JPH0797630A - Production of high magnetic flux density grain oriented silicon steel sheet - Google Patents

Production of high magnetic flux density grain oriented silicon steel sheet

Info

Publication number
JPH0797630A
JPH0797630A JP5229142A JP22914293A JPH0797630A JP H0797630 A JPH0797630 A JP H0797630A JP 5229142 A JP5229142 A JP 5229142A JP 22914293 A JP22914293 A JP 22914293A JP H0797630 A JPH0797630 A JP H0797630A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
magnetic flux
weight
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5229142A
Other languages
Japanese (ja)
Inventor
Jiro Harase
二郎 原勢
Kunihide Takashima
邦秀 高嶋
Takeo Nagashima
武雄 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5229142A priority Critical patent/JPH0797630A/en
Publication of JPH0797630A publication Critical patent/JPH0797630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably produce a grain oriented silicon steel sheet having high magnetic flux density and remarkably small in core loss. CONSTITUTION:The compsn. of a steel is constituted of the one contg. 0.01 to 0.08% Al, 2.0 to 4.5% Si, 0.05 to 2.0% Cu, 0.0005 to 0.05% Bi and 0.001 to 0.06% S, and the balance Fe with inevitable impurities, and the hot rolled steel strip thereof is annealed according to necessary and is thereafter subjected to cold rolling for one time or >=two times including process annealing to regulate its thickness to a prescribed one, which is subjected to primary recrystallization annealing, is thereafter subjected to nitriding annealing according to necessary, is thereafter coated with a separation agent for annealing and is subjected to finish annealing. After the nitriding annealing, a separation agent for annealing essentially consisting of one or >=two kinds among alumina, silica, zirconia, strontium oxide and forsterite is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁束密度が高く鉄損が
低い方向性珪素鋼板(以下方向性電磁板と云う)に関す
るものである。特に一次再結晶焼鈍工程で脱炭を行わな
いことで、磁気特性に有害な内部酸化層の形成を防止
し、二次再結晶工程(仕上げ焼鈍工程)でB8 =1.9
3以上の高い磁束密度を有する二次再結晶を発現させ、
その鋼板表面にフォルステライト(以下、グラスと云
う)被膜を形成させない状態で同工程を完了させ、その
後、磁区細分化、張力コーティング等の処理を行い、鉄
損特性の改善を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet (hereinafter referred to as grain-oriented magnetic sheet) having a high magnetic flux density and a low iron loss. Particularly, by not performing decarburization in the primary recrystallization annealing step, formation of an internal oxide layer harmful to magnetic properties is prevented, and B 8 = 1.9 in the secondary recrystallization step (finish annealing step).
Express secondary recrystallization having a high magnetic flux density of 3 or more,
The process is completed without forming a forsterite (hereinafter referred to as glass) film on the surface of the steel sheet, and then magnetic domain subdivision, tension coating, etc. are performed to improve the iron loss characteristics. is there.

【0002】[0002]

【従来の技術】方向性電磁鋼板の製造においては熱延鋼
帯は必要に応じて焼鈍後、1回または中間焼鈍をはさむ
2回以上の冷間圧延を行い、所定の板厚とし、一次再結
晶焼鈍を行った後、必要に応じて窒化焼鈍を行った後焼
鈍分離剤を塗布し、仕上げ焼鈍を施すことで行われてい
る。この一次再結晶焼鈍では脱炭も行われているのが一
般である。しかるに近年溶鋼の状態で脱炭した素材を使
い、一次再結晶焼鈍工程での脱炭を省略した技術が数多
く報告されている。
2. Description of the Related Art In the production of grain-oriented electrical steel sheets, hot-rolled steel strips are annealed as necessary, and then cold-rolled once or twice or more with intermediate annealing, to a predetermined thickness, and then subjected to primary re-rolling. After crystal annealing, nitriding annealing is performed if necessary, and then an annealing separator is applied, and finish annealing is performed. Decarburization is generally performed in this primary recrystallization annealing. However, in recent years, many techniques have been reported in which decarburization in a molten steel state is used and decarburization in the primary recrystallization annealing process is omitted.

【0003】例えば特開昭54−112317号、特開
昭55−073818号、特開昭57−114614
号、特開昭57−207114号、特開昭58−100
627号、特開昭61−91319号、特開昭62−8
3421号、特開平1−119644号、特開平1−2
12721号、特開平1−309923号、特開平1−
309924号、特開平2−30714号、特開平2−
141532号、特開平3−111516号、特開平3
−287721号、特開平5−9666号等である。し
かしながらこれらの技術では本発明が指向している高い
磁束密度の鋼板を製造するのが困難であり、可能である
場合も、安定して製造するためには製造条件を厳密に制
御する必要がある等の欠点がある。また鋼板表面を平滑
化する技術としては特開昭64−83620号に開示さ
れている化学研磨、電解研磨等がある。
For example, JP-A-54-112317, JP-A-55-073818, and JP-A-57-114614.
No. 57-207114 and 58-100.
627, JP-A-61-91319 and JP-A-62-8.
3421, JP-A-1-119644, and JP-A1-2
12721, JP-A-1-309923, JP-A-1-
309924, JP-A-2-30714, JP-A-2-
141532, JP-A-3-111516, JP-A-3
-287721, JP-A-5-9666 and the like. However, it is difficult to produce a high magnetic flux density steel sheet to which the present invention is directed by these techniques, and even if possible, it is necessary to strictly control the production conditions for stable production. There are drawbacks such as. Further, as a technique for smoothing the surface of the steel sheet, there are chemical polishing, electrolytic polishing and the like disclosed in JP-A-64-83620.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高い磁束密
度の方向性電磁鋼板を安定して製造する方法を提供する
ものである。更には、一次再結晶焼鈍工程脱炭を省略す
る場合、B8 =1.93以上の高い磁束密度を有する方
向性電磁鋼板の製造には諸処の困難が伴う。それが解決
できると、脱炭焼鈍時に形成される鉄損を劣化させる内
部酸化層の形成を軽減できる。また二次再結晶過程で通
常は形成されるグラス被膜の生成をなくし板面を平滑す
れば、鉄損を著しく低下させることができる。本発明は
それらの課題を解決する方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for stably producing a grain-oriented electrical steel sheet having a high magnetic flux density. Furthermore, if the decarburization in the primary recrystallization annealing step is omitted, various difficulties are involved in producing a grain-oriented electrical steel sheet having a high magnetic flux density of B 8 = 1.93 or more. If this can be solved, formation of an internal oxide layer that deteriorates iron loss formed during decarburization annealing can be reduced. Further, iron loss can be remarkably reduced by eliminating the formation of a glass film which is usually formed in the secondary recrystallization process and smoothing the plate surface. The present invention provides a method for solving these problems.

