JP3543831B2 - Magnetic bearing device - Google Patents

Magnetic bearing device Download PDF

Info

Publication number
JP3543831B2
JP3543831B2 JP26437593A JP26437593A JP3543831B2 JP 3543831 B2 JP3543831 B2 JP 3543831B2 JP 26437593 A JP26437593 A JP 26437593A JP 26437593 A JP26437593 A JP 26437593A JP 3543831 B2 JP3543831 B2 JP 3543831B2
Authority
JP
Japan
Prior art keywords
magnetic
bearing device
magnetic bearing
electromagnets
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26437593A
Other languages
Japanese (ja)
Other versions
JPH0798016A (en
Inventor
祐司 白尾
一樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26437593A priority Critical patent/JP3543831B2/en
Publication of JPH0798016A publication Critical patent/JPH0798016A/en
Application granted granted Critical
Publication of JP3543831B2 publication Critical patent/JP3543831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は磁気軸受装置に係り、特に軸変位の検出用センサが不要で、回転軸の軸制御が不要な磁気軸受とモータを兼用した超伝導材料を利用した磁気軸受装置に関する。
【0002】
【従来の技術】
図11は、超伝導材料を回転体に設置し、ピン止め効果およびマイスナー効果によって非接触で回転軸を支持する磁気軸受装置を示す。回転軸1には羽根車等の回転体2が固設され、モータ3により回転される。回転軸1は上部の第一磁気軸受装置4および下部の第2磁気軸受装置5によって支持されている。回転軸1には永久磁石6が固定され、ステータ側には超伝導バルク材7が固定され、永久磁石6と超伝導バルク材7とは対向して配置されている。超伝導バルク材7のピン止め効果およびマイスナー効果によって、非接触で回転軸1はアキシャル方向及びラジアル方向に支持されている。
【0003】
【発明が解決しようとする課題】
しかしながら従来の磁気軸受装置は、図11に示す様に超伝導磁気軸受とモータはそれぞれ別に設置されており、モータを構成する部材のスペースが必要であり、重量が大きくなった。このため、回転体の軸方向長さが長くなり、回転体の曲げ固有振動数が低下する、回転体重量が大きくなる等の問題点があった。
【0004】
本発明は、係る従来技術の問題点に鑑みて為されたもので、回転体の軸方向長さが短く、回転体の曲げ固有振動数が高く、且つ回転体重量を小さくすることのできる超伝導材料を用いた磁気軸受装置を提供するものである。
【0006】
発明のアキシャル磁気軸受装置は、超伝導材料を回転体に設置し、ピン止め効果およびマイスナー効果によって非接触で浮上する磁気軸受装置において、
(a)U字形磁極を持つ電磁石の両極を、半径方向に並ぶ様にステータ側に配置し、
(b)該電磁石を回転軸を囲むように円周上に均等に配置し、
(c)円周方向に隣り合う該電磁石の磁極を同一極性となる様に配置し、
(d)該電磁石の数を3の倍数になるように、それぞれをU、V、W相となるように順番に並べて配置し、
(e)前記U字形磁極の基部をリング状のベース磁極に取付け、
(f)前記U、V、W相の電磁石コイルは、それぞれに独立した電流を流せる電源装置に接続され、
(g)前記電磁石群と軸方向に対面する位置に前記回転軸と一体となって回転する円板状の超伝導体収納部を配置し、
(h)該収納部には、分割した超伝導体を収納してあり、
(i)該分割した超伝導体の数は、前記円周上に配置された電磁石のピッチ角度の1.5倍又は1.5倍の整数倍の等角度で全周に配置可能な数であることを特徴とする。
【0007】
【作用】
超伝導バルク材の配置角度を磁極のピッチ角度の1.5倍又はその整数倍の角度になるように超伝導バルク材の数を合わせて、超伝導バルク材を回転体に設置し、電磁石の極性とバルク材のピン止め極性を合わせることによって、磁気軸受とモータを兼用した磁気軸受装置を構成できる。したがって、モータのための特別の部材が不要となり、回転軸の長さを短くすることができ、回転体の曲げ固有振動数を上げて、回転体重量を軽くすることができる。
【0008】
【実施例】
以下、本発明の実施例を添付図面を参照しながら説明する。図1は、本発明の第1実施例のラジアル磁気軸受装置の半径方向に沿った要部断面図であり、図2はその軸方向に沿った要部断面図である。磁気軸受装置のステータ10には、ベースリング(磁極)11が固定され、U字形磁極12を有する電磁石の両極12a,12bが、回転軸方向に並ぶようにステータ側に配置されている。U字形磁極12にコイル13を巻回した電磁石は、回転軸1を囲むように円周上に均等に配置されている。円周方向に隣り合う電磁石の磁極を同一極性(例えばN極)となるように配置し、円周方向に配列された電磁石の数を3の倍数になるようにし、それぞれ円周方向にU、V、W相となるように順番に並べて配置されている。
【0009】
