配置された超伝導体を備えた回転体とからなり、
該超伝導体の数は、前記モータの一次側コイルの形成す
る空間移動磁界の極数に合わせて配置されていることを
特徴とする。
SUMMARY OF THE INVENTION A magnetic bearing device of the present invention is a magnetic bearing device in which a superconductor is fixed to a rotating body and a rotating shaft is supported in a contacted manner by a pinning effect and a Meissner effect. A stator having a primary coil of a motor, and a rotating body having a superconductor arranged so as to face the stator through a gap,
The number of the superconductors is arranged according to the number of poles of the space moving magnetic field formed by the primary coil of the motor.

【0006】[0006]

【作用】回転体に備えられた超伝導体を、モータの一次
側コイルの形成する空間移動磁界の極数に合わせて対面
するように配置することにより、超伝導体のマイスナー
効果及びピン止め効果により、超伝導体は空間移動磁界
にピン止めされ、空間移動磁界に従って回転すると共
に、ステータから非接触で磁気軸受として支持される。
従って、磁気軸受とモータを兼用した磁気軸受装置を構
成でき、モータのための特別の部材が不要となり、回転
軸の長さを短くすることができ、回転体の曲げ固有振動
数を上げて、回転体重量を軽くすることができる。
The superconductor provided in the rotating body is arranged so as to face the same number of poles of the space moving magnetic field formed by the primary coil of the motor, so that the Meissner effect and pinning effect of the superconductor can be achieved. Thus, the superconductor is pinned to the space moving magnetic field, rotates according to the space moving magnetic field, and is supported by the stator as a non-contact magnetic bearing.
Therefore, a magnetic bearing device that also serves as a magnetic bearing and a motor can be configured, a special member for the motor is not required, the length of the rotating shaft can be shortened, and the bending natural frequency of the rotating body can be increased, The weight of the rotating body can be reduced.

【0007】[0007]

【実施例】以下、本発明の実施例を添付図面を参照しな
がら説明する。図1(A)は、本発明の第1実施例の磁
気軸受装置の半径方向に沿った要部断面図であり、
(B)はその軸方向に沿った要部断面図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1A is a cross-sectional view of a main part of a magnetic bearing device according to a first embodiment of the present invention along a radial direction,
FIG. 3B is a sectional view of a main part along the axial direction thereof.

【0008】本実施例においては、ラジアル磁気軸受の
ようにモータの一次側コイルと、回転体1の超伝導体7
とは半径方向にギャップGを介して対面して配置されて
おり、その軸方向位置が合わされている。ステータ10
には、回転駆動用モータの一次側コイルを備えている。
ステータの一次側コイルの形成する空間移動磁界は、ギ
ャップGにおいて半径方向の磁束密度が円周方向に沿っ
て正弦波状に変化したものである。この空間移動磁界
は、一次側コイルに与えられる交流電流の大きさに従っ
て、その強さが変化し、交流電流の周波数が変化すると
回転速度が変化する。ギャップGにおける空間移動磁界
は、ギャップGに沿って円周方向に回転する。ステータ
10に配置された回転駆動用モータの一次側コイルの形
成する空間移動磁界の極数は、回転体1に配置された超
伝導体7の数に合わせて配置されている。即ち、回転体
1側には、超伝導体7がステータ側の形成する空間移動
磁界のS,N,S,Nの4極に合わせて4個配置されて
いる。
In this embodiment, the primary coil of the motor and the superconductor 7 of the rotating body 1 like a radial magnetic bearing.
Are arranged so as to face each other in the radial direction via a gap G, and their axial positions are aligned. Stator 10
Is equipped with a primary coil of a rotation drive motor.
The space moving magnetic field formed by the primary coil of the stator has a magnetic flux density in the radial direction changed in the gap G in a sinusoidal shape along the circumferential direction. The strength of the space moving magnetic field changes according to the magnitude of the alternating current applied to the primary coil, and the rotation speed changes when the frequency of the alternating current changes. The space moving magnetic field in the gap G rotates in the circumferential direction along the gap G. The number of poles of the space moving magnetic field formed by the primary coil of the rotation driving motor arranged on the stator 10 is arranged according to the number of superconductors 7 arranged on the rotating body 1. That is, four superconductors 7 are arranged on the rotating body 1 side so as to match the four poles S, N, S, N of the space moving magnetic field formed on the stator side.