【0005】[0005]

【課題を解決するための手段】本発明の手段は、成分が
C:0.0005〜0.004重量%、Si:2.0〜
4.5重量%、酸可溶性Al:0.010〜0.080
重量%、N:0.001〜0.020重量%、Cu:
0.050〜2.00重量%、Bi:0.0005〜
0.050重量%、S:0.0010〜0.060重量
%、残部Fe及び不可避的不純物からなる珪素熱延鋼帯
を必要に応じて焼鈍した後1回または中間焼鈍をはさむ
2回以上の冷間圧延を行い、所定の板厚とし、一次再結
晶焼鈍を行った後、必要に応じて窒化焼鈍を行った後焼
鈍分離剤を塗布し、仕上げ焼鈍を施すことにある。ま
た、焼鈍分離剤として、アルミナ、シリカ、ジルコニ
ア、酸化ストロンチウム及びフォルステライトの1種あ
るいは2種以上を主成分とすることにある。
Means for Solving the Problems In the means of the present invention, the components are C: 0.0005 to 0.004% by weight, Si: 2.0 to.
4.5% by weight, acid-soluble Al: 0.010 to 0.080
% By weight, N: 0.001 to 0.020% by weight, Cu:
0.050 to 2.00% by weight, Bi: 0.0005
0.050% by weight, S: 0.0010 to 0.060% by weight, the hot-rolled silicon steel strip consisting of the balance Fe and unavoidable impurities is annealed as needed, and then once or twice or more with intermediate annealing. This is to perform cold rolling to a predetermined plate thickness, perform primary recrystallization annealing, then perform nitriding annealing if necessary, apply an annealing separating agent, and perform finish annealing. Further, as the annealing separating agent, one or more kinds of alumina, silica, zirconia, strontium oxide and forsterite are contained as a main component.

【0006】更に本発明を実施する場合該一次再結晶焼
鈍を900℃以上1050℃以下の温度で1秒以上10
秒以下の加熱をすることや、該仕上げ焼鈍の昇温過程8
00℃以上を窒素50%以上の雰囲気で加熱すること、
仕上げ焼鈍前の鋼板の窒素量が0.006〜0.050
重量%であることが望ましい。
When the present invention is further carried out, the primary recrystallization annealing is performed at a temperature of 900 ° C. or higher and 1050 ° C. or lower for 1 second or longer and 10 minutes or longer.
Heating for seconds or less, and the temperature rising process of the final annealing 8
Heating 00 ° C or higher in an atmosphere of 50% or higher nitrogen,
The nitrogen content of the steel sheet before finish annealing is 0.006 to 0.050.
It is desirable that the content is wt%.

【0007】以下、本発明について詳細に説明する。先
ず一次再結晶焼鈍工程で脱炭焼鈍を行わずに磁束密度
1.93以上の二次再結晶を安定させて発現させる条件
について述べる。一次再結晶焼鈍工程では脱炭を行わな
いで一方向性電磁鋼板を製造する方法として、発明者ら
は特開昭57−114614号公報で開示した技術を開
発したが、この方法では磁束密度が比較的低いという欠
点があった(実施例B8 =1.88)。また、磁束密度
が高い鋼板を製造する技術として特開昭57−8943
9号公報(実施例B8 =1.97)や、特開昭57−2
07114号公報(実施例B8 =1.94)も開発され
たが、安定してこのような高い磁束密度が得られない場
合がある。
The present invention will be described in detail below. First, the conditions for stabilizing and developing secondary recrystallization having a magnetic flux density of 1.93 or more in the primary recrystallization annealing step without performing decarburization annealing will be described. As a method for producing a grain-oriented electrical steel sheet without decarburization in the primary recrystallization annealing step, the inventors have developed the technique disclosed in Japanese Patent Laid-Open No. 57-114614, but this method can reduce the magnetic flux density. It had the disadvantage of being relatively low (Example B 8 = 1.88). Further, as a technique for manufacturing a steel sheet having a high magnetic flux density, Japanese Patent Application Laid-Open No. 57-8943
9 No. (Example B 8 = 1.97) or, JP 57-2
No. 07114 (Example B 8 = 1.94) was also developed, but such a high magnetic flux density may not be stably obtained in some cases.

【0008】その原因について鋭意研究した結果、一次
再結晶板に二次再結晶の主方位となる(110)〔00
1〕方位の存在量が少ないこと、即ち二次再結晶の核
となる結晶方位が少ないこと、二次再結晶粒以外の結
晶方位の成長を阻止すべきインヒビターが不足している
こと、更に(110)〔001〕方位二次再結晶粒の
みを優先的に成長させる作用効果が、従来の製造工程に
よる一次再結晶板と較べて少ないことが分かった。
As a result of diligent research into the cause, the main orientation of the secondary recrystallization was found in the primary recrystallized plate (110) [00
1) The existence amount of the orientation is small, that is, the crystal orientation that becomes the nucleus of the secondary recrystallization is small, and the inhibitor that should prevent the growth of the crystal orientation other than the secondary recrystallized grains is insufficient. It was found that the action and effect of preferentially growing only the 110) [001] oriented secondary recrystallized grains is smaller than that of the primary recrystallized plate produced by the conventional manufacturing process.

【0009】本発明は、Cu,Bi,SをそれぞれC
u:0.050〜2.00重量%、Bi:0.0005
〜0.050重量%、S:0.0010〜0.060重
量%(以下の説明では重量%は単に%と表現する)範囲
に限定することでこれらの欠点を克服できることを発見
し、本発明を完成させたものである。この効果が生じる
理由を以下に述べる。
In the present invention, Cu, Bi and S are respectively replaced by C
u: 0.050 to 2.00% by weight, Bi: 0.0005
It was discovered that these drawbacks can be overcome by limiting the content to the range of .about.0.050% by weight and S: 0.0010 to 0.060% by weight (weight% is simply expressed as "%" in the following description). Has been completed. The reason why this effect occurs will be described below.