U、V、W相の各4個の電磁石は、それぞれに独立した電流を流せる図示しない3台の電源装置に接続され、3台の電源装置は同様に図示しない3台の信号発生装置に接続されている。3台の信号発生装置は、互いに隣り合うそれぞれのU、V、W相の電磁石が発生する磁束の位相が120度づつ異なるような交流信号を電源装置に供給する。電源装置は、信号発生装置からの交流信号に比例した電流と、直流電流とを重畳して電磁石のコイル13に供給する。尚、信号発生装置は、交流信号と直流信号とを重畳させて発生する。
【0010】
電磁石の磁極面と対面する軸方向位置に回転軸と一体となって回転する超伝導体収納部16を配置し、収納部16内には、分割した超伝導バルク材15を備える。分割した超伝導バルク材15の数は、電磁石のピッチ角度Pの1.5倍または1.5倍の整数倍の角度で全周に配置されている。本実施例においては、電磁石の数は12台であり、超伝導バルク材の数は、電磁石のピッチ角度Pの3倍の角度で配置されているため4個である。
【0011】
次に本実施例の磁気軸受装置の動作について図3及び図4を参照して説明する。U、V、W相の各磁極のコイルに、直流電流と、位相を120度ずらせた交流電流とを重畳させて流すことによって図3に示すような磁束密度一定の直流的な磁場に、交流的な移動磁場を重畳することができる。すなわち、時刻t1 に波形αであり、時刻t2 に波形βに移動するギャップ部分の移動磁場が形成される。この時、第1U相磁極位置の点aの磁束密度でピン止めされた超伝導バルク材15は、時刻t2 の時に第1U相磁極の位置では磁束密度が点a’になるため、ピン止めした磁束密度と同じ磁束密度を補足しようとして、点bに移動する。このように、磁極の極性とバルク材のピン止め極性を合わせることによって、図4に示すようなピン止めした磁束密度と同じ磁束密度を補足しようとするために、電磁石が発生する回転磁界に同期してバルク材15が回転力を受け、回転軸1が回転することになる。
【0012】
なお、本実施例においては外側にステータがあり、内側のロータが回転するいわゆるインナーロータタイプで示したが、ステータが内側にあり回転体が外側にあるアウターロータタイプであっても同様の構成が可能である。また、本実施例においては超伝導バルク材のピン止め効果によってラジアル方向のみならずアキシャル(軸)方向の保持力も発生する。
【0013】
図5は、本発明の第2実施例のアキシャル磁気軸受装置の軸方向に沿った要部断面図であり、図6はその半径方向に沿った要部断面図である。磁気軸受装置のステータ10には、ベースリング(磁極)11が固定され、U字形磁極12を有する電磁石の両極12a,12bが、半径方向に並ぶようにステータ側に配置されている。U字形磁極12にコイル13を巻回した電磁石は、回転軸1を囲むように円周上に均等に配置されている。円周方向に隣り合う電磁石の磁極を同一極性(例えばN極)となるように配置し、円周方向に配列された電磁石の数を3の倍数になるようにし、それぞれ円周方向にU、V、W相となるように順番に並べて配置されている。
【0014】
電磁石の磁極面と対面するギャップGを隔てた軸方向位置に回転軸と一体となって回転するスラストディスクに相当する超伝導体収納部16を配置し、収納部16内には、分割した超伝導バルク材15を備える。分割した超伝導バルク材15の数は、電磁石のピッチ角度Pの1.5倍または1.5倍の整数倍の角度で全周に配置されている。本実施例においては、電磁石の数は12台であり、超伝導バルク材の数は、電磁石のピッチ角度Pの3倍の角度で配置されているため4組(8個)である。
【0015】
本実施例の磁気軸受装置の動作については、第1実施例と同様である。即ち、U、V、W相の各磁極のコイルに、直流電流と、位相を120度ずらせた交流電流とを重畳させて流すことによって、ギャップGを隔てたスラストディスクに相当する収納部16に空間移動磁界を形成する。図5に示すように、U字型の磁極12とバルク材15間には、閉ループの磁束φが形成され、バルク材15は空間移動磁界にピン止めされる。従って、スラストディスクに相当する収納部16は、ギャップGを隔てて軸方向に非接触支持され、移動磁界に従って回転する。本実施例においても、超伝導バルク材のピン止め効果によって、アキシャル方向のみならずラジアル(半径)方向の保持力も発生する。
【0016】
図7は、本発明の第3実施例のラジアル磁気軸受装置の軸方向に沿った要部断面図である。本実施例のラジアル磁気軸受装置の構成は、第1実施例とほぼ同様であるが、本実施例においてはU字形磁極12の先端の磁極面にリング状の橋渡し磁極17を備えている。橋渡し磁極17は、円周方向に配列されたU、V、W相の各相の磁極の同一極(例えばN極又はS極)を接続するものである。橋渡し磁極17は、円周方向に空間磁界を均一に形成する作用を有する。すなわち、円周方向の磁極間の空間にも、磁極部分と同様の空間磁場を形成することができる。
【0017】
図8は、本発明の第4実施例のアキシャル磁気軸受装置の軸方向に沿った要部断面図である。本実施例も、第2実施例とほぼ同様な構成であるが、前述の第3実施例と同様にリング状の橋渡し磁極18,19を備えている。本実施例においては、U字形磁極を有する電磁石の両極を半径方向に並ぶようにステータ側に配置しているため、外側の磁極に第1の橋渡し磁極18を備え、内側の磁極に第2の橋渡し磁極19を備えている。これらの橋渡し磁極の動作も、前述の第3実施例と同様であり、磁極の存在している部分以外の空間に均一な磁場を形成することができる。
【0018】
図9は、本発明の第5実施例のアキシャル磁気軸受装置の軸方向に沿った要部断面図である。本実施例は、前述の第2実施例のアキシャル磁気軸受装置を超伝導バルク材を挟むように、上下両面に設けたものである。回転軸に固定されたスラストディスク状の超伝導バルク材収納部16に収納された超伝導バルク材15は、上下両面の電磁石のU字形磁極から生じる直流電流、また磁極の円周方向に形成される交流電流に基づく空間移動磁場によりピン止めされ、ギャップGだけ離隔して空間的に保持された状態で、超伝導バルク材15は上下両面から回転駆動力を受け、回転軸1を回転させる。本実施例においては、超伝導バルク材は上下両面からピン止め効果により支持されるため、第2実施例のアキシャル磁気軸受装置と比べて磁気軸受の剛性が高まり、回転駆動力が強化される。