【0009】図2は、図1に示す磁気軸受装置の動作を
説明する説明図である。超伝導体7のマイスナー効果及
びピン止め効果により、回転体1の超伝導体7は、ステ
ータの一次側コイルの形成する磁界により、ステータ1
0から非接触浮上した状態で支持される。空間移動磁界
のN極又は、S極が超伝導体7と対面し、超伝導体内に
磁束が貫通すると、超伝導体7は空間移動磁界にピン止
めされる。このように空間移動磁界の極性と超伝導体の
ピン止め極性を合わせることによって、ピン止めした磁
束密度と同じ磁束密度を補足しようとするために、ステ
ータ側のモータコイルが発生する回転磁界に追随して超
伝導体7も回転することになり、回転体1がロータとし
て回転する。更に同じピン止め効果によって、ピン止め
磁束密度より高い磁束密度の回転磁界をステータ側から
発生させることによって、磁気軸受としての剛性を上げ
ることができる。尚この磁気軸受装置は、ラジアル磁気
軸受のような構成であるが、超伝導体は一次側コイルの
空間移動磁界によりピン止めされ、軸方向の保持力も作
用するので、アキシャル軸受(スラスト軸受)としても
機能する。
FIG. 2 is an explanatory view for explaining the operation of the magnetic bearing device shown in FIG. Due to the Meissner effect and the pinning effect of the superconductor 7, the superconductor 7 of the rotating body 1 is moved to the stator 1 by the magnetic field formed by the primary coil of the stator.
It is supported in a non-contact floating state from 0. When the north pole or the south pole of the space moving magnetic field faces the superconductor 7 and the magnetic flux penetrates into the superconductor, the superconductor 7 is pinned to the space moving magnetic field. By matching the polarity of the space-moving magnetic field and the pinning polarity of the superconductor in this way, in order to try to supplement the same magnetic flux density as the pinned magnetic flux density, the rotating magnetic field generated by the motor coil on the stator side is tracked. Then, the superconductor 7 also rotates, and the rotating body 1 rotates as a rotor. Further, by the same pinning effect, a rotating magnetic field having a magnetic flux density higher than the pinning magnetic flux density is generated from the stator side, so that the rigidity of the magnetic bearing can be increased. This magnetic bearing device has a structure similar to a radial magnetic bearing, but since the superconductor is pinned by the space moving magnetic field of the primary coil and also acts as a holding force in the axial direction, it is used as an axial bearing (thrust bearing). Also works.

【0010】尚本実施例においては、回転体が内側にあ
りステータが外側にあるインナーロータタイプで示した
が、ステータが内側にあり回転体が外側にあるアウター
ロータタイプであっても同様の構成とすることができ
る。
In this embodiment, the inner rotor type in which the rotor is inside and the stator is outside is shown, but the same structure is also applicable to the outer rotor type in which the stator is inside and the rotor is outside. Can be

【0011】図3は、本発明の第2実施例の磁気軸受装
置の軸方向に沿った要部断面図であり、図4はそのA
A’面に沿った断面図である。本実施例は、スラスト磁
気軸受のように構成されており、スラストディスクに相
当する超伝導バルク材容器11が回転軸1に固定されて
いる。超伝導バルク材容器11には、超伝導バルク材7
が装填されている。超伝導バルク材7に対面するステー
タ側にはフラットモータ12が配置されている。図示す
るようにモータの一次側コイルと、回転軸に固定された
超伝導バルク材とは半径方向の両者の位置Rが合わされ
ており、コイルと超伝導体とは軸方向に対面して配置さ
れている。そして超伝導体の数は、モータの一次側コイ
ルの形成する空間移動磁界の極数に合わされている。
FIG. 3 is a sectional view of the main part of the magnetic bearing device according to the second embodiment of the present invention along the axial direction, and FIG.
It is sectional drawing along the A'plane. The present embodiment is configured like a thrust magnetic bearing, and a superconducting bulk material container 11 corresponding to a thrust disk is fixed to the rotating shaft 1. The superconducting bulk material container 11 includes the superconducting bulk material 7
Is loaded. A flat motor 12 is arranged on the stator side facing the superconducting bulk material 7. As shown in the figure, the primary coil of the motor and the superconducting bulk material fixed to the rotary shaft are aligned in the radial position R, and the coil and the superconductor are arranged so as to face each other in the axial direction. ing. The number of superconductors is matched with the number of poles of the space moving magnetic field formed by the primary coil of the motor.