【0010】先ずCuが0.050〜2.00%含まれ
ると核となる結晶方位が増加し、更に二次再結晶粒
以外の結晶粒の成長を阻止する作用効果があることが分
かった。この場合の効果は特にCu含有量が0.5%
以上となることが顕著であることを発見した。またの
効果はCuが0.05%以上あれば顕著となり、Cuが
増すほどその効果が大きくなることが分かった。Cuが
0.05%以上であれば、Cuの硫化物の量もサイズも
Cu量を増しても変化しないことから、Cu添加で二次
再結晶粒を成長しやすくするのは、析出物(硫化物)と
してのインヒビター効果と、固溶Cuそのものが二次再
結晶粒以外の結晶粒の成長を阻止する効果があるためと
考えられる。
First, it has been found that when Cu is contained in an amount of 0.050 to 2.00%, the crystal orientation serving as a nucleus is increased, and further, there is an effect of inhibiting the growth of crystal grains other than the secondary recrystallized grains. In this case, the effect is that the Cu content is 0.5%.
It has been found that the above is remarkable. Further, it was found that the effect becomes remarkable when Cu is 0.05% or more, and the effect becomes larger as Cu increases. If the Cu content is 0.05% or more, the amount and size of Cu sulfide do not change even if the Cu amount is increased. Therefore, the addition of Cu facilitates the growth of secondary recrystallized grains. It is considered that this is because the inhibitor effect as sulfide) and the solid solution Cu itself have an effect of inhibiting the growth of crystal grains other than the secondary recrystallized grains.

【0011】次にBiが0.0005〜0.050%含
まれると、(110)〔001〕方位二次再結晶粒の
みを優先的に成長させる作用効果が現われることが分か
った。これはBiが硫化物が微細化すること、またBi
が均一に微細分散していることが関与している。
Next, it has been found that when Bi is contained in an amount of 0.0005 to 0.050%, only the (110) [001] oriented secondary recrystallized grains are preferentially grown. This is due to the fact that Bi is refined in sulfide,
Is involved in being uniformly finely dispersed.

【0012】次にSを0.0010〜0.060%範囲
に限定するのは,の効果が発現するためである。即
ち本発明素材成分においてはSが0.005%未満では
二次再結晶粒が発見しにくくなったり、二次再結晶した
場合も(110)〔001〕方位からはずれた二次再結
晶粒の発現が多くなることを見いだした。即ち本成分系
においてはSは,の効果を与える。
Next, the reason why S is limited to the range of 0.0010 to 0.060% is that the effect of is exhibited. That is, in the material component of the present invention, when S is less than 0.005%, it becomes difficult to find secondary recrystallized grains, and when secondary recrystallized, secondary recrystallized grains deviated from the (110) [001] orientation We found that the expression was high. That is, in this component system, S gives the effect of.

【0013】Sが0.001%以上存在する場合は微細
な硫化物が観察され、この微細な硫化物が,の効果
を発現する。Sは0.06%でも効果があるが、Sが多
い場合熱延工程で割れが発生しやすい、特にBi添加量
が多いとその傾向が助長されるので本発明では上限を
0.060%とした。
When S is present in an amount of 0.001% or more, fine sulfides are observed, and the fine sulfides exert the effect of. S is effective even if it is 0.06%, but if S is large, cracks are likely to occur in the hot rolling step. Especially, if the amount of Bi added is large, this tendency is promoted. Therefore, in the present invention, the upper limit is 0.060%. did.

【0014】Nは(Al,Si)Nを形成しインヒビタ
ーとして働くが、スラブの段階で0.001%以上ない
とその効果が発揮されない。0.02%以上含まれると
ブリスタと呼ばれる表面傷が発生する。しかし仕上げ焼
鈍前の状態では0.006%以上0.06%の範囲が望
ましい。これは仕上げ焼鈍前の状態で窒素が0.006
%以下でも、0.06%以上でも二次再結晶が発現しに
くくなる傾向が生じたり、二次再結晶が発現しても磁束
密度が著しく悪くなるためである。窒素含有量が低い場
合二次再結晶が発現しにくくなるのは窒化物としてのイ
ンヒビターが不足するため、いろいろの方位を持った結
晶粒が成長するためであり、二次再結晶が発現しても磁
束密度が低いのは、二次再結晶が低温で発現し、その場
合の二次再結晶方位は(110)〔001〕方位以外の
二次再結晶粒である確率が高くなるためである。
N forms (Al, Si) N and acts as an inhibitor, but the effect is not exhibited unless it is 0.001% or more at the stage of slab. If 0.02% or more is contained, surface scratches called blister occur. However, in the state before finish annealing, the range of 0.006% or more and 0.06% is desirable. This is 0.006 in nitrogen before finish annealing.
% Or less than 0.06%, secondary recrystallization tends to be less likely to occur, and even if secondary recrystallization occurs, the magnetic flux density is significantly deteriorated. When the nitrogen content is low, the reason why secondary recrystallization is difficult to develop is that the inhibitor as a nitride is insufficient, so that crystal grains with various orientations grow, and secondary recrystallization occurs. The reason why the magnetic flux density is low is that the secondary recrystallization occurs at a low temperature, and in that case, the probability that the secondary recrystallization orientation is a secondary recrystallization grain other than the (110) [001] orientation increases. .

【0015】窒素含有量が高い場合二次再結晶方位が悪
いのは、窒化物としてのインヒビターが強いため高温で
二次再結晶が発現することになる。この場合は、低温で
発現する二次再結晶同様、いろいろの方位を持った二次
再結晶が発現する。窒素含有量が高い場合二次再結晶が
発現しなくなる場合があるのは、高温で急激にインヒビ
ターが弱くなり、二次再結晶粒のみの成長ができなくな
るためである。
When the nitrogen content is high, the secondary recrystallization orientation is bad because the inhibitor as a nitride is strong, and the secondary recrystallization appears at high temperature. In this case, similar to secondary recrystallization that occurs at low temperature, secondary recrystallization with various orientations occurs. The reason why secondary recrystallization may not appear when the nitrogen content is high is that the inhibitor rapidly weakens at high temperature and only secondary recrystallized grains cannot grow.

【0016】Siは含有量が多いほど固有抵抗が増加し
て製品の渦流損を減少させるので、渦流損を減少させる
ためにはSiは多いほどよい。Siを2%以上と限定し
たのはこれ以下では渦流損が大きく好ましくないので下
限を2%としたものである。しかしSiは添加量が増す
ほど冷間圧延工程で割れ易くなる。この傾向はCが高い
ほど顕著となる。本発明鋼は冷間圧延工程ではCが既に
0.004%以下であるので、従来の素材と較べ割れに
くいが、Si4.5%以上では冷間圧延に特別の工夫が
必要で経済的に製造するという本発明の目的にそれるの
で上限を4.5%とした。
As the content of Si increases, the specific resistance increases and the eddy current loss of the product decreases. Therefore, the more Si, the better. The reason why Si is limited to 2% or more is that the lower limit is set to 2% because eddy current loss is large and it is not preferable below this range. However, Si becomes more likely to crack in the cold rolling process as the added amount increases. This tendency becomes more remarkable as C is higher. Since the steel of the present invention has a C content of 0.004% or less in the cold rolling process, it is less likely to be cracked than conventional materials, but if Si is 4.5% or more, it requires special measures for cold rolling and is economically manufactured. Therefore, the upper limit was set to 4.5% because it defeats the purpose of the present invention.