【0019】
図10は、本発明の第6実施例の磁気軸受装置を示す説明図である。羽根車等の回転体2はその回転軸1の両端を第1の磁気軸受装置20および第2の磁気軸受装置21によって支持されている。第1の磁気軸受装置20および第2の磁気軸受装置21は、第1実施例乃至第5実施例に示す磁気軸受装置である。本実施例においては、回転軸1の両端を支持する磁気軸受装置20,21が、回転軸を支持するとともに、回転軸を回転させるモータとしての役割を果たすことができる。従って、図11に示す従来の磁気軸受装置の、モータ3が不要となり、その分回転軸1の長さを短くし、且つ回転体の重量を軽減することができる。このため、回転軸系の固有振動数を上げることができ、スペースの小型化、重量の軽減とともに回転軸系の振動の安定化を図ることができる。
【0020】
【発明の効果】
以上に説明したように、本発明によれば超伝導バルク材を回転体に設置し、ステータ側に設置した電磁石の極性とバルク材のピン止め極性を合わせることによって、磁気軸受とモータを兼用した磁気軸受装置を構成することができる。従って、回転軸の長さを短くすることができ、回転体の曲げ固有振動数を上げて、回転体重量を軽減することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例のラジアル磁気軸受装置の半径方向に沿った要部断面図。
【図2】本発明の第1実施例のラジアル磁気軸受装置の軸方向に沿った要部断面図
【図3】図1乃至図2の磁気軸受装置の移動磁場の説明図。
【図4】図1乃至図2の磁気軸受装置の回転駆動力の発生を説明する説明図。
【図5】本発明の第2実施例のアキシャル磁気軸受装置の軸方向に沿った要部断面図。
【図6】本発明の第2実施例のアキシャル磁気軸受装置の半径方向に沿った要部断面図。
【図7】本発明の第3実施例のアキシャル磁気軸受装置の軸方向に沿った要部断面図。
【図8】本発明の第4実施例のアキシャル磁気軸受装置の軸方向に沿った要部断面図。
【図9】本発明の第5実施例のアキシャル磁気軸受装置の軸方向に沿った要部断面図。
【図10】本発明の第6実施例の磁気軸受装置の説明図。
【図11】従来の磁気軸受装置の説明図。
【符号の説明】
1 回転軸
10 ステータ
11 ベースリング
12 U字形磁極
13 コイル
15 超伝導バルク材
16 超伝導体収納部
17,18,19 橋渡し磁極
20,21 磁気軸受装置
[0001]
[Industrial applications]
The present invention relates to a magnetic bearing device, and more particularly to a magnetic bearing device using a superconducting material that combines a magnetic bearing that does not require a shaft displacement detection sensor and that does not require a shaft control of a rotating shaft and a motor.
[0002]
[Prior art]
FIG. 11 shows a magnetic bearing device in which a superconducting material is installed on a rotating body and supports a rotating shaft in a non-contact manner by a pinning effect and a Meissner effect. A rotating body 2 such as an impeller is fixed to the rotating shaft 1 and rotated by a motor 3. The rotating shaft 1 is supported by an upper first magnetic bearing device 4 and a lower second magnetic bearing device 5. A permanent magnet 6 is fixed to the rotating shaft 1, a superconducting bulk material 7 is fixed to the stator side, and the permanent magnet 6 and the superconducting bulk material 7 are arranged to face each other. Due to the pinning effect and the Meissner effect of the superconducting bulk material 7, the rotating shaft 1 is supported in the axial direction and the radial direction without contact.
[0003]
[Problems to be solved by the invention]
However, in the conventional magnetic bearing device, as shown in FIG. 11, the superconducting magnetic bearing and the motor are separately provided, and a space for members constituting the motor is required, and the weight is increased. For this reason, there are problems that the length of the rotating body in the axial direction increases, the bending natural frequency of the rotating body decreases, and the weight of the rotating body increases.
