JPH0797074B2 - Micro material testing machine - Google Patents

Micro material testing machine

Info

Publication number
JPH0797074B2
JPH0797074B2 JP2261144A JP26114490A JPH0797074B2 JP H0797074 B2 JPH0797074 B2 JP H0797074B2 JP 2261144 A JP2261144 A JP 2261144A JP 26114490 A JP26114490 A JP 26114490A JP H0797074 B2 JPH0797074 B2 JP H0797074B2
Authority
JP
Japan
Prior art keywords
sample
testing machine
load
cooling
heat conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2261144A
Other languages
Japanese (ja)
Other versions
JPH04174341A (en
Inventor
靖則 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2261144A priority Critical patent/JPH0797074B2/en
Publication of JPH04174341A publication Critical patent/JPH04174341A/en
Publication of JPH0797074B2 publication Critical patent/JPH0797074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、材料の低温域での強度特性を求めるに適した
微小材料試験機に関する。
TECHNICAL FIELD The present invention relates to a micromaterial testing machine suitable for determining strength characteristics of a material in a low temperature range.

[従来技術] 例えば該融合炉壁、超伝導ロケット、リニアモータカー
等の材料は、超低温域での特性評価が必要であるが、例
えば微小材料について超低温域で硬度試験を好適に行な
うことができるような試験装置はなかった。
[Prior Art] For example, materials for the fusion reactor wall, superconducting rocket, linear motor car, etc. require characteristic evaluation in the ultra-low temperature range. For example, it is possible to suitably perform hardness test in the ultra-low temperature range for minute materials. There was no good test equipment.

[発明が解決しようとする課題] 低温域下で特性評価試験を行なうには、通常液体窒素
(LN2)等の液化ガスが冷却媒体として使用される。し
かし、LN2が試料の熱を奮い気化する際に振動が発生す
るので、高精度の試験を行なううえで問題がある。特に
微小荷重負荷を行なう際に、このような振動が発生する
と、負荷荷重以上の大きな負荷を試料に与えることにな
るので、荷重設定値に応じた正確な試験を行なうことが
できないという問題点があった。
[Problems to be Solved by the Invention] In order to perform a characteristic evaluation test in a low temperature range, a liquefied gas such as liquid nitrogen (LN 2 ) is usually used as a cooling medium. However, since vibration occurs when LN 2 heats and vaporizes the sample, there is a problem in performing a highly accurate test. In particular, when such a vibration is generated when a small load is applied, a large load equal to or larger than the applied load is applied to the sample, so that there is a problem that an accurate test according to the load set value cannot be performed. there were.

そこで本発明は、低温域で材料の強度特性を精度よく求
めることができる微小材料試験機を提供することを目的
とする。
Therefore, it is an object of the present invention to provide a micromaterial testing machine capable of accurately obtaining strength characteristics of a material in a low temperature range.

[課題を解決するための手段] 本発明は上記課題を解決するために、次のような構成を
採用した。
[Means for Solving the Problems] The present invention adopts the following configurations in order to solve the above problems.

すなわち、本発明にかかる微小材料試験機は、試料に試
験荷重を負荷する可変形負荷手段と、該負荷手段によっ
て試料表面に変形を生ぜしむる押し込まれる圧子と、該
圧子の変位量を検出する変位検出手段とを備えた微小材
料試験機において、液体窒素等の冷却媒体が供給される
冷却槽を設け、該冷却槽と試料保持部とを熱伝導の良好
な熱伝導帯で接続したことを特徴とする。
That is, the micromaterial testing machine according to the present invention detects a variable load means for applying a test load to a sample, an indenter that is pushed in to cause deformation of the sample surface by the load means, and a displacement amount of the indenter. In the micromaterial testing machine provided with the displacement detecting means, a cooling tank to which a cooling medium such as liquid nitrogen is supplied is provided, and the cooling tank and the sample holder are connected by a heat conduction zone with good heat conduction. Characterize.