【0012】すなわち、本実施例においては、フラット
モータの形成する空間移動磁界は4極であり、半径Rの
円周上を回転する。モータの一次側コイルの形成する空
間磁界の磁束は、超伝導バルク材7を貫通し、超伝導バ
ルク材は空間移動磁界にピン止めされる。従って一次側
コイルか発生する回転磁界に追随して超伝導体が回転す
ることになり、回転軸が回転する。更に同じピン止め効
果によって、ピン止め磁束密度より高い磁束密度の回転
磁界を発生させることによって、磁気軸受としての剛性
を上げることができる。尚本実施例はスラスト磁気軸受
のような構成がとられているが、超伝導体のピン止め力
により、半径方向の保持力を有し、ラジアル磁気軸受と
しても機能する。
That is, in this embodiment, the space moving magnetic field formed by the flat motor has four poles and rotates on the circumference of radius R. The magnetic flux of the space magnetic field formed by the primary coil of the motor penetrates the superconducting bulk material 7, and the superconducting bulk material is pinned to the space moving magnetic field. Therefore, the superconductor rotates following the rotating magnetic field generated by the primary coil, and the rotating shaft rotates. Further, by the same pinning effect, the rigidity of the magnetic bearing can be increased by generating a rotating magnetic field having a magnetic flux density higher than the pinning magnetic flux density. Although the present embodiment is configured as a thrust magnetic bearing, it has a radial holding force due to the pinning force of the superconductor, and also functions as a radial magnetic bearing.

【0013】尚本実施例においては、超伝導体7の形状
が円柱形の場合を示しているが、図5に示すような角柱
形であってもよい。又円柱或いは角柱に限らず、台形或
いは扇形等であってもよい。
In this embodiment, the superconductor 7 has a cylindrical shape, but it may have a prismatic shape as shown in FIG. The shape is not limited to a cylinder or a prism, but may be trapezoidal or fan-shaped.

【0014】図6は、本発明の第3実施例の磁気軸受装
置の軸方向に沿った要部断面図である。本実施例は、前
述の第2実施例の磁気軸受装置を超伝導バルク材7を挟
むように、上下両面のステータにフラットコイルモータ
12を設けたものである。回転軸1に固定されたスラス
トディスク状の超伝導バルク材収納部11に収納された
超伝導バルク材7は、上下両面のモータの一次側コイル
12の交流電流に基づく空間移動磁界によりピン止めさ
れ、ギャップGだけ離隔して空間的に保持された状態
で、超伝導バルク材7は上下両面から回転駆動力及び鉛
直方向の支持力を受ける。超伝導体が磁束にピン止めさ
れると、コイルと超伝導体の位置関係を上下逆にしても
同様のピン止め力が作用する(フィッシング効果)。本
実施例においては、超伝導バルク材は上下両面からピン
止め効果により支持されるため、第2実施例の磁気軸受
装置と比べて磁気軸受の剛性が高まり、回転駆動力が強
化される。
FIG. 6 is a cross-sectional view of the main part of the magnetic bearing device according to the third embodiment of the present invention, taken along the axial direction. In this embodiment, a flat coil motor 12 is provided on the upper and lower stators so that the superconducting bulk material 7 is sandwiched between the magnetic bearing devices of the second embodiment. The superconducting bulk material 7 accommodated in the thrust disk-shaped superconducting bulk material accommodating portion 11 fixed to the rotating shaft 1 is pinned by the space moving magnetic field based on the alternating current of the primary coils 12 of the motors on the upper and lower sides. , The superconducting bulk material 7 receives a rotational driving force and a vertical supporting force from both upper and lower surfaces while being spatially held apart from each other by the gap G. When the superconductor is pinned to the magnetic flux, the same pinning force acts even if the positional relationship between the coil and the superconductor is turned upside down (phishing effect). In this embodiment, since the superconducting bulk material is supported from both the upper and lower sides by the pinning effect, the rigidity of the magnetic bearing is increased and the rotational driving force is strengthened as compared with the magnetic bearing device of the second embodiment.