[0004]
The present invention has been made in view of the problems of the related art, and has an ultra-long rotating body with a short axial length, a high bending natural frequency of the rotating body, and a small rotating body weight. An object of the present invention is to provide a magnetic bearing device using a conductive material.
[0006]
The axial magnetic bearing device of the present invention is a magnetic bearing device in which a superconducting material is installed on a rotating body and floats in a non-contact manner by a pinning effect and a Meissner effect.
(A) Both poles of an electromagnet having a U-shaped magnetic pole are arranged on the stator side so as to be arranged in the radial direction,
(B) uniformly disposing the electromagnets on the circumference so as to surround the rotation axis;
(C) arranging the magnetic poles of the electromagnets adjacent in the circumferential direction to have the same polarity;
(D) the electromagnets are arranged in order so as to be U, V and W phases so that the number of electromagnets is a multiple of 3;
(E) attaching the base of the U-shaped magnetic pole to a ring-shaped base magnetic pole;
(F) the U, V, and W phase electromagnet coils are connected to a power supply device that can supply an independent current to each;
(G) disposing a disc-shaped superconductor housing that rotates integrally with the rotating shaft at a position facing the electromagnet group in the axial direction;
(H) The storage section stores the divided superconductor,
(I) The number of the divided superconductors is a number that can be arranged on the entire circumference at an equal angle of 1.5 times or an integral multiple of 1.5 times the pitch angle of the electromagnets arranged on the circumference. Oh, characterized and Turkey.
[0007]
[Action]
The number of superconducting bulk materials is adjusted so that the arrangement angle of the superconducting bulk material is 1.5 times the pitch angle of the magnetic pole or an integer multiple thereof, and the superconducting bulk material is installed on the rotating body, and the By matching the polarity with the pinning polarity of the bulk material, a magnetic bearing device serving both as a magnetic bearing and a motor can be configured. Therefore, a special member for the motor becomes unnecessary, the length of the rotating shaft can be shortened, the natural frequency of bending of the rotating body can be increased, and the weight of the rotating body can be reduced.