[作用] 試料を保持する試料保持部と冷却槽とが熱伝導帯によっ
て接続されており、冷却槽に冷却媒体を供給すると、試
料保持部が熱伝導により冷却され、試料も冷却される。
この時、冷却槽で発生する振動は、冷却槽側の熱伝導帯
部分で吸収されるので、試料には伝達されない。
[Operation] The sample holding unit for holding the sample and the cooling tank are connected by the heat conduction band, and when the cooling medium is supplied to the cooling tank, the sample holding unit is cooled by heat conduction, and the sample is also cooled.
At this time, the vibration generated in the cooling tank is absorbed by the heat conduction band portion on the cooling tank side and is not transmitted to the sample.

[実施例] 第1図は本発明の1実施例装置の構成を示す図で、この
微小材料試験機1は超微小微小圧縮試験機であり、枠体
2内に光学的測長装置3と負荷装置4が設けられてお
り、試料保持部である試料台6のX−Yステージ7に設
けられた冷却台8上に載置される試料10に対して試料の
大きさ測定および圧縮荷重の負荷が行なわれるようにな
っている。試料台6は、試料台上昇モータ12および試料
台移動モータ13によって昇降および回転移動が可能に構
成され、この上にX−Yステージ移動モータ14によって
X−Y方向に移動可能なX−Yステージ7が着脱自在に
取り付けられている。これら各モータは、それぞれ試料
台昇降モータ駆動部12b、試料台移動モータ駆動部13b、
X−Yステージ移動モータ駆動部14bによって駆動さ
れ、各駆動部はCPU30からの駆動信号によって作動す
る。
[Embodiment] FIG. 1 is a view showing the arrangement of an apparatus according to the first embodiment of the present invention. This micromaterial testing machine 1 is an ultrafine microcompression testing machine, and an optical length measuring device 3 is installed in a frame body 2. And a load device 4 are provided, and the sample size is measured and the compressive load is applied to the sample 10 mounted on the cooling table 8 provided on the XY stage 7 of the sample table 6 which is a sample holder. Is being loaded. The sample table 6 is configured to be movable up and down and rotated by a sample table raising motor 12 and a sample table moving motor 13, and an XY stage movable on the sample table 6 in an XY direction by an XY stage moving motor 14. 7 is detachably attached. Each of these motors includes a sample stage lift motor drive unit 12b, a sample stage movement motor drive unit 13b,
It is driven by the XY stage movement motor drive unit 14b, and each drive unit is operated by a drive signal from the CPU 30.

X−Yステージ7には、さらに後述する冷却台8が取り
付けられている。試料台6を操作することにより試料の
大きさ測長位置および負荷位置に試料を任意に移動させ
ることができる。光学的測長装置3は、対物レンズ16に
より結像される試料10の光学的画像をテレビカメラ17に
よって採取し、試料画像を試料の大きさ測定部となるTV
モニタ18に映し出すように構成されている。試料画像は
ビデオテープレコーダ19で記録される。
A cooling table 8 which will be described later is attached to the XY stage 7. By operating the sample table 6, the sample can be arbitrarily moved to the size measuring position and the load position of the sample. The optical length-measuring device 3 collects an optical image of the sample 10 formed by the objective lens 16 by the television camera 17, and the sample image serves as a sample size measuring unit for the TV.
It is configured to be displayed on the monitor 18. The sample image is recorded by the video tape recorder 19.

負荷装置4は、コイル部4aと永久磁石4bからなり、コイ
ル部4aには支持棹21を介して圧子22が取り付けられてい
る。圧子22には略L字状の変位検出バー23が取り付けら
れ、該変位検出バーの先端部には、差動トランス式変位
検出器25が設けられている。
The load device 4 includes a coil portion 4a and a permanent magnet 4b, and an indenter 22 is attached to the coil portion 4a via a support rod 21. A substantially L-shaped displacement detection bar 23 is attached to the indenter 22, and a differential transformer type displacement detector 25 is provided at the tip of the displacement detection bar.

負荷装置4のコイル部4aは負荷電流供給装置26に接続さ
れており、CPU30からの指令によって負荷電流供給装置2
6から流す電流の向きと大きさを変え、加圧圧子22を上
昇、下降させることができるとともに、加圧圧子によっ
て試料に加える荷重の大きさを任意に変えることができ
る。また、加圧圧子22の移動量は変位検出器25によって
検出され、変位検出信号は、A/D変換器27を介してCPU30
に変位情報として送られる。
The coil section 4a of the load device 4 is connected to the load current supply device 26, and the load current supply device 2 is instructed by the CPU 30.
By changing the direction and magnitude of the electric current supplied from 6, the pressurizing indenter 22 can be moved up and down, and the size of the load applied to the sample by the pressurizing indenter can be arbitrarily changed. The displacement amount of the pressurizing indenter 22 is detected by the displacement detector 25, and the displacement detection signal is sent to the CPU 30 via the A / D converter 27.
Displacement information.