【0015】図7は、本発明の第3実施例の磁気軸受装
置を示す説明図である。羽根車等の回転体2は、その回
転軸1の両端を第1の磁気軸受装置20および第2の磁
気軸受装置21によって支持されている。第1の磁気軸
受装置20および第2の磁気軸受装置21は、第1実施
例乃至第3実施例に示す磁気軸受装置である。本実施例
においては、回転軸1の両端を支持する磁気軸受装置2
0,21が、回転軸を支持するとともに、回転軸1を回
転させるモータとしての役割を果たすことができる。従
って、図8に示す従来の磁気軸受装置の、モータ3が不
要となり、その分回転軸1の長さを短くし、且つ回転体
の重量を軽減することができる。このため、回転軸系の
固有振動数を上げることができ、スペースの小型化、重
量の軽減とともに回転軸系の振動の安定化を図ることが
できる。
FIG. 7 is an explanatory view showing a magnetic bearing device of a third embodiment of the present invention. The rotating body 2 such as an impeller is supported at both ends of its rotating shaft 1 by a first magnetic bearing device 20 and a second magnetic bearing device 21. The first magnetic bearing device 20 and the second magnetic bearing device 21 are the magnetic bearing devices shown in the first to third embodiments. In this embodiment, the magnetic bearing device 2 supporting both ends of the rotary shaft 1 is used.
0 and 21 can support the rotating shaft and can also serve as a motor for rotating the rotating shaft 1. Therefore, the motor 3 of the conventional magnetic bearing device shown in FIG. 8 is unnecessary, the length of the rotating shaft 1 can be shortened correspondingly, and the weight of the rotating body can be reduced. Therefore, it is possible to increase the natural frequency of the rotary shaft system, reduce the space, reduce the weight, and stabilize the vibration of the rotary shaft system.

【0016】[0016]

【発明の効果】以上に説明したように、本発明によれば
超伝導バルク材を回転体に固定し、ステータ側に設置し
たコイルによる空間移動磁界の極性とバルク材のピン止
め極性を合わせることによって、磁気軸受とモータを兼
用した磁気軸受装置を構成することができる。従って、
回転軸の長さを短くすることができ、回転体の曲げ固有
振動数を上げて、回転体重量を軽減することができる。
As described above, according to the present invention, the superconducting bulk material is fixed to the rotating body, and the polarity of the space moving magnetic field by the coil installed on the stator side is matched with the pinning polarity of the bulk material. With this, it is possible to configure a magnetic bearing device that doubles as a magnetic bearing and a motor. Therefore,
The length of the rotating shaft can be shortened, the natural frequency of bending of the rotating body can be increased, and the weight of the rotating body can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の磁気軸受装置の(A)半
径方向に沿った要部断面図、(B)軸方向に沿った要部
断面図。
FIG. 1A is a sectional view of a main part taken along a radial direction of FIG. 1A of a magnetic bearing device according to a first embodiment of the present invention, and FIG. 1B is a sectional view of a main part taken along an axial direction.

【図2】図1に示す磁気軸受装置の動作の説明図2 is an explanatory view of the operation of the magnetic bearing device shown in FIG.

【図3】本発明の第2実施例の磁気軸受装置の半径方向
に沿った要部断面図。
FIG. 3 is a cross-sectional view of a main portion of a magnetic bearing device according to a second embodiment of the present invention along the radial direction.

【図4】図3のAA’線の断面図。FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG.

【図5】図3のAA’線の断面図。5 is a cross-sectional view taken along the line AA ′ of FIG.

【図6】本発明の第3実施例の磁気軸受装置の軸方向に
沿った要部断面図。
FIG. 6 is a cross-sectional view of a main part along the axial direction of a magnetic bearing device according to a third embodiment of the present invention.

【図7】本発明の第3実施例の磁気軸受装置の説明図。FIG. 7 is an explanatory diagram of a magnetic bearing device according to a third embodiment of the invention.

【図8】従来の磁気軸受装置の説明図。FIG. 8 is an explanatory diagram of a conventional magnetic bearing device.

【符号の説明】 1 回転軸 7 超伝導体 10 ステータ 11 超伝導体容器 20,21 磁気軸受装置 N,S 空間移動磁界の極[Explanation of symbols] 1 rotating shaft 7 superconductor 10 stator 11 superconductor container 20, 21 magnetic bearing device N, S pole of space moving magnetic field

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超伝導体を回転体に固定し、ピン止め効
果及びマイスナー効果によって非接触で回転軸を支持す
る磁気軸受装置において、回転駆動用モータの一次側コ
イルを備えたステータと、該ステータにギャップを介し
て対面するように配置された超伝導体を備えた回転体と
からなり、該超伝導体の数は、前記モータの一次側コイ
ルの形成する空間移動磁界の極数に合わせて配置されて
いることを特徴とする磁気軸受装置。
1. A magnetic bearing device for fixing a superconductor to a rotating body and supporting a rotating shaft in a non-contact manner by a pinning effect and a Meissner effect, and a stator provided with a primary coil of a rotary drive motor, And a rotating body provided with a superconductor arranged so as to face the stator through a gap, the number of the superconductor being adjusted to the number of poles of the space moving magnetic field formed by the primary coil of the motor. The magnetic bearing device is characterized in that
【請求項2】 前記モータの一次側コイルと、前記回転
体の超伝導体とは半径方向に対面して配置されており、
その軸方向位置が合わされていることを特徴とする請求
項1記載の磁気軸受装置。
2. A primary coil of the motor and a superconductor of the rotating body are arranged to face each other in a radial direction,
The magnetic bearing device according to claim 1, wherein the axial positions thereof are aligned.
【請求項3】 前記モータの一次側コイルと、前記回転
体の超伝導体とは軸方向に対面して配置されており、そ
の半径方向位置が合わされていることを特徴とする請求
項1記載の磁気軸受装置。
3. The primary coil of the motor and the superconductor of the rotating body are arranged so as to face each other in the axial direction, and their radial positions are aligned with each other. Magnetic bearing device.
【請求項4】 前記磁気軸受装置は、回転軸の軸方向に
2個所以上の位置に配置されたことを特徴とする請求項
1乃至3に記載の磁気軸受装置。
4. The magnetic bearing device according to claim 1, wherein the magnetic bearing device is arranged at two or more positions in the axial direction of the rotary shaft.
【請求項5】 前記モータの一次側コイルを備えたステ
ータは、前記超伝導体を備えた回転体を挟んでその両側
に配置されたことを特徴とする請求項1又は請求項3乃
至4に記載の磁気軸受装置。
5. The stator provided with the primary coil of the motor is arranged on both sides of the rotor provided with the superconductor with the rotor provided therebetween. The magnetic bearing device described.
JP5264376A 1993-09-28 1993-09-28 Magnetic bearing device Pending JPH0798017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264376A JPH0798017A (en) 1993-09-28 1993-09-28 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264376A JPH0798017A (en) 1993-09-28 1993-09-28 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH0798017A true JPH0798017A (en) 1995-04-11

Family

ID=17402298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264376A Pending JPH0798017A (en) 1993-09-28 1993-09-28 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH0798017A (en)

Similar Documents

Publication Publication Date Title
US6727618B1 (en) Bearingless switched reluctance motor
KR100352022B1 (en) Motor of magnetic lifting type
US4563046A (en) Flywheel apparatus
KR100403857B1 (en) Motor of magnetic lifting type
US5675196A (en) High speed ten pole/twelve slot D.C. brushless motor with minimized net radial force and low cogging torque
JP3058452B2 (en) Magnetically mounted position stabilizing flywheel
JPH04219496A (en) Vacuum pump for clean molecular vacuum
US5124863A (en) Disk drive device having reduced thickness
US7847453B2 (en) Bearingless step motor
JPH09308185A (en) Flywheel
JPH0742737A (en) Superconductive magnetic bearing device
JPH03107615A (en) Magnetic bearing
US6362549B1 (en) Magnetic bearing device
JP3710547B2 (en) Disk type magnetic levitation rotating machine
JPH0798017A (en) Magnetic bearing device
JPH0332338A (en) Magnetic bearing formed integrally with motor
Morrison Bearingless switched reluctance motor
JP3543831B2 (en) Magnetic bearing device
JPH1080113A (en) Disc-type bearingless motor
JPS6399742A (en) Magnetic bearing integrating type motor
JP3236925B2 (en) Superconducting bearing device
JPH08107662A (en) Brushless dc motor
JPH0735139A (en) Superconductive magnetic bearing unit
JP4427828B2 (en) Magnetic bearing
JPH1162963A (en) Magnetic bearing device