[0008]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view of a radial magnetic bearing device according to a first embodiment of the present invention taken along a radial direction, and FIG. 2 is a sectional view taken along an axial direction thereof. A base ring (magnetic pole) 11 is fixed to a stator 10 of the magnetic bearing device, and both poles 12a and 12b of an electromagnet having a U-shaped magnetic pole 12 are arranged on the stator side so as to be arranged in the direction of the rotation axis. The electromagnet in which the coil 13 is wound around the U-shaped magnetic pole 12 is evenly arranged on the circumference so as to surround the rotating shaft 1. The magnetic poles of electromagnets adjacent in the circumferential direction are arranged so as to have the same polarity (for example, N pole), and the number of electromagnets arranged in the circumferential direction is set to be a multiple of three. The V and W phases are arranged side by side in order.
[0009]
The four electromagnets of each of the U, V, and W phases are connected to three power supplies (not shown) that can supply independent currents, and the three power supplies are similarly connected to three signal generators (not shown). Have been. The three signal generators supply AC signals to the power supply device such that the phases of magnetic fluxes generated by the U, V, and W phase electromagnets adjacent to each other are different by 120 degrees. The power supply unit superimposes a DC current and a current proportional to an AC signal from the signal generator, and supplies the DC current to the coil 13 of the electromagnet. Note that the signal generating device generates the AC signal by superimposing the DC signal.
[0010]
A superconductor housing 16 that rotates integrally with the rotating shaft is disposed at an axial position facing the magnetic pole surface of the electromagnet, and a divided superconducting bulk material 15 is provided in the housing 16. The number of the divided superconducting bulk materials 15 is arranged on the entire circumference at an angle of 1.5 times or an integral multiple of 1.5 times the pitch angle P of the electromagnet. In the present embodiment, the number of electromagnets is twelve, and the number of superconducting bulk materials is four because they are arranged at an angle three times the pitch angle P of the electromagnets.
[0011]
Next, the operation of the magnetic bearing device of this embodiment will be described with reference to FIGS. A direct current and an alternating current whose phase is shifted by 120 degrees are superimposed and flow through the coils of the U, V, and W phase magnetic poles, thereby forming a direct current magnetic field having a constant magnetic flux density as shown in FIG. Dynamic magnetic field can be superimposed. That is, a moving magnetic field of the gap portion having the waveform α at the time t 1 and moving to the waveform β at the time t 2 is formed. At this time, the superconducting bulk material 15 pinned at the magnetic flux density at the point a at the position of the first U-phase magnetic pole has the magnetic flux density at the position of the first U-phase magnetic pole at the time t 2 at the point a ′. Move to the point b in an attempt to supplement the same magnetic flux density as the obtained magnetic flux density. In this way, by matching the polarity of the magnetic pole with the pinning polarity of the bulk material, in order to supplement the same magnetic flux density as the pinned magnetic flux density as shown in FIG. 4, it is synchronized with the rotating magnetic field generated by the electromagnet. Then, the bulk material 15 receives the rotational force, and the rotating shaft 1 rotates.
[0012]
In the present embodiment, a so-called inner rotor type in which a stator is provided on the outer side and an inner rotor rotates is described. It is possible. Further, in this embodiment, the pinning effect of the superconducting bulk material generates a holding force not only in the radial direction but also in the axial (axial) direction.
[0013]
FIG. 5 is a sectional view of an axial magnetic bearing device according to a second embodiment of the present invention, taken along an axial direction, and FIG. 6 is a sectional view of the axial magnetic bearing device taken along a radial direction. A base ring (magnetic pole) 11 is fixed to a stator 10 of a magnetic bearing device, and both poles 12a and 12b of an electromagnet having a U-shaped magnetic pole 12 are arranged on the stator side so as to be arranged in a radial direction. The electromagnet in which the coil 13 is wound around the U-shaped magnetic pole 12 is evenly arranged on the circumference so as to surround the rotating shaft 1. The magnetic poles of electromagnets adjacent in the circumferential direction are arranged so as to have the same polarity (for example, N pole), and the number of electromagnets arranged in the circumferential direction is set to be a multiple of three. The V and W phases are arranged side by side in order.