【0017】Alは(Al,Si)Nを形成しインヒビ
ターとして働くが、酸可溶性Alとして0.01%以上
ないとその効果が発揮されないので下限を0.01%と
した。上限を0.08%としたのはこれ以上のAlが存
在すると、インヒビターとして有効に働かなくなるため
である。
Although Al forms (Al, Si) N and acts as an inhibitor, the effect is not exhibited unless the content of the acid-soluble Al is 0.01% or more, so the lower limit was made 0.01%. The upper limit is set to 0.08% because if Al is present in excess of this, it will not work effectively as an inhibitor.

【0018】熱延開始温度が1200℃以上となると本
発明成分では二次再結晶が不安定になり、製品の磁束密
度が1.80Tesla 以下になる確率が増加し工業的な製
造方法として採用できない。二次再結晶が不安定となる
のは、高温熱延では結晶粒径が大きいため、熱延工程で
の再結晶が不十分なことに起因し、二次再結晶しても磁
束密度が低いのは、高温加熱に起因して、一次再結晶粒
が小さくなり、その結果二次再結晶温度が低下し方位の
悪い二次再結晶粒が発現することによる。熱延開始温度
が1000℃以下でも良好な磁気特性が得られるが、熱
延にようするエネルギーが多く必要で、かつ熱延時に鋼
板表面に傷が入りやすくなるので経済的でない。
When the hot rolling start temperature is 1200 ° C. or higher, secondary recrystallization becomes unstable with the components of the present invention, and the probability that the magnetic flux density of the product will be 1.80 Tesla or less increases, so that it cannot be used as an industrial manufacturing method. . The reason why the secondary recrystallization becomes unstable is that the crystal grain size is large in high temperature hot rolling, so that the recrystallization in the hot rolling process is insufficient, and the magnetic flux density is low even after the secondary recrystallization. The reason is that the primary recrystallized grains become small due to the high temperature heating, and as a result, the secondary recrystallized temperature is lowered and the secondary recrystallized grains having a bad orientation are developed. Good magnetic properties can be obtained even when the hot rolling start temperature is 1000 ° C. or lower, but a lot of energy required for hot rolling is required, and the surface of the steel sheet is easily scratched during hot rolling, which is not economical.

【0019】従来の方向性電磁鋼板の製造法では、最終
厚みまで冷延された鋼板はCを0.04%から0.08
%程度含有しているため、一次再結晶焼鈍で、再結晶に
加えて脱炭を行う必要がある。一次再結晶焼鈍でCを
0.004%以下まで脱炭するためには、通常820℃
から860℃で120秒以上の加熱が必要である。この
場合加熱温度が900℃以上では、脱炭に有害な内部酸
化層が鋼板表面に形成され、脱炭しにくくなるので、加
熱温度は900℃以下に抑えられている。
In the conventional method for producing grain-oriented electrical steel sheet, the steel sheet cold rolled to the final thickness has a C content of 0.04% to 0.08%.
%, It is necessary to perform decarburization in addition to recrystallization in the primary recrystallization annealing. In order to decarburize C to 0.004% or less by primary recrystallization annealing, it is usually 820 ° C.
To 860 ° C. for 120 seconds or more is required. In this case, when the heating temperature is 900 ° C. or higher, an internal oxide layer harmful to decarburization is formed on the surface of the steel sheet and decarburization becomes difficult, so the heating temperature is suppressed to 900 ° C. or lower.

【0020】しかるに、本発明鋼板では脱炭が不必要で
あるので一次再結晶焼鈍では再結晶させることが主目的
であるので、再結晶温度以上で加熱すればよいので、加
熱温度の上限はなく、加熱時間も短時間でもよい。しか
しながら特に良好な磁気特性を得るためには一次再結晶
焼鈍を900℃以上1050℃以下の温度で1秒以上1
0秒以下の加熱をすることが好ましい。加熱温度を10
50℃以下が好ましいのは、これ以上の加熱温度でも良
好な磁気特性が得られるが時として磁気特性が劣化する
等安定して良好な特性が得られない場合があることと、
このような高温で加熱することは不経済なためである。
However, since the steel sheet of the present invention does not require decarburization, the main purpose is to recrystallize it in the primary recrystallization annealing. Therefore, since it is sufficient to heat at the recrystallization temperature or higher, there is no upper limit of the heating temperature. The heating time may be short. However, in order to obtain particularly good magnetic properties, primary recrystallization annealing is performed for 1 second or longer at a temperature of 900 ° C. or higher and 1050 ° C. or lower.
It is preferable to perform heating for 0 seconds or less. Heating temperature to 10
It is preferable that the temperature is 50 ° C. or lower because good magnetic properties can be obtained even at a heating temperature higher than 50 ° C., but sometimes stable good properties cannot be obtained due to deterioration of magnetic properties.
This is because heating at such a high temperature is uneconomical.

【0021】加熱時間は1秒以上が好ましいのは、これ
以上の時間であれば良好な磁気特性が得られるためであ
り、10秒以下を好ましいとしたのは、これ以上の加熱
時間でも良好な磁気特性が得られるが、時として磁気特
性が劣化する等安定して良好な特性が得られない場合が
あることと、長時間加熱することは不経済であるためで
ある。
The heating time of 1 second or longer is preferable because good magnetic properties can be obtained if the heating time is longer than 10 seconds, and the heating time of 10 seconds or shorter is preferable even when the heating time is longer than this. This is because magnetic characteristics can be obtained, but sometimes stable and good characteristics cannot be obtained due to deterioration of magnetic characteristics, and it is uneconomical to heat for a long time.