加圧圧子22によって試料に加えられる荷重は、供給する
電流量として把握されており、ある荷重下での圧子の変
位を連続して測定することができる。測定された圧縮荷
重と変位データはRAM31に記憶されるとともに、CPU30で
演算処理され、測定結果がI/O 33を介してレコーダ35に
記録される。CPU30でのデータ処理は、ROM32に書き込ま
れた処理プログラムによって行なわれ、試料台の駆動操
作等はキーボード36からの指令によって行なわれる。
The load applied to the sample by the pressurizing indenter 22 is understood as the amount of current supplied, and the displacement of the indenter under a certain load can be continuously measured. The measured compressive load and displacement data are stored in the RAM 31, processed by the CPU 30, and the measurement result is recorded in the recorder 35 via the I / O 33. The data processing in the CPU 30 is performed by the processing program written in the ROM 32, and the driving operation of the sample stage and the like are performed by the command from the keyboard 36.

上記のように構成された微小材料試験機1には、モータ
41の駆動によって上下動する容器40が設けられており、
試験時にはこの容器40によって微小材料試験機全体が外
界と遮断される。真空中での試験を行なう場合には、容
器40に排気ポンプが接続され、大気中での試験を行なう
場合には乾燥窒素ガスが充填される。
The micromaterial testing machine 1 configured as described above includes a motor
A container 40 that moves up and down by driving 41 is provided,
During the test, the container 40 blocks the entire micromaterial testing machine from the outside world. An exhaust pump is connected to the container 40 when the test is performed in vacuum, and dry nitrogen gas is filled when the test is performed in the atmosphere.

この容器40によって外界と遮断される微小材料試験機1
本体の近傍には、液体窒素(LN2)が供給される冷却槽4
2が設けられている。冷却槽42の槽内には、熱伝導率の
よい材料(例えば銅)で構成された熱伝導帯43の一端部
が浸漬される。熱伝導体43の他端部は、上記冷却台8に
接続されている。冷却台8は第2図(a)(b)に示す
ように、銅ブロック50で構成され、ブロック表面には、
試料取付けブロック51を摺動設置する際に横方向のガイ
ドとなるガイドブロック52,53および摺動阻止面となる
後部ガイドブロック54が銅板バネ55,56を上方に載置し
た状態でブロック本体に締結されている。これらブロッ
ク51,52,53,54も全て銅材で構成されている。銅板バネ5
5,56は、銅ブロック50の前方から試料取付けブロック51
を摺動させて設置する際に、上方から弾性力を付勢して
取付けブロック51を押さえ付けて拘束する。試料取付け
ブロック51には試料10が接着される。銅ブロック50の側
面には、上記したように熱伝導帯43の他端部が締結され
ている。また、銅ブロック50内には、ヒータ46および温
度検出器47が埋設されており、試料保持部冷却時の冷却
温度を温度検出器47で検出し、冷却台が冷却されすぎな
いようにヒータ46によって加温するように構成されてい
る。
Micromaterial testing machine 1 that is shielded from the outside world by this container 40
Cooling tank 4 supplied with liquid nitrogen (LN 2 ) near the body
Two are provided. One end of a heat conduction band 43 made of a material having a high heat conductivity (eg, copper) is immersed in the cooling tank 42. The other end of the heat conductor 43 is connected to the cooling table 8. As shown in FIGS. 2 (a) and 2 (b), the cooling table 8 is composed of a copper block 50, and the block surface has
When the sample mounting block 51 is slidably installed, the guide blocks 52 and 53, which serve as lateral guides, and the rear guide block 54, which serves as a sliding prevention surface, are mounted on the block body with the copper leaf springs 55 and 56 placed above. It has been concluded. All of these blocks 51, 52, 53, 54 are also made of copper material. Copper leaf spring 5
5,56 is the sample mounting block 51 from the front of the copper block 50.
When sliding and installing, the elastic force is applied from above to press down the mounting block 51 to restrain it. The sample 10 is bonded to the sample mounting block 51. The other end of the heat conduction band 43 is fastened to the side surface of the copper block 50 as described above. A heater 46 and a temperature detector 47 are embedded in the copper block 50. The temperature detector 47 detects the cooling temperature when the sample holder is cooled, and the heater 46 is prevented from overcooling the cooling table. It is configured to be heated by.