[0014]
A superconductor housing portion 16 corresponding to a thrust disk rotating integrally with the rotating shaft is disposed at an axial position separated by a gap G facing the magnetic pole surface of the electromagnet. The conductive bulk material 15 is provided. The number of the divided superconducting bulk materials 15 is arranged on the entire circumference at an angle of 1.5 times or an integral multiple of 1.5 times the pitch angle P of the electromagnet. In this embodiment, the number of electromagnets is twelve, and the number of superconducting bulk materials is four (eight) because they are arranged at an angle three times the pitch angle P of the electromagnets.
[0015]
The operation of the magnetic bearing device of the present embodiment is the same as that of the first embodiment. That is, the DC current and the AC current whose phase is shifted by 120 degrees are superimposed and flow through the coils of the magnetic poles of the U, V, and W phases, so that the DC current and the alternating current are shifted into the storage section 16 corresponding to the thrust disk separated by the gap G. Form a spatially moving magnetic field. As shown in FIG. 5, a closed-loop magnetic flux φ is formed between the U-shaped magnetic pole 12 and the bulk material 15, and the bulk material 15 is pinned to the spatially moving magnetic field. Therefore, the storage portion 16 corresponding to the thrust disk is supported in a non-contact manner in the axial direction across the gap G, and rotates according to the moving magnetic field. Also in the present embodiment, the pinning effect of the superconducting bulk material generates a holding force not only in the axial direction but also in the radial (radial) direction.
[0016]
FIG. 7 is a sectional view of a principal part of a radial magnetic bearing device according to a third embodiment of the present invention, taken along the axial direction. The configuration of the radial magnetic bearing device of the present embodiment is almost the same as that of the first embodiment. However, in this embodiment, a ring-shaped bridging magnetic pole 17 is provided on the pole face at the tip of the U-shaped magnetic pole 12. The bridging magnetic poles 17 connect the same poles (for example, north poles or south poles) of the magnetic poles of the U, V, and W phases arranged in the circumferential direction. The bridging magnetic pole 17 has an action of uniformly forming a spatial magnetic field in the circumferential direction. That is, a spatial magnetic field similar to that of the magnetic pole portion can be formed in the space between the magnetic poles in the circumferential direction.
[0017]
FIG. 8 is a sectional view of a principal part of an axial magnetic bearing device according to a fourth embodiment of the present invention, taken along the axial direction. This embodiment also has substantially the same configuration as the second embodiment, but includes ring-shaped bridging magnetic poles 18 and 19 as in the third embodiment. In this embodiment, since the two poles of the electromagnet having the U-shaped magnetic pole are arranged on the stator side so as to be arranged in the radial direction, the outer magnetic pole is provided with the first bridging magnetic pole 18, and the inner magnetic pole is provided with the second bridging pole. A bridging magnetic pole 19 is provided. The operation of these bridging magnetic poles is the same as that of the third embodiment, and a uniform magnetic field can be formed in a space other than the portion where the magnetic poles exist.
[0018]
FIG. 9 is a sectional view of a principal part of an axial magnetic bearing device according to a fifth embodiment of the present invention, taken along the axial direction. In this embodiment, the axial magnetic bearing device of the second embodiment is provided on both upper and lower surfaces so as to sandwich a superconducting bulk material. The superconducting bulk material 15 housed in the thrust disc-shaped superconducting bulk material housing portion 16 fixed to the rotating shaft is formed in the DC current generated from the U-shaped magnetic poles of the electromagnets on the upper and lower surfaces, and in the circumferential direction of the magnetic poles. The superconducting bulk material 15 receives a rotational driving force from both the upper and lower surfaces and rotates the rotating shaft 1 while being pinned by a spatial moving magnetic field based on the alternating current and being spatially separated by a gap G. In this embodiment, since the superconducting bulk material is supported from both the upper and lower surfaces by the pinning effect, the rigidity of the magnetic bearing is increased and the rotational driving force is enhanced as compared with the axial magnetic bearing device of the second embodiment.