【0022】仕上げ焼鈍の雰囲気は従来の方向性電磁鋼
板の仕上げ焼鈍と同様でよい。しかし仕上げ焼鈍昇温過
程の窒素を50%以上の雰囲気で焼鈍すると、安定して
良好な磁気特性が得られるので、仕上げ焼鈍の昇温過程
800℃以上を窒素50%以上の雰囲気で加熱すること
が好ましい。この場合800℃以上と限定したのは、こ
れ以下の温度では影響が少ないためである。窒素量は1
00%でもよいが、全く水素を含まない場合雰囲気中に
酸素等が混入すると、鋼板が酸化される場合もあり、好
ましくないので数%の水素を混入させておくことが好ま
しい。
The atmosphere of the finish annealing may be the same as that of the finish annealing of the conventional grain-oriented electrical steel sheet. However, if nitrogen is annealed in an atmosphere of 50% or more in the temperature of finish annealing, stable and good magnetic properties can be obtained. Therefore, heating process 800 ° C or more in finish annealing should be heated in an atmosphere of nitrogen 50% or more. Is preferred. In this case, the reason why the temperature is limited to 800 ° C. or higher is that there is little influence at a temperature lower than this. The amount of nitrogen is 1
Although it may be 00%, when hydrogen is not contained at all, if oxygen or the like is mixed in the atmosphere, the steel sheet may be oxidized, which is not preferable. Therefore, it is preferable to mix a few% of hydrogen.

【0023】次にこのようにして形成された一次再結晶
板に二次再結晶焼鈍過程で被膜を形成させないで表面を
平滑化する技術について述べる。発明者等は、MgOを
主体とする焼鈍分離剤の塗布方法と同じ方法、即ち水ス
ラリーで塗布することを検討し、アルミナ(Al
2 3 )、シリカ(SiO2 )、ジルコニア(Zr
2 )、酸化ストロンチウム(SrO)、及びフォルス
テライト(Mg2 SiO4 )の平均粒径がある範囲で、
それが可能であることを見いだした。即ち、これらの物
質の平均粒径が0.5〜10.0μmの時に特に良好な
結果が得られることが分かった。
Next, a technique for smoothing the surface of the primary recrystallized plate thus formed without forming a film in the secondary recrystallization annealing process will be described. The inventors of the present invention have studied the same method as the method of applying the annealing separator mainly composed of MgO, that is, the application with an aqueous slurry, and the alumina (Al
2 O 3 ), silica (SiO 2 ), zirconia (Zr
O 2 ), strontium oxide (SrO), and forsterite (Mg 2 SiO 4 ) have an average particle size within a certain range,
I found it possible. That is, it was found that particularly good results were obtained when the average particle size of these substances was 0.5 to 10.0 μm.

【0024】この場合0.5μm未満の粉末では、水ス
ラリーとして有効に塗布できるが、アルミナ(Al2
3 )、シリカ(SiO2 )、ジルコニア(ZrO2 )、
酸化ストロンチウム(SrO)、及びフォルステライト
(Mg2 SiO4 )の粒子自体は平均粒径が小さくなっ
ているため活性化しているので焼結して被膜を形成して
しまい、金属面を現さなくなる場合がある。また、1
0.0μm超では、水スラリーが不安定で、撹拌が止
まると直ちに沈澱してしまい、塗布しにくい、粒子が
粗いため鋼板表面にくい込んで、平滑面が得られないだ
けでなく、磁気特性が劣化するという問題を生じる場合
がある。
In this case, if the powder having a particle size of less than 0.5 μm can be effectively applied as a water slurry, alumina (Al 2 O
3 ), silica (SiO 2 ), zirconia (ZrO 2 ),
When strontium oxide (SrO) and forsterite (Mg 2 SiO 4 ) particles themselves are activated because the average particle size is small, they are sintered to form a film and the metal surface does not appear. There is. Also, 1
If it exceeds 0.0 μm, the water slurry is unstable and precipitates immediately when stirring is stopped, it is difficult to apply, the surface of the steel sheet is difficult to get due to the coarse particles, and not only a smooth surface is not obtained but also the magnetic properties are It may cause a problem of deterioration.

【0025】水スラリー塗布以外の塗布方法の場合もア
ルミナ(Al2 3 )、シリカ(SiO2 )、ジルコニ
ア(ZrO2 )、酸化ストロンチウム(SrO)、及び
フォルステライト(Mg2 SiO4 )の平均粒径は0.
5〜10.0μmが好ましい。ここで平均粒径と称して
いるのは重量で50%通過する粒径である。なお、アル
ミナ(Al2 3 )、シリカ(SiO2 )、ジルコニア
(ZrO2 )、酸化ストロンチウム(SrO)、及びフ
ォルステライト(Mg2 SiO4 )の1種あるいは2種
以上を主成分とする焼鈍分離剤に若干の防錆剤等を添加
しても差し障りない。
In the case of coating methods other than water slurry coating, the average of alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), strontium oxide (SrO), and forsterite (Mg 2 SiO 4 ) is also used. The particle size is 0.
5 to 10.0 μm is preferable. Here, what is referred to as an average particle diameter is a particle diameter at which 50% by weight passes. Annealing containing one or more of alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), strontium oxide (SrO), and forsterite (Mg 2 SiO 4 ) as a main component. It does not hurt to add a little rust preventive to the separating agent.

【0026】以下本発明の実施態様を述べる。C:0.
0005〜0.0040%、Si:2.0〜4.5%、
酸可溶性Al:0.010〜0.080%、N:0.0
01〜0.020%、Cu:0.050〜2.00%、
S:0.0010〜0.060%、残部Fe及び不可避
的不純物からなる溶鋼を通常の工程もしくは、連続鋳造
してスラブとした後、1200℃から1000℃の温度
域から熱間圧延して熱延鋼板あるいは、熱延鋼帯とす
る。この熱延鋼板あるいは、熱延鋼帯は、750℃〜1
200℃の温度域での焼鈍が行われる。
Embodiments of the present invention will be described below. C: 0.
0005 to 0.0040%, Si: 2.0 to 4.5%,
Acid-soluble Al: 0.010 to 0.080%, N: 0.0
01-0.020%, Cu: 0.050-2.00%,
S: 0.0010 to 0.060%, molten steel consisting of balance Fe and unavoidable impurities in a normal process or continuously cast into a slab, and then hot-rolled from a temperature range of 1200 ° C to 1000 ° C. Rolled steel plate or hot rolled steel strip. This hot rolled steel sheet or hot rolled steel strip has a temperature of 750 ° C to 1
Annealing is performed in the temperature range of 200 ° C.

【0027】また、このような熱延板焼鈍なしでこれら
の熱延鋼板あるいは、熱延鋼帯は、冷間圧延される。つ
いで冷間圧延後の材料は、700℃〜1050℃の温度
域で一次再結晶焼鈍される。この焼鈍の後段でインヒビ
ター強化のためアンモニアによる窒化処理を行う。つい
で再結晶板は、焼鈍分離剤が塗布されて仕上げ焼鈍炉に
入る。この時、アルミナ(Al2 3 )、シリカ(Si
2 )、ジルコニア(ZrO2 )、酸化ストロンチウム
(SrO)、及びフォルステライト(Mg2 SiO4
の1種あるいは2種以上を主成分とする焼鈍分離剤を塗
布する。
Further, these hot-rolled steel sheets or hot-rolled steel strips are cold-rolled without such hot-rolled sheet annealing. Then, the material after cold rolling is subjected to primary recrystallization annealing in a temperature range of 700 ° C to 1050 ° C. After this annealing, nitriding treatment with ammonia is performed to strengthen the inhibitor. Then, the recrystallized plate is coated with an annealing separator and enters a finish annealing furnace. At this time, alumina (Al 2 O 3 ) and silica (Si
O 2 ), zirconia (ZrO 2 ), strontium oxide (SrO), and forsterite (Mg 2 SiO 4 ).
The annealing separator containing at least one of the above as a main component is applied.

【0028】仕上げ焼鈍の昇温速度は、通常の一方向性
電磁鋼板のそれと同様である。仕上げ焼鈍の昇温時の雰
囲気も通常の一方向性電磁鋼板のそれと同様、中性ある
いは還元性であるが、800℃を超える温度域では窒素
分圧を50%以上とすることが好ましい。なお、窒素分
圧調整のためアルゴン、ヘリウム等の不活性ガスを混合
することは何等さしさわりない。二次再結晶完了後、純
化のため100%水素で高温(約1200℃)保持され
る。仕上げ焼鈍終了後、必要に応じてレーザービーム照
射等の磁区細分化処理を行う。
The temperature rising rate of the finish annealing is the same as that of the ordinary grain-oriented electrical steel sheet. The atmosphere at the time of raising the temperature of the finish annealing is neutral or reducing as in the case of the ordinary grain-oriented electrical steel sheet, but the nitrogen partial pressure is preferably 50% or more in the temperature range exceeding 800 ° C. It should be noted that mixing an inert gas such as argon or helium for adjusting the nitrogen partial pressure does not matter. After the completion of the secondary recrystallization, it is kept at a high temperature (about 1200 ° C.) with 100% hydrogen for purification. After finishing annealing, magnetic domain subdivision processing such as laser beam irradiation is performed if necessary.

【0029】[0029]

【実施例】【Example】

実施例1 C:0.001%、Si:2.90%、Mn:0.75
%、S:0.030%、Cu:0.10%、Al:0.
027%、N:0.007%、その他不可避的不純物及
びBi:0.0055%、Bi:0.0097%、B
i:0.0153%含んだ3種類のスラブを公知の方法
で熱延板とした。次いで900℃で2分間加熱し水冷し
た。酸洗後冷間圧延を行い厚さ0.29mmとした。次に
850℃、900℃、9500℃の温度で10秒加熱し
た。
Example 1 C: 0.001%, Si: 2.90%, Mn: 0.75
%, S: 0.030%, Cu: 0.10%, Al: 0.
027%, N: 0.007%, other unavoidable impurities and Bi: 0.0055%, Bi: 0.0097%, B
i: Three kinds of slabs containing 0.0153% were formed into hot-rolled sheets by a known method. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.29 mm. Next, heating was performed for 10 seconds at temperatures of 850 ° C, 900 ° C, and 9500 ° C.

【0030】次に、MgOを塗布し、95%N2
2 、50%N2 −H2 、25%N2 −H2 の雰囲気で
昇温速度15℃/hrで1200℃まで加熱後、100%
2 雰囲気で20時間加熱後冷却した。次いで歪取り焼
鈍を行い磁気特性を測定した。結果を表1に示す。比較
のためBiを全く含まない材料も処理したが、本発明鋼
と較べ磁束密度が低いことが分かる。表から明らかの如
く本発明の方法で製造した材料は、磁束密度が著しく良
好である。
Next, MgO is applied and 95% N 2
After heating to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of H 2 , 50% N 2 —H 2 and 25% N 2 —H 2 , 100%
It was heated in an H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 1. For comparison, a material containing no Bi was also treated, but it is found that the magnetic flux density is lower than that of the steel of the present invention. As is apparent from the table, the material produced by the method of the present invention has a remarkably good magnetic flux density.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例2 C:0.001%、Si:2.90%、Mn:0.07
5%、S:0.030%、Cu:1.00%、Al:
0.024%、N:0.007%、その他不可避的不純
物及びBi:0.0128%を含んだスラブを公知の方
法で熱延板とした。次いで900℃で2分間加熱し水冷
した。酸洗後冷間圧延を行い厚さ0.29mmとした。次
に850℃及び950℃の温度で10秒加熱した。
Example 2 C: 0.001%, Si: 2.90%, Mn: 0.07
5%, S: 0.030%, Cu: 1.00%, Al:
A slab containing 0.024%, N: 0.007%, other unavoidable impurities and Bi: 0.0128% was formed into a hot-rolled sheet by a known method. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.29 mm. Then it was heated at a temperature of 850 ° C. and 950 ° C. for 10 seconds.

【0033】次にMgOを塗布し、95%N2 −H2
雰囲気で昇温速度15℃/hrで1200℃まで加熱後、
100%H2 雰囲気で20時間加熱後冷却した。次いで
歪取り焼鈍を行い磁気特性を測定した。結果を表2に示
す。比較のためBiを全く含まない素材についても同様
の工程で処理したが本発明鋼と較べ磁束密度が若干低か
った。表から明らかの如く本発明の方法で製造した材料
は、磁束密度が著しく良好であることがわかる。
Next, MgO is applied and heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 95% N 2 —H 2 and then,
It was heated in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 2. For comparison, a material containing no Bi was treated in the same process, but the magnetic flux density was slightly lower than that of the steel of the present invention. As is apparent from the table, the magnetic flux density of the material produced by the method of the present invention is remarkably good.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例3 C:0.0019%、Si:2.92%、Mn:0.0
79%、S:0.028%、Cu:1.00%、Al:
0.024%、N:0.0069%、Bi:0.002
6%を含みその他不可避的不純物を含んだスラブを公知
の方法で熱延板とした。次いで900℃で2分間加熱し
水冷した。酸洗後冷間圧延を行い厚さ0.29mmとし
た。次に950℃の温度で10秒加熱後窒化処理を行っ
た。
Example 3 C: 0.0019%, Si: 2.92%, Mn: 0.0
79%, S: 0.028%, Cu: 1.00%, Al:
0.024%, N: 0.0069%, Bi: 0.002
A slab containing 6% and other unavoidable impurities was formed into a hot-rolled sheet by a known method. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.29 mm. Next, after heating at a temperature of 950 ° C. for 10 seconds, nitriding treatment was performed.

【0036】次にMgOを塗布し、95%N2 −H2
雰囲気で昇温速度15℃/hrで1200℃まで加熱後、
100%H2 雰囲気で20時間加熱後冷却した。次いで
歪取り焼鈍を行い磁気特性を測定した。結果を表3に示
す。比較のためBiを全く含まない素材についても同様
の工程で処理したが本発明鋼と較べ磁束密度が低かっ
た。
Next, MgO is applied and heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 95% N 2 —H 2 and then,
It was heated in a 100% H 2 atmosphere for 20 hours and then cooled. Then, strain relief annealing was performed to measure the magnetic properties. The results are shown in Table 3. For comparison, a material containing no Bi was treated in the same process, but the magnetic flux density was lower than that of the steel of the present invention.

【0037】表から明らかの如く本発明の方法で製造し
た材料は、磁束密度が著しく良好であることがわかる。
本発明法で二次再結晶前の窒素が387ppm であった素
材は磁束密度が著しく高いにも拘らず鉄損が悪いのは、
二次再結晶の方位が理想(110)〔001〕方位に極
めて近かったもので、磁区細分化処理を施すことで鉄損
は著しく低下した。
As can be seen from the table, the magnetic flux density of the material produced by the method of the present invention is remarkably good.
According to the method of the present invention, the material in which the nitrogen content before secondary recrystallization was 387 ppm had poor iron loss in spite of the extremely high magnetic flux density.
The orientation of the secondary recrystallization was extremely close to the ideal (110) [001] orientation, and the iron loss was remarkably reduced by applying the domain refinement treatment.

【0038】[0038]

【表3】 [Table 3]

【0039】実施例4 C:0.001%、Si:2.90%、Mn:0.07
5%、S:0.030%、Cu:0.10%、Al:
0.027%、N:0.007%、その他不可避的不純
物を含むスラブを公知の方法で熱延板とした。次いで9
00℃で2分間加熱し水冷した。酸洗後冷間圧延を行い
厚さ0.29mmとした。次に、還元性雰囲気で一次再結
晶させ引き続き窒化処理を行った。次に、平均粒径が
4.0μmのAl2 3 を水スラリー状態で塗布した。
また比較のためMgOを主体とする焼鈍分離剤を水スラ
リー状態で塗布した。
Example 4 C: 0.001%, Si: 2.90%, Mn: 0.07
5%, S: 0.030%, Cu: 0.10%, Al:
A slab containing 0.027%, N: 0.007%, and other unavoidable impurities was formed into a hot-rolled sheet by a known method. Then 9
The mixture was heated at 00 ° C for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.29 mm. Next, primary recrystallization was performed in a reducing atmosphere, and subsequently nitriding treatment was performed. Next, Al 2 O 3 having an average particle diameter of 4.0 μm was applied in a water slurry state.
For comparison, an annealing separator containing MgO as a main component was applied in a water slurry state.

【0040】これら2種の材料を、1200℃まで、9
5%N2 −5%H2 雰囲気で、15℃/Hrの昇温速度を
保ちながら昇温し、1200℃到達後、100%水素と
し、該温度で20時間保持した。仕上げ焼鈍終了後、レ
ーザービームを照射し、リン酸−クロム酸系の張力コー
ティング処理を行った。得られた製品の特性は、表4の
通りである。また仕上げ焼鈍後歪取り焼鈍のみ行った材
料についても磁気特性を調査した。
These two materials were heated to 1200 ° C.
The temperature was raised in a 5% N 2 -5% H 2 atmosphere while maintaining the temperature rising rate of 15 ° C./Hr, and after reaching 1200 ° C., 100% hydrogen was obtained and the temperature was maintained for 20 hours. After finishing annealing, a laser beam was irradiated to perform a phosphoric acid-chromic acid tension coating process. The characteristics of the obtained product are shown in Table 4. The magnetic properties were also investigated for the material that was only subjected to strain relief annealing after finish annealing.

【0041】[0041]

【表4】 [Table 4]

【0042】実施例5 C:0.0019%、Si:2.92%、Mn:0.0
79%、S:0.028%、Cu:1.00%、Al:
0.024%、N:0.0069%、Bi:0.026
%含その他不可避的不純物を含んだスラブを公知の方法
で熱延板とした。次いで900℃で2分間加熱し水冷し
た。酸洗後冷間圧延を行い厚さ0.29mmとした。次に
還元性雰囲気で一次再結晶焼鈍を行い窒化処理して窒素
量を400ppm とした。次に平均粒径が4.0μmのA
2 3 を水スラリー状態で塗布した。また比較のため
MgOを主体とする焼鈍分離剤を水スラリー状態で塗布
した。
Example 5 C: 0.0019%, Si: 2.92%, Mn: 0.0
79%, S: 0.028%, Cu: 1.00%, Al:
0.024%, N: 0.0069%, Bi: 0.026
A slab containing% and other unavoidable impurities was formed into a hot-rolled sheet by a known method. Then, it was heated at 900 ° C. for 2 minutes and cooled with water. After pickling, cold rolling was performed to a thickness of 0.29 mm. Next, primary recrystallization annealing was performed in a reducing atmosphere and nitriding treatment was performed to adjust the amount of nitrogen to 400 ppm. Next, A having an average particle size of 4.0 μm
1 2 O 3 was applied as a water slurry. For comparison, an annealing separator containing MgO as a main component was applied in a water slurry state.

【0043】これら2種の材料を、1200℃まで、9
5%N2 −5%H2 雰囲気で、15℃/Hrの昇温速度を
保ちながら昇温し、1200℃到達後、100%水素と
し、該温度で20時間保持した。仕上げ焼鈍終了後、レ
ーザービームを照射し、リン酸−クロム酸系の張力コー
ティング処理を行った。得られた製品の特性は、表5の
通りである。また仕上げ焼鈍後歪取り焼鈍のみ行った材
料についても磁気特性を調査した。
These two kinds of materials were heated to 1200 ° C.
The temperature was raised in a 5% N 2 -5% H 2 atmosphere while maintaining the temperature rising rate of 15 ° C./Hr, and after reaching 1200 ° C., 100% hydrogen was obtained and the temperature was maintained for 20 hours. After finishing annealing, a laser beam was irradiated to perform a phosphoric acid-chromic acid tension coating process. The characteristics of the obtained product are as shown in Table 5. The magnetic properties were also investigated for the material that was only subjected to strain relief annealing after finish annealing.

【0044】[0044]

【表5】 [Table 5]

【0045】実施例6 C:0.0019%、Si:2.92%、Mn:0.0
79%、S:0.010%、Cu:0.85%、Al:
0.029%、N:0.0069%、Bi:0.030
%含その他不可避的不純物を含んだスラブを公知の方法
で熱延板とした。次いで酸洗後冷間圧延を行い厚さ0.
29mmとした。次に還元性雰囲気で一次再結晶焼鈍を行
い窒化処理して窒素量を1150ppm とした。次に平均
粒径が4.0μmのAl2 3 を水スラリー状態で塗布
した。また比較のためMgOを主体とする焼鈍分離剤を
水スラリー状態で塗布した。
Example 6 C: 0.0019%, Si: 2.92%, Mn: 0.0
79%, S: 0.010%, Cu: 0.85%, Al:
0.029%, N: 0.0069%, Bi: 0.030
A slab containing% and other unavoidable impurities was formed into a hot-rolled sheet by a known method. Then, after pickling, cold rolling is performed to a thickness of 0.
It was set to 29 mm. Next, primary recrystallization annealing was performed in a reducing atmosphere and nitriding treatment was performed to adjust the nitrogen content to 1150 ppm. Next, Al 2 O 3 having an average particle diameter of 4.0 μm was applied in a water slurry state. For comparison, an annealing separator containing MgO as a main component was applied in a water slurry state.

【0046】これら2種の材料を、1200℃まで、9
5%N2 −5%H2 雰囲気で、15℃/Hrの昇温速度を
保ちながら昇温し、1200℃到達後、100%水素と
し、該温度で20時間保持した。仕上げ焼鈍終了後、レ
ーザービームを照射し、リン酸−クロム酸系の張力コー
ティング処理を行った。得られた製品の特性は、表6の
通りである。また仕上げ焼鈍後歪取り焼鈍のみ行った材
料についても磁気特性を調査した。
These two kinds of materials were heated to 1200 ° C.
The temperature was raised in a 5% N 2 -5% H 2 atmosphere while maintaining the temperature rising rate of 15 ° C./Hr, and after reaching 1200 ° C., 100% hydrogen was obtained and the temperature was maintained for 20 hours. After finishing annealing, a laser beam was irradiated to perform a phosphoric acid-chromic acid tension coating process. The characteristics of the obtained product are as shown in Table 6. The magnetic properties were also investigated for the material that was only subjected to strain relief annealing after finish annealing.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【発明の効果】本発明により溶鋼の状態で0.004%
以下のCを含有した珪素鋼を素材として、磁束密度の極
めて高い方向性電磁鋼板が安価に容易に得られる技術が
提供された。本発明の工業上の価値は絶大である。
According to the present invention, 0.004% in the molten steel state
A technique has been provided in which a grain-oriented electrical steel sheet having an extremely high magnetic flux density can be easily obtained at low cost using the following silicon steel containing C as a material. The industrial value of the present invention is enormous.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 珪素熱延鋼帯を必要に応じて焼鈍した後
1回または中間焼鈍をはさむ2回以上の冷間圧延を行
い、所定の板厚とし、一次再結晶焼鈍を行った後、必要
に応じて窒化焼鈍を行った後焼鈍分離剤を塗布し、仕上
げ焼鈍を施す方向性珪素鋼板の製造方法において、珪素
熱延鋼帯の成分が C :0.0005〜0.004重量%、 Si:2.0〜4.5重量%、 酸可溶性Al:0.010〜0.080重量%、 N :0.001〜0.020重量%、 Cu:0.050〜2.00重量%、 Bi:0.0005〜0.050重量% S :0.0010〜0.060重量%、 残部Fe及び不可避的不純物からなることを特徴とする
高磁束密度方向性珪素鋼板の製造方法。
1. A silicon hot-rolled steel strip is annealed as required, and then cold-rolled once or twice or more with an intermediate anneal to obtain a predetermined plate thickness, and after primary recrystallization annealing, In the method for producing a grain-oriented silicon steel sheet in which an annealing separator is applied after performing nitriding annealing as necessary, and a finish annealing is performed, the composition of the hot-rolled silicon steel strip is C: 0.0005 to 0.004% by weight, Si: 2.0-4.5% by weight, acid-soluble Al: 0.010-0.080% by weight, N: 0.001-0.020% by weight, Cu: 0.050-2.00% by weight, Bi: 0.0005 to 0.050% by weight S: 0.0010 to 0.060% by weight, balance Fe and inevitable impurities.
【請求項2】 窒化焼鈍後、アルミナ、シリカ、ジルコ
ニア、酸化ストロンチウム及びフォルステライトの1種
あるいは2種以上を主成分とする焼鈍分離剤を塗布する
ことを特徴とする請求項1記載の高磁束密度方向性珪素
鋼板の製造方法。
2. The high magnetic flux according to claim 1, wherein after the nitriding annealing, an annealing separator containing one or more of alumina, silica, zirconia, strontium oxide and forsterite as a main component is applied. A method for manufacturing a density-oriented silicon steel sheet.
JP5229142A 1993-06-25 1993-09-14 Production of high magnetic flux density grain oriented silicon steel sheet Pending JPH0797630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5229142A JPH0797630A (en) 1993-06-25 1993-09-14 Production of high magnetic flux density grain oriented silicon steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15498593 1993-06-25
JP5-154985 1993-06-25
JP5229142A JPH0797630A (en) 1993-06-25 1993-09-14 Production of high magnetic flux density grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH0797630A true JPH0797630A (en) 1995-04-11

Family

ID=26483104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5229142A Pending JPH0797630A (en) 1993-06-25 1993-09-14 Production of high magnetic flux density grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0797630A (en)

Similar Documents

Publication Publication Date Title
EP1992708B1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
WO2006132095A1 (en) Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3488181B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR19990078406A (en) Method of producing a grain-oriented electrical steel sheet excellent in magnetic characteristics
EP0539858A1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0686630B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH08269552A (en) Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JPS5836048B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent iron loss
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JPH0797630A (en) Production of high magnetic flux density grain oriented silicon steel sheet
JPH0832928B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties
JPH0726328A (en) Production of grain oriented silicon steel sheet
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP2706020B2 (en) Method for producing grain-oriented silicon steel sheet
JPH04235221A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0641642A (en) Manufacture of high magnetic flux density grain-oriented silicon steel sheet free from forsterite film
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622