上記のように構成された実施例装置により試験を行なう
場合には、まず、容器40により微小材料試験機1と外界
を遮断した後、真空排気又は乾燥窒素ガスの充填を行な
い、冷却槽42にLN2に供給する。冷却槽42に浸漬された
熱伝導帯43の一端部は、LN2によって冷却され約−196℃
となる。熱伝導帯43は熱伝導によって全体が冷却され、
その他端部に接続された冷却台8も冷却し、これに接続
された試料10も極低温に冷却する。LN2が気化する際に
生じる振動は冷却槽内の熱伝導部分で吸収されるので、
試料へは伝達されない。冷却台8の温度は温度検出器47
によって検出され、検出信号が温度制御記録部45へ送ら
れる。温度制御記録部45は、検出信号に応じてLN2の供
給量及びヒータ46のON−OFFを制御して試料保持部の温
度制御を行なう。制御される。窒素ガスを充填した大気
中での試験の場合には、熱伝導帯43に熱シールを施して
熱伝導が低下しないようにする。上記した試料の冷却時
の状態や試験時の試料表面の状態は試料観察用カメラ60
で撮影され、観察用モニタ61に映し出される。
In the case of conducting a test with the apparatus of the embodiment configured as described above, first, the container 40 is used to shut off the outside of the micromaterial testing machine 1 and then the vacuum tank 42 is evacuated or filled with dry nitrogen gas to cool the tank 42. Supply to LN 2 . One end of the heat conduction zone 43 immersed in the cooling tank 42 is cooled by LN 2 to about −196 ° C.
Becomes The heat conduction zone 43 is entirely cooled by heat conduction,
The cooling table 8 connected to the other end is also cooled, and the sample 10 connected to this is also cooled to an extremely low temperature. The vibration that occurs when LN 2 vaporizes is absorbed by the heat conduction part in the cooling tank,
Not transmitted to the sample. The temperature of the cooling table 8 is the temperature detector 47.
Is detected, and the detection signal is sent to the temperature control recording unit 45. The temperature control recording unit 45 controls the supply amount of LN 2 and ON / OFF of the heater 46 according to the detection signal to control the temperature of the sample holding unit. Controlled. In the case of the test in the atmosphere filled with nitrogen gas, the heat conduction zone 43 is heat-sealed so that the heat conduction is not lowered. The sample observation camera 60 shows the above-mentioned state of the sample when it was cooled and the state of the sample surface during the test.
And is displayed on the observation monitor 61.

上記のように冷却され、冷却状態を維持したままの微小
試料に対して微小荷重負荷を行なう際に、試料がLN2
気化冷却時による振動の影響を受けないので、設定荷重
通りに試験が行なえ、精度よく低温域下での強度特性評
価を行なうことができる。なお、実施例にかかる微小材
料試験機を硬度計や圧縮試験機として使用できることは
いうまでもない。
When a minute load is applied to a minute sample that has been cooled as described above and the cooling state is maintained, the sample is not affected by the vibration during evaporative cooling of LN 2 , so the test can be performed according to the set load. In addition, the strength characteristics can be accurately evaluated in the low temperature range. Needless to say, the minute material testing machine according to the embodiment can be used as a hardness tester or a compression testing machine.

[発明の効果] 上記説明から明らかなように、本発明にかかる微小材料
試験機によれば、低温域下での微小試料の強度試験を可
能にし、しかも精度よく測定を行なうことができるよう
になった。
[Effects of the Invention] As is clear from the above description, according to the micromaterial testing machine of the present invention, it becomes possible to perform a strength test of a micro sample in a low temperature range and to perform an accurate measurement. became.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の構成を示す図、第2図(a)
(b)は冷却台の構成を示す図である。 1……微小材料試験機、4……負荷装置 6……試料台、8……冷却台、10……試料 42……冷却槽、43……熱伝導帯
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 (a).
(B) is a figure which shows the structure of a cooling stand. 1 ... Micromaterial testing machine, 4 ... Loading device 6 ... Sample stand, 8 ... Cooling stand, 10 ... Sample 42 ... Cooling tank, 43 ... Heat conduction band

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料に試験荷重を負荷する可変形負荷手段
と、該負荷手段によって試料に変形を与える圧子と、該
圧子の変位量を検出する変位検出手段とを備えた微小材
料試験機において、液体窒素等の冷却媒体が供給される
冷却槽を設け、該冷却槽と試料保持部とを熱伝導の良好
な熱伝導帯で接続したことを特徴とする微小材料試験
機。
1. A micromaterial testing machine comprising: a variable load means for applying a test load to a sample; an indenter for deforming the sample by the load means; and a displacement detecting means for detecting the displacement amount of the indenter. A micromaterial testing machine characterized in that a cooling tank to which a cooling medium such as liquid nitrogen is supplied is provided, and the cooling tank and the sample holder are connected by a heat conduction band with good heat conduction.
JP2261144A 1990-07-31 1990-09-28 Micro material testing machine Expired - Lifetime JPH0797074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2261144A JPH0797074B2 (en) 1990-07-31 1990-09-28 Micro material testing machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-204261 1990-07-31
JP20426190 1990-07-31
JP2261144A JPH0797074B2 (en) 1990-07-31 1990-09-28 Micro material testing machine

Publications (2)

Publication Number Publication Date
JPH04174341A JPH04174341A (en) 1992-06-22
JPH0797074B2 true JPH0797074B2 (en) 1995-10-18

Family

ID=26514372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2261144A Expired - Lifetime JPH0797074B2 (en) 1990-07-31 1990-09-28 Micro material testing machine

Country Status (1)

Country Link
JP (1) JPH0797074B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417110B2 (en) * 2009-10-01 2014-02-12 一般財団法人電力中央研究所 Sample cooling device, hardness tester, and hardness test method
JP5883231B2 (en) * 2011-03-18 2016-03-09 一般財団法人電力中央研究所 Sample cooling device, hardness tester, and hardness test method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154138A (en) * 1984-01-24 1985-08-13 Science & Tech Agency Testing apparatus of cryogenic material

Also Published As

Publication number Publication date
JPH04174341A (en) 1992-06-22

Similar Documents

Publication Publication Date Title
Gopal et al. A sample translatory type insert for automated magnetocaloric effect measurements
JPH02216749A (en) Scanning type tunnel current detector, scanning type tunnel microscope, recording and reproducing device, and detecting method of tunnel current
CN111766550A (en) Three-dimensional magnetic field probe station test system and test method
JP2001284416A (en) Low temperature test device
CN108489838A (en) Contact surface in-situ observation frictional wear experiment platform
JPH0797074B2 (en) Micro material testing machine
EP0470521B1 (en) Measurement of semiconductor parameters at cryogenic temperatures using a spring contact probe
CN107505493B (en) Tension-controllable superconducting strip critical current measuring device
JP2000214058A (en) Method and device for creep test
US3498104A (en) Automatic pour point analyzer
CN105699619B (en) A kind of metal fever potential measuring instrument
JP2002090287A (en) Method and equipment of friction test for cable protective tube
US20200049762A1 (en) Probe apparatus, probe inspection method, and storage medium
JP4385520B2 (en) High temperature hardness tester
US3756074A (en) Continuously recording mechanical relaxation spectrometer
US3418855A (en) Apparatus for testing sharpness of needles
JP2697757B2 (en) Device for performing translational operation of members such as shafts
JP3262883B2 (en) Rubber sample calorific value measuring device
JP2590314B2 (en) Ultra-fine material testing equipment
CN105547867B (en) A kind of rubber low-temperature test equipment and its test method
JP4356246B2 (en) Sample surface detection method in hardness tester
CN218411265U (en) Multifunctional in-situ mechanical testing device
US3947765A (en) Automated electrical resistivity measuring apparatus for semiconductor crystal rods
JPS6240654B2 (en)
JPH07110366A (en) Magnetic microscope