[0019]
FIG. 10 is an explanatory view showing a magnetic bearing device according to a sixth embodiment of the present invention. The rotating body 2 such as an impeller has both ends of the rotating shaft 1 supported by a first magnetic bearing device 20 and a second magnetic bearing device 21. The first magnetic bearing device 20 and the second magnetic bearing device 21 are the magnetic bearing devices shown in the first to fifth embodiments. In the present embodiment, the magnetic bearing devices 20 and 21 that support both ends of the rotating shaft 1 support the rotating shaft and can function as a motor that rotates the rotating shaft. Therefore, the motor 3 of the conventional magnetic bearing device shown in FIG. 11 is not required, so that the length of the rotating shaft 1 can be shortened and the weight of the rotating body can be reduced. For this reason, the natural frequency of the rotating shaft system can be increased, the space can be reduced in size, the weight can be reduced, and the vibration of the rotating shaft system can be stabilized.
[0020]
【The invention's effect】
As described above, according to the present invention, the superconducting bulk material is installed on the rotating body, and the polarity of the electromagnet installed on the stator side and the pinning polarity of the bulk material are matched, so that the magnetic bearing and the motor are also used. A magnetic bearing device can be configured. Therefore, the length of the rotating shaft can be shortened, the natural frequency of bending of the rotating body can be increased, and the weight of the rotating body can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part of a radial magnetic bearing device according to a first embodiment of the present invention, taken along a radial direction.
FIG. 2 is a sectional view of an essential part of a radial magnetic bearing device according to a first embodiment of the present invention along an axial direction. FIG. 3 is an explanatory view of a moving magnetic field of the magnetic bearing device of FIGS.
FIG. 4 is an explanatory diagram illustrating generation of a rotational driving force of the magnetic bearing device of FIGS. 1 and 2;
FIG. 5 is an essential part cross-sectional view along an axial direction of an axial magnetic bearing device according to a second embodiment of the present invention.
FIG. 6 is a sectional view of a principal part of an axial magnetic bearing device according to a second embodiment of the present invention, taken along a radial direction.
FIG. 7 is a cross-sectional view of a principal part of an axial magnetic bearing device according to a third embodiment of the present invention, taken along an axial direction.
FIG. 8 is an essential part cross-sectional view along an axial direction of an axial magnetic bearing device according to a fourth embodiment of the present invention.
FIG. 9 is an essential part cross-sectional view along an axial direction of an axial magnetic bearing device according to a fifth embodiment of the present invention.
FIG. 10 is an explanatory view of a magnetic bearing device according to a sixth embodiment of the present invention.
FIG. 11 is an explanatory view of a conventional magnetic bearing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 10 Stator 11 Base ring 12 U-shaped magnetic pole 13 Coil 15 Superconducting bulk material 16 Superconducting storage parts 17, 18, 19 Bridging magnetic pole 20, 21 Magnetic bearing device

Claims (3)

超伝導材料を回転体に設置し、ピン止め効果およびマイスナー効果によって非接触で回転軸を支持する磁気軸受装置において、
(a)U字形磁極を持つ電磁石の両極を、半径方向に並ぶ様にステータ側に配置し、
(b)該電磁石を回転軸を囲むように円周上に均等に配置し、
(c)円周方向に隣り合う該電磁石の磁極を同一極性となる様に配置し、
(d)該電磁石の数を3の倍数になるように、それぞれをU、V、W相となるように順番に並べて配置し、
(e)前記U字形磁極の基部をリング状のベース磁極に取付け、
(f)前記U、V、W相の電磁石コイルは、それぞれに独立した電流を流せる電源装置に接続され、
(g)前記電磁石群と軸方向に対面する位置に前記回転軸と一体となって回転する円板状の超伝導体収納部を配置し、
(h)該収納部には、分割した超伝導体を収納してあり、
(i)該分割した超伝導体の数は、前記円周上に配置された電磁石のピッチ角度の1.5倍又は1.5倍の整数倍の等角度で全周に配置可能な数であることを特徴とする磁気軸受装置。
In a magnetic bearing device that installs a superconducting material on a rotating body and supports the rotating shaft in a non-contact manner by a pinning effect and a Meissner effect,
(A) Both poles of an electromagnet having a U-shaped magnetic pole are arranged on the stator side so as to be arranged in the radial direction,
(B) uniformly disposing the electromagnets on the circumference so as to surround the rotation axis;
(C) arranging the magnetic poles of the electromagnets adjacent in the circumferential direction to have the same polarity;
(D) the electromagnets are arranged in order so as to be U, V and W phases so that the number of electromagnets is a multiple of 3;
(E) attaching the base of the U-shaped magnetic pole to a ring-shaped base magnetic pole;
(F) the U, V, and W phase electromagnet coils are connected to a power supply device that can supply an independent current to each;
(G) disposing a disc-shaped superconductor housing that rotates integrally with the rotating shaft at a position facing the electromagnet group in the axial direction;
(H) The storage section stores the divided superconductor,
(I) The number of the divided superconductors is a number that can be arranged on the entire circumference at an equal angle of 1.5 times or an integral multiple of 1.5 times the pitch angle of the electromagnets arranged on the circumference. Ah magnetic bearing device comprising a Turkey.
前記互いに隣り合う各々の電磁石が発生する磁束の位相が、120度づつとなるような交流信号を前記電源装置に供給できる信号発生装置を備えることを特徴とする請求項1に記載の磁気軸受装置。2. The magnetic bearing device according to claim 1, further comprising: a signal generator that can supply an AC signal to the power supply device such that phases of magnetic fluxes generated by the electromagnets adjacent to each other become 120 degrees each. . 前記電源装置は、前記信号発生装置からの交流信号に比例した電流と直流電流とを加算して、前記電磁石のコイルに供給することを特徴とする請求項1または2に記載の磁気軸受装置。The power supply device adds the current proportional to the AC signal from the signal generator and the DC current, the magnetic bearing device according to claim 1 or 2, characterized in that the supply to the coil of the electromagnet.
JP26437593A 1993-09-28 1993-09-28 Magnetic bearing device Expired - Fee Related JP3543831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26437593A JP3543831B2 (en) 1993-09-28 1993-09-28 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26437593A JP3543831B2 (en) 1993-09-28 1993-09-28 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH0798016A JPH0798016A (en) 1995-04-11
JP3543831B2 true JP3543831B2 (en) 2004-07-21

Family

ID=17402284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26437593A Expired - Fee Related JP3543831B2 (en) 1993-09-28 1993-09-28 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP3543831B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339136A (en) * 2002-05-20 2003-11-28 Kumamoto Technology & Industry Foundation Annular type motor
JP4995561B2 (en) 2006-12-25 2012-08-08 東海旅客鉄道株式会社 Superconducting magnetic thrust bearing with integrated generator
CN103195806B (en) * 2012-01-04 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 Magnetic suspension bearing stator, magnetic suspension bearing, stator iron core make frock and method
CN109268390A (en) * 2018-11-26 2019-01-25 北京航空航天大学 A kind of precision tracking bracket multi-coil axial magnetic bearing

Also Published As

Publication number Publication date
JPH0798016A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
US3845995A (en) Magnetically mounted rotor
US8796894B2 (en) Combination radial/axial electromagnetic actuator
JP3058452B2 (en) Magnetically mounted position stabilizing flywheel
US7315103B2 (en) Superconducting rotating machines with stationary field coils
US4996457A (en) Ultra-high speed permanent magnet axial gap alternator with multiple stators
US7235906B2 (en) Magnetic bearing using displacement winding techniques
KR100352022B1 (en) Motor of magnetic lifting type
US5703423A (en) Energy storage flywheel system
TWI398074B (en) Generator and air core utilitied thereof
JPH11313462A (en) Permanent magnet synchronous machine
JP2004504795A (en) Economical non-wear electric drive
US7049724B2 (en) Superconducting rotating machines with stationary field coils and axial airgap flux
JP2005240963A (en) Flywheel type energy storing device
US5864197A (en) Synchronous machine
JP4320409B2 (en) Magnetic shaft support electric drive
EP3118976A1 (en) Electric machine having a radial electrodynamic bearing
US20100019604A1 (en) Methods and apparatus for assembling homopolar inductor alternators including superconducting windings
JP3543831B2 (en) Magnetic bearing device
CA2467177C (en) Methods and apparatus for assembling homopolar inductor alternators including superconducting windings
JP3710547B2 (en) Disk type magnetic levitation rotating machine
US6753631B2 (en) Magnetically levitated motor
US6362549B1 (en) Magnetic bearing device
JP2562042B2 (en) Brushless d. c. Inductance sensor for motor
JP2796233B2 (en) Power generator
JPH06133493A (en) Magnetic levitation induction motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees