JPH0796375A - Method and device for controlling welding current of resistance welding machine - Google Patents

Method and device for controlling welding current of resistance welding machine

Info

Publication number
JPH0796375A
JPH0796375A JP24318893A JP24318893A JPH0796375A JP H0796375 A JPH0796375 A JP H0796375A JP 24318893 A JP24318893 A JP 24318893A JP 24318893 A JP24318893 A JP 24318893A JP H0796375 A JPH0796375 A JP H0796375A
Authority
JP
Japan
Prior art keywords
welding
current
waveform
current value
welding current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24318893A
Other languages
Japanese (ja)
Other versions
JP2756403B2 (en
Inventor
Yoshinari Tsukada
能成 塚田
Toshiya Watanabe
寿也 渡辺
Kensaku Kaneyasu
健策 金安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24318893A priority Critical patent/JP2756403B2/en
Publication of JPH0796375A publication Critical patent/JPH0796375A/en
Application granted granted Critical
Publication of JP2756403B2 publication Critical patent/JP2756403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To provide the method and device for controlling the welding current of the resistance welding machine capable of obtaining a nugget having an optimum shape in respective welding points under different energizing condition of a welding current at the time of welding plural works of the same shape having the plural welding points under the different energizing conditions of the welding current. CONSTITUTION:At the time of welding the works having the same shape under the different energizing conditions of the welding current for every welding point, a square waveform is corrected on a waveform correction circuit 76 based on a generating state of expulsion and surface flash which is detected on an expulsion and surface flash detection circuit 55 and an expulsion and surface flash generation limiting current arithmetic circuit 70 obtains an expulsion and surface flash generation limiting current value based on this corrected square waveform. Based on the expulsion and surface flash generation limiting current value, a new waveform consisting of a high current value and a low current value is then generated by a CPU58, the high current value of this new waveform is corrected by the generating state of expulsion and surface flash which is detected on the expulsion and surface flash detection circuit 55 and the welding point of the same part having the same shape is welded. Accordingly, high welding strength can be obtained stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抵抗溶接機の溶接電流制
御方法および装置に関し、一層詳細には、溶接電流の通
電条件が異なる複数の溶接点を有する同一形状の複数の
ワークを連続的に溶接する抵抗溶接機の溶接電流制御方
法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling a welding current of a resistance welding machine, and more specifically, it continuously applies a plurality of workpieces of the same shape having a plurality of welding points having different welding current energization conditions. The present invention relates to a welding current control method and device for a resistance welding machine to be welded.

【0002】[0002]

【従来の技術】従来、自動車の車体等のワークに対して
設定された複数の溶接点を抵抗溶接機で順次連続的に溶
接している。この場合、溶接されるワークの重ね枚数、
ワークの端部若しくは中央部等の溶接点の部位、溶接点
間のピッチ、溶接されるワークの厚さおよび溶接される
ワークの材質等、溶接点毎に条件が異なる場合は、溶接
点毎に溶接電流波形が設定され、この設定された電流波
形に通電電流を追従させる方法が用いられている。
2. Description of the Related Art Conventionally, a plurality of welding points set on a work such as a car body of an automobile are sequentially and continuously welded by a resistance welding machine. In this case, the number of work pieces to be welded,
If the conditions such as the welding points such as the end or center of the work, the pitch between the welding points, the thickness of the work to be welded and the material of the work to be welded differ from welding point to welding point, A welding current waveform is set, and a method is used in which the energizing current follows the set current waveform.

【0003】一方、散り発生限界電流値近傍の溶接電流
を通電することにより、高い溶接強度が得られることが
知られており、さらに、高電流値と低電流値とからなる
波形の溶接電流を通電することにより、散りの発生を抑
止し、高品質のナゲットを得られることが知られてい
る。
On the other hand, it is known that a high welding strength can be obtained by passing a welding current in the vicinity of the spatter generation limit current value. Further, a welding current having a waveform composed of a high current value and a low current value is generated. It is known that by energizing, generation of dust is suppressed and a high quality nugget can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術における溶接点毎に設定された波形の溶接電流に
よって溶接する方法では、電極チップの摩耗を検出する
ことができないため、溶接電流の通電条件が異なる複数
の溶接点を有する同一形状のワークを連続して溶接する
場合、夫々の溶接点毎に溶接電流波形の制御を充分に行
うことができず、高い溶接強度を安定して得ることがで
きないという問題がある。
However, in the method of welding with the welding current having the waveform set for each welding point in the above-mentioned prior art, the wear of the electrode tip cannot be detected, so that the welding current conduction condition is When workpieces of the same shape having different welding points are continuously welded, the welding current waveform cannot be sufficiently controlled for each welding point, and high welding strength cannot be stably obtained. There is a problem.

【0005】本発明はこのような従来の問題を解決する
ためになされたものであって、溶接電流の通電条件が異
なる夫々の溶接点において、最適な形状のナゲットを得
ることができる抵抗溶接機の溶接電流制御方法および装
置を提供することを目的とする。
The present invention has been made to solve such a conventional problem, and a resistance welding machine capable of obtaining a nugget having an optimum shape at each welding point under different welding current energization conditions. An object of the present invention is to provide a welding current control method and device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、第1の発明は、複数の溶接点を有する同一形状の
ワークを、ワーク毎に順次溶接する抵抗溶接機の溶接電
流制御方法において、予め記憶された波形の溶接電流を
前記ワークの所定の溶接点に供給して、溶接時における
散り発生の有無を検出し、当該散り発生の有無に基づい
て前記溶接電流の波形を修正する第1のステップと、前
記修正された波形に基づいて散り発生限界電流値を求め
る第2のステップと、前記散り発生限界電流値に基づい
て、前記散り発生限界電流値より大なる高電流値と前記
散り発生限界電流値より小なる低電流値からなる新たな
溶接電流波形を生成する第3のステップと、前記新たな
溶接電流波形の溶接電流を前記ワークの所定の溶接点と
同一部位の他のワークの溶接点に供給し、溶接時におけ
る散り発生の有無を検出する第4のステップと、前記第
4のステップで検出された散り発生の有無に基づいて前
記新たな溶接電流波形の前記高電流値を修正して、この
修正された波形に基づいて生成された溶接電流を同一形
状のワークの同一部位の溶接点に供給する第5のステッ
プと、からなることを特徴とする。
In order to achieve the above object, a first invention is a welding current control method for a resistance welding machine, in which works of the same shape having a plurality of welding points are sequentially welded for each work. In, a welding current having a waveform stored in advance is supplied to a predetermined welding point of the work to detect the presence or absence of spatter during welding, and the waveform of the welding current is corrected based on the presence or absence of the spatter. A first step; a second step for obtaining a scattering occurrence limit current value based on the corrected waveform; and a high current value larger than the scattering occurrence limit current value based on the scattering occurrence limit current value. The third step of generating a new welding current waveform having a low current value smaller than the scattering occurrence limit current value, and the welding current of the new welding current waveform at the same portion as the predetermined welding point of the workpiece. Wa The fourth step of supplying the welding current to the welding point and detecting the presence or absence of spatter during welding, and the high current of the new welding current waveform based on the presence or absence of spatter detected in the fourth step. A fifth step of correcting the value and supplying the welding current generated based on the corrected waveform to the welding point of the same portion of the work of the same shape.

【0007】さらに、第2の発明は、複数の溶接点を有
する同一形状のワークを、ワーク毎に順次溶接する抵抗
溶接機の溶接電流制御装置において、予め記憶された波
形の溶接電流が前記ワークの所定の溶接点に供給され、
溶接時に検出された散り発生の有無によって修正された
前記波形に基づいて散り発生限界電流値を求める散り発
生限界電流値演算手段と、前記散り発生限界電流値に基
づいて、前記散り発生限界電流値より大なる高電流値と
前記散り発生限界電流値より小なる低電流値とからなる
新たな溶接電流波形を生成する溶接電流波形生成手段
と、前記新たな溶接電流波形に基づいた溶接電流を前記
ワークの所定の溶接点と同一部位の他のワークの溶接点
に供給する溶接電流供給手段と、前記溶接電流供給手段
によってワークに供給された溶接電流による散り発生の
有無を検出する散り発生検出手段と、前記検出された散
り発生の有無に基づいて前記新たな溶接電流波形の前記
高電流値を修正する波形修正手段と、を備え、前記修正
された新たな溶接電流波形に基づいて生成された溶接電
流を同一形状のワークの同一部位の溶接点に供給するこ
とを特徴とする。
Further, in a second aspect of the present invention, there is provided a welding current control device for a resistance welding machine in which workpieces of the same shape having a plurality of welding points are sequentially welded to each other. Is supplied to the predetermined welding point of
Dispersion generation limit current value calculating means for obtaining the dispersion generation limit current value based on the waveform corrected by the presence or absence of the dispersion generation detected during welding, and based on the dispersion generation limit current value, the dispersion generation limit current value Welding current waveform generating means for generating a new welding current waveform consisting of a larger high current value and a lower current value smaller than the scattering occurrence limit current value, and a welding current based on the new welding current waveform Welding current supply means for supplying to a welding point of another work at the same site as the predetermined welding point of the work, and spatter occurrence detecting means for detecting the presence or absence of spatter due to the welding current supplied to the work by the welding current supply means. And a waveform correction unit that corrects the high current value of the new welding current waveform based on the presence or absence of occurrence of the detected scattering, and the corrected new welding voltage. And supplying a welding current that is generated based on the waveform welding points of the same site of the same shape of the workpiece.

【0008】[0008]

【作用】本発明に係る抵抗溶接機の溶接電流制御方法お
よび装置では、予め記憶された波形の溶接電流をワーク
の所定の溶接点に供給して、溶接時における散り発生の
有無に基づいて前記波形を修正し、当該修正された波形
に基づいて散り発生限界溶接電流値演算手段が散り発生
限界溶接電流値を求める。
In the method and apparatus for controlling the welding current of the resistance welding machine according to the present invention, a welding current having a pre-stored waveform is supplied to a predetermined welding point of a work, and the welding current is controlled based on whether or not scattering occurs during welding. The waveform is modified, and the scatter occurrence limit welding current value calculating means obtains the scatter occurrence limit welding current value based on the modified waveform.

【0009】次いで、前記散り発生限界電流値に基づい
て前記散り発生限界電流値より大なる高電流値と前記散
り発生限界電流値より小なる低電流値とからなる新たな
溶接電流波形を溶接電流波形生成手段が生成し、この新
たな溶接電流波形に基づいた溶接電流を溶接電流供給手
段が前記ワークの所定の溶接点と同一部位の他のワーク
の溶接点に供給し、散り発生検出手段が溶接電流の通電
時における散り発生の有無を検出する。
Next, a new welding current waveform consisting of a high current value larger than the dispersion generation limit current value and a low current value smaller than the dispersion generation limit current value is formed on the basis of the dispersion generation limit current value. Generated by the waveform generating means, the welding current supply means supplies the welding current based on this new welding current waveform to the welding point of the other workpiece at the same site as the predetermined welding point of the workpiece, and the scattering occurrence detection means Detects the occurrence of scattering when welding current is applied.

【0010】前記検出された散り発生の有無に基づいて
波形修正手段が前記新たな溶接電流波形の前記高電流値
を修正し、前記修正された波形に基づいて生成された溶
接電流を同一形状のワークの同一部位の溶接点に供給す
る。
The waveform correction means corrects the high current value of the new welding current waveform based on the presence or absence of the detected scattering, and the welding current generated based on the corrected waveform has the same shape. Supply to the welding point of the same part of the work.

【0011】従って、夫々の溶接点は同一部位毎に高電
流値が修正された波形の溶接電流で溶接される。
Therefore, the respective welding points are welded with the welding current having a waveform in which the high current value is corrected for each same portion.

【0012】[0012]

【実施例】次に、本発明に係る抵抗溶接機の溶接電流制
御方法について、それを実施する装置との関係におい
て、好適な実施例を挙げ、添付の図面を参照しながら以
下詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A welding current control method for a resistance welding machine according to the present invention will be described below in detail with reference to the accompanying drawings in connection with a device for carrying out the method. .

【0013】図1は本発明を実施する抵抗溶接機20の
全体構成を示すブロック図である。
FIG. 1 is a block diagram showing the overall construction of a resistance welding machine 20 embodying the present invention.

【0014】抵抗溶接機20は交流電源21から出力さ
れる交流を直流に変換するコンバータ回路22と、この
直流を高周波交流に変換するインバータ回路24と、前
記高周波交流を変成し、且つ整流する溶接トランス回路
26と、ワークWを挟持する溶接ガン部28と、ワーク
Wに通電される溶接電流を制御する溶接コントローラ3
0とを備える。
The resistance welding machine 20 includes a converter circuit 22 for converting an alternating current output from an alternating current power source 21 into a direct current, an inverter circuit 24 for converting the direct current into a high frequency alternating current, and a welding for transforming and rectifying the high frequency alternating current. The transformer circuit 26, the welding gun portion 28 that holds the work W, and the welding controller 3 that controls the welding current supplied to the work W.
With 0 and.

【0015】さらに、抵抗溶接機20は、溶接トランス
回路26の1次側の電流(以下、1次電流という)I1
を検出する1次電流検出器32と、溶接トランス回路2
6の2次側の電流(以下、2次電流という)I2 を検出
する2次電流検出器34と、溶接コントローラ30に溶
接条件等を入力するためのキーボード36と、この溶接
条件を表示するディスプレイ装置38と、外部記憶手段
であるフロッピデスクに対してデータを書き込む/読み
込むFDD39とを備える。
Further, the resistance welding machine 20 has a current I 1 on the primary side of the welding transformer circuit 26 (hereinafter referred to as a primary current) I 1
Primary current detector 32 for detecting the
6, a secondary current detector 34 for detecting a secondary current (hereinafter referred to as a secondary current) I 2 , a keyboard 36 for inputting welding conditions and the like to the welding controller 30, and the welding conditions are displayed. A display device 38 and an FDD 39 for writing / reading data to / from a floppy desk which is an external storage means are provided.

【0016】前記溶接ガン部28はワークWを挟持する
可動ガンアーム40および41と、この可動ガンアーム
40、41に固着される電極チップ42および43と、
前記可動ガンアーム40、41を開閉自在に駆動するシ
リンダ44とからなり、該シリンダ44には電磁切替弁
46を介して空気圧源48が接続される。前記電磁切替
弁46の切替動作は前記溶接コントローラ30によって
制御される。
The welding gun section 28 has movable gun arms 40 and 41 for holding the work W, and electrode tips 42 and 43 fixed to the movable gun arms 40 and 41.
A cylinder 44 that drives the movable gun arms 40 and 41 to open and close freely, and an air pressure source 48 is connected to the cylinder 44 via an electromagnetic switching valve 46. The switching operation of the electromagnetic switching valve 46 is controlled by the welding controller 30.

【0017】図2は溶接コントローラ30の構成を示す
ブロック図である。
FIG. 2 is a block diagram showing the structure of the welding controller 30.

【0018】溶接コントローラ30は前記1次電流検出
器32に検出された1次電流I1 をデジタル値に変換す
るアナログ/デジタル(以下、A/Dという)変換回路
50と、2次電流検出器34に検出された2次電流I2
をデジタル値に変換するA/D変換回路52と、前記A
/D変換回路50から出力される1次電流I1 、または
前記A/D変換回路52から出力される2次電流I2
いずれか一方を選択する検出電流選択回路54と、検出
電流選択回路54によって選択された1次電流I1 また
は2次電流I2 から散り発生の有無を検出する散り検出
回路55と、後述する基準方形状波形の尖頭値IN を修
正する際の修正電流値ΔIN 、前記方形状波形の溶接電
流の適否を判定するための散りの連続発生数m1 、散り
の連続未発生数m2 および基準散り発生限界電流値ISS
が記憶される溶接条件記憶回路56とを備える。
The welding controller 30 includes an analog / digital (hereinafter referred to as A / D) conversion circuit 50 for converting the primary current I 1 detected by the primary current detector 32 into a digital value, and a secondary current detector. Secondary current I 2 detected by 34
A / D conversion circuit 52 for converting the
A detection current selection circuit 54 for selecting either the primary current I 1 output from the / D conversion circuit 50 or the secondary current I 2 output from the A / D conversion circuit 52, and a detection current selection circuit. A dispersion detection circuit 55 for detecting the presence or absence of dispersion from the primary current I 1 or the secondary current I 2 selected by 54, and a corrected current value for correcting the peak value I N of the reference square waveform described later. [Delta] I N, the lateral continuous generation number m 1 of scattering for determining the appropriateness of welding current shape waveform, a continuous non-occurrence number m 2 and the reference of Chile Chile occurrence limit current I SS
And a welding condition storage circuit 56 for storing

【0019】溶接コントローラ30は、中央処理装置
(以下、CPUという)58と、このCPU58から出
力される溶接電流の指令値Icmd をアナログ値に変換す
るデジタル/アナログ(以下、D/Aという)変換回路
60と、該D/A変換回路60から出力される信号に基
づいてパルスを生成するパルス幅変調(以下、PWMと
いう)回路62とを備え、PWM回路62に生成された
パルスは前記インバータ回路24に対して出力される。
The welding controller 30 includes a central processing unit (hereinafter referred to as CPU) 58, and a digital / analog (hereinafter referred to as D / A) which converts a welding current command value I cmd output from the CPU 58 into an analog value. A conversion circuit 60 and a pulse width modulation (hereinafter referred to as PWM) circuit 62 that generates a pulse based on a signal output from the D / A conversion circuit 60 are provided, and the pulse generated in the PWM circuit 62 is the inverter. It is output to the circuit 24.

【0020】さらに、溶接コントローラ30は抵抗溶接
機20を制御するための制御プログラムが記憶される読
み出し専用メモリ(以下、ROMという)64と、前記
CPU58が演算中に演算結果を一時的に記憶する読み
書き可能なメモリ(以下、RAMという)66と、溶接
電流の高電流値IH を生成するためのパラメータ、この
高電流値IH を通電する高電流通電時間tH 、前記高電
流値IH を修正する場合の修正電流値ΔIH 、溶接電流
の低電流値IL を生成するためのパラーメータ、この低
電流値IL を通電する低電流通電時間tL 、溶接トラン
ス回路26が供給可能な溶接電流の最大値IMAX とから
なる新溶接電流波形を生成するための波形生成パラメー
タを記憶する波形生成パラメータ記憶回路68と、散り
発生限界電流値を演算する散り発生限界電流値演算回路
70と、キーボード36、ディスプレイ装置38、FD
D39および電磁切替弁46とのインタフェース(以
下、I/Fという)回路72とを備える。
Further, the welding controller 30 stores a control program for controlling the resistance welding machine 20 in a read-only memory (hereinafter referred to as ROM) 64, and the CPU 58 temporarily stores the calculation result during calculation. readable and writable memory (hereinafter, RAM hereinafter) 66, a parameter for generating a high current value I H of the welding current, high current supply time t H for energizing the high current value I H, the high current value I H Fixed current [Delta] I H in the case of modifying a parametrize for generating a low current value I L of the welding current, the low current value I L low current energization time t L for energizing a welding transformer circuit 26 can supply A waveform generation parameter storage circuit 68 for storing a waveform generation parameter for generating a new welding current waveform consisting of the maximum value I MAX of the welding current, and a scattering occurrence limit current value are calculated. Dispersion occurrence limit current value calculation circuit 70, keyboard 36, display device 38, FD
An interface (hereinafter, referred to as I / F) circuit 72 with the D39 and the electromagnetic switching valve 46 is provided.

【0021】さらにまた、溶接コントローラ30は、通
電時間tと尖頭値IN とのデータからなる基準となる方
形状の溶接電流波形、すなわち、基準方形状波形が記憶
される溶接電流波形記憶回路74と、この溶接電流波形
記憶回路74に記憶された基準溶接電流波形等を散りの
発生状態によって修正する波形修正回路76とを備え
る。
Furthermore, the welding controller 30 is a welding current waveform storage circuit for storing a rectangular welding current waveform serving as a reference consisting of data of the energization time t and the peak value I N , that is, a reference rectangular waveform. 74 and a waveform correction circuit 76 for correcting the reference welding current waveform and the like stored in the welding current waveform storage circuit 74 according to the occurrence state of scattering.

【0022】以上のように構成される抵抗溶接機20に
おいて、複数の溶接点を有する同一形状の複数のワーク
Wを連続的に溶接する動作について、図3および図4の
フローチャートを参照して説明する。
The operation of continuously welding a plurality of workpieces W having the same shape and having a plurality of welding points in the resistance welding machine 20 configured as described above will be described with reference to the flowcharts of FIGS. 3 and 4. To do.

【0023】ワークWに発生する散りを、例えば、2次
電流I2 によって検出することを示すデータがオペレー
タによってキーボード36から入力されると、このデー
タはI/F回路72を経由してCPU58に入力され、
CPU58は2次電流I2 を検出する選択信号を検出電
流選択回路54に対して出力する。
When the operator inputs data indicating that the dispersion generated in the work W is detected by the secondary current I 2 , for example, from the keyboard 36, this data is sent to the CPU 58 via the I / F circuit 72. Entered,
The CPU 58 outputs a selection signal for detecting the secondary current I 2 to the detection current selection circuit 54.

【0024】この場合、図5に示すワークW1 の夫々の
溶接点P11・P12…P1nが溶接され、次にワークW2
夫々の溶接点P21〜P2n、…ワークWn の夫々の溶接点
n1〜Pnnと順次溶接されるが、この溶接動作の中、本
実施例では夫々のワークW1〜Wn における同一部位の
溶接点、例えば、溶接点P11、P21、…Pn1の溶接動作
のみを例示して説明する。
[0024] In this case, the respective welding point P 11 · P 12 ... P 1n of the welding workpiece W 1 shown in FIG. 5, then the welding point husband of the workpiece W 2 s P 21 to P 2n, ... workpiece W n The welding points P n1 to P nn are sequentially welded to each other, and in this welding operation, in the present embodiment, the welding points at the same portion of the respective works W 1 to W n , for example, welding points P 11 and P n . 21 ... Only the welding operation of P n1 will be described as an example.

【0025】ROM64から読み出されたプログラムに
基づいてCPU58から電磁切替弁46の駆動信号が出
力されると、この駆動信号はI/F回路72を介して電
磁切替弁46に対して出力される。この駆動信号によっ
て電磁切替弁46が開弁され、空気圧源48からシリン
ダ44に対して圧力空気が送給される。前記圧力空気に
よるシリンダ44の動作によりガンアーム40、41が
閉動し、このガンアーム40、41に取着された電極チ
ップ42、43によってワークW1 の溶接点P 11が挟持
される。
The program read from the ROM 64
Based on this, the CPU 58 outputs a drive signal for the electromagnetic switching valve 46.
When driven, this drive signal is transmitted via the I / F circuit 72.
It is output to the magnetic switching valve 46. This drive signal
Electromagnetic switching valve 46 is opened and the air pressure source 48
Pressure air is supplied to the da 44. To the pressure air
The movement of the cylinder 44 causes the gun arms 40 and 41 to move.
The electrode chuck attached to this gun arm 40, 41 is closed.
Workpiece W depending on top 42, 431Welding point P 11Sandwiched
To be done.

【0026】次いで、溶接電流波形記憶回路74に記憶
された方形状の基準溶接電流波形のデータがCPU58
に読み出されて、この方形状波形の溶接電流の指令値I
cmdがD/A変換回路60に対して出力される。
Next, the data of the rectangular standard welding current waveform stored in the welding current waveform storage circuit 74 is stored in the CPU 58.
Command value I of the square-shaped welding current
cmd is output to the D / A conversion circuit 60.

【0027】前記溶接電流の指令値Icmd はD/A変換
回路60でアナログ指令値If に変換されてPWM回路
62に対して出力され、さらに、PWM回路62でパル
ス幅変調されて所定の周波数とデューティサイクルのパ
ルスとなり、インバータ回路24に対して出力される。
インバータ回路24は前記パルスに基づいて高周波交流
を生成し、この高周波交流は溶接トランス回路26に対
して出力される。高周波交流は溶接トランス回路26で
変成、且つ整流されて溶接ガン部28を介してワークW
1 の溶接点P11に対して通電される(図6参照)(ス
テップS1)。
The welding current command value I cmd is converted into an analog command value I f by the D / A conversion circuit 60 and output to the PWM circuit 62. Further, the PWM circuit 62 pulse-width modulates it to a predetermined value. It becomes a pulse of frequency and duty cycle and is output to the inverter circuit 24.
The inverter circuit 24 generates a high frequency alternating current based on the pulse, and the high frequency alternating current is output to the welding transformer circuit 26. The high-frequency alternating current is transformed and rectified by the welding transformer circuit 26, and the work W is passed through the welding gun section 28.
Electric current is applied to one welding point P 11 (see FIG. 6) (step S1).

【0028】この通電により、2次電流検出器34に検
出された2次電流I2 はA/D変換回路52および検出
電流選択回路54を介して散り検出回路55に入力さ
れ、散り検出回路55で散りが発生したか否かが判定さ
れる(ステップS2)。散りが発生したと判定されたと
き、CPU58によって散りの連続発生数N1 が設定値
1 に達したか否かが判定される(ステップS3)。
By this energization, the secondary current I 2 detected by the secondary current detector 34 is input to the dispersion detection circuit 55 through the A / D conversion circuit 52 and the detection current selection circuit 54, and the dispersion detection circuit 55. Then, it is determined whether or not scattering has occurred (step S2). When it is determined that the dispersion has occurred, the CPU 58 determines whether or not the continuous occurrence number N 1 of dispersion has reached the set value m 1 (step S3).

【0029】前記判定の結果、散りの連続発生数N1
設定値m1 に達したとき、方形状波形の尖頭値IN が基
準散り発生限界電流値ISSよりも高いとCPU58に判
定され、波形修正回路76によって方形状波形の尖頭値
N から修正電流値ΔIN が減算される(IN ←IN
ΔIN )(ステップS4)。
As a result of the above judgment, when the continuous occurrence number N 1 of dispersion has reached the set value m 1 , the CPU 58 determines that the peak value I N of the rectangular waveform is higher than the reference dispersion occurrence limit current value I SS. is, corrected current value [Delta] I N from the peak value I N of rectangular shape waveform is subtracted by the waveform correction circuit 76 (I N ← I N -
ΔI N) (step S4).

【0030】この修正によって得られた尖頭値IN はス
テップS1において、次に溶接されるワーク、例えば、
ワークWi の溶接点Pi1を溶接する際の方形状波形の尖
頭値IN として用いられる(図6参照)。
The peak value I N obtained by this modification is used in step S1 for the work to be welded next, for example,
It is used as the peak value I N of the rectangular waveform when welding the welding point P i1 of the work W i (see FIG. 6).

【0031】一方、前記ステップS2において、散りが
発生しないと判定されたとき、CPU58は散りの連続
未発生数N2 が設定値m2 に達したか否かを判定し(ス
テップS5)、設定値m2 に達したとき、尖頭値IN
散り発生限界電流値IS より著しく低いと判定する。こ
の判定に基づいて波形修正回路76によって溶接電流の
尖頭値IN に修正電流値ΔIN が加算される(IN ←I
N +ΔIN )(ステップS6)。
On the other hand, when it is determined in step S2 that the scattering does not occur, the CPU 58 determines whether or not the number N 2 of continuous occurrence of scattering has reached the set value m 2 (step S5), and the setting is made. When the value m 2 is reached, it is determined that the peak value I N is significantly lower than the scattering occurrence limit current value I S. Based on this determination, the waveform correction circuit 76 adds the correction current value ΔI N to the peak value I N of the welding current (I N ← I
N + ΔI N) (step S6).

【0032】この修正によって得られた尖頭値IN はス
テップS1において、次に溶接されるワークWi1の溶接
点Pi1を溶接する際の方形状波形の尖頭値IN として、
用いられる(図6参照)。
[0032] In peak I N is step S1 obtained by this modification, as the peak value I N of square-shaped waveform when welding the welding point P i1 of the workpiece W i1 to be subsequently welded,
Used (see FIG. 6).

【0033】以上説明したステップS1〜S6が繰り返
し実行されることにより方形状波形の尖頭値IN が修正
される。そして、前記ステップS3における判定の結
果、散りの連続発生数N1 が設定値m1 に達していない
とき、若しくは、ステップS5における判定の結果、散
りの連続未発生数N2 が設定値m2 に達していないと
き、散りが散発的に発生する最適な値の尖頭値IN によ
って溶接が行われているとCPU58に判定され、この
ときの尖頭値IN と通電時間tとに基づいて散り発生限
界電流値IS が散り発生限界電流値演算回路70によっ
て求められる(ステップS7)。
By repeating steps S1 to S6 described above, the peak value I N of the rectangular waveform is corrected. Then, as a result of the determination in the step S3, when the continuous occurrence number N 1 of scattering does not reach the set value m 1 , or as a result of the determination in step S5, the continuous non-occurrence number N 2 of scattering is the set value m 2 Is reached, the CPU 58 determines that welding is being performed with the optimum peak value I N at which spatter is sporadically generated, and based on the peak value I N and the energization time t at this time. The scattering occurrence limit current value I S is obtained by the scattering occurrence limit current value calculation circuit 70 (step S7).

【0034】次いで、波形生成パラメータ記憶回路68
から溶接電流波形を生成するための波形生成パラメータ
がCPU58によって読み出され、この波形生成パラメ
ータと、前記演算によって求められた散り発生限界電流
値IS とに基づいて高電流値IH と、この高電流値IH
に対して低い値の低電流値IL とからなる新たな新溶接
電流波形が決定される(ステップS8)。
Next, the waveform generation parameter storage circuit 68
A waveform generation parameter for generating a welding current waveform is read from the CPU 58 by the CPU 58, and a high current value I H based on this waveform generation parameter and the scattering occurrence limit current value I S obtained by the above calculation, High current value I H
A new new welding current waveform having a low current value I L of a low value is determined (step S8).

【0035】波形生成パラメータに基づいて決定された
低電流値IL は、ステップS7における演算によって求
められた散り発生限界電流値IS より設定値C1 だけ低
い値であり、一方、新溶接電流波形の平均値IA が前記
散り発生限界電流値IS より設定値C2 だけ高い値とな
るように高電流値IH が決定される(図7参照)。
The low current value I L determined on the basis of the waveform generation parameter is a value lower by the set value C 1 than the scattering occurrence limit current value I S obtained by the calculation in step S7, while the new welding current I The high current value I H is determined so that the average value I A of the waveform is higher than the scattering occurrence limit current value I S by the set value C 2 (see FIG. 7).

【0036】このようにして、決定された新溶接電流波
形の溶接電流が前記ステップS1と同様の作用でワーク
(i+1) の溶接点P(i+1)1に通電され(ステップS
9)、2次電流検出器34によって検出された2次電流
2 により散りが発生したか否かがCPU58に判定さ
れる(ステップS10)。
In this way, the welding current having the new welding current waveform thus determined is applied to the welding point P (i + 1) 1 of the work W (i + 1) by the same action as in step S1 ( step S1 ).
9) The CPU 58 determines whether or not dispersion has occurred due to the secondary current I 2 detected by the secondary current detector 34 (step S10).

【0037】散りが発生しないと判定されたとき、波形
修正回路76によって波形生成パラメータ記憶回路68
から読み出された修正電流値ΔIH が溶接電流の高電流
値I H に加算され(IH ←IH +ΔIH )(ステップS
11)、この加算によって得られた高電流値IH が、溶
接トランス回路26の供給可能な最大値IMAX 以下か否
かがCPU58によって判定される(ステップS1
2)。
When it is determined that the scattering does not occur, the waveform
The correction circuit 76 causes the waveform generation parameter storage circuit 68.
Corrected current value ΔI read fromHThere is a high welding current
Value I HIs added to (IH← IH+ ΔIH) (Step S
11), the high current value I obtained by this additionHBut melted
Maximum value I that can be supplied from the contact transformer circuit 26MAXWhether or not
Is determined by the CPU 58 (step S1)
2).

【0038】前記判定の結果、IH ≦IMAX であれば、
加算によって得られた高電流値IHを溶接トランス回路
26が供給し得ると判定され、この新溶接電流波形がス
テップS9において次に溶接されるワークW(i+2) の溶
接点P(i+2)1を溶接する際の新溶接電流波形として用い
られる。
As a result of the above judgment, if I H ≤I MAX ,
It is determined that the welding transformer circuit 26 can supply the high current value I H obtained by the addition, and this new welding current waveform is applied to the welding point P (i ) of the workpiece W (i + 2) to be welded next in step S9. +2) Used as a new welding current waveform when welding 1 .

【0039】前記ステップS12の判定の結果、IH
MAX ではないとき、CPU58は電極チップ42、4
3が劣化してワークWとの接触抵抗が増加して、加算に
よって得られた高電流値IH が、溶接トランス回路26
が供給し得る最大値IMAX を越えたと判定し、電極チッ
プ42、43の研削(チップドレス)指示の信号をディ
スプレイ装置38に対して出力して(ステップS1
3)、このフローチャートの実行を終了する。
As a result of the determination in step S12, I H
When not I MAX , the CPU 58 causes the electrode chips 42, 4 and
3 deteriorates, the contact resistance with the work W increases, and the high current value I H obtained by the addition is the welding transformer circuit 26.
Is determined to have exceeded the maximum value I MAX that can be supplied, and a signal for instructing the grinding (chip dressing) of the electrode tips 42, 43 is output to the display device 38 (step S1).
3) Then, the execution of this flowchart ends.

【0040】一方、ステップS10の判定で散りが発生
したとき、溶接電流の高電流値IHが高いとCPU58
に判定され、波形修正回路76によって溶接電流の高電
流値IH から修正電流値ΔIH が減算される(IH ←I
H −ΔIH )(ステップS14)。
On the other hand, when the scattering occurs in the determination of step S10, if the high current value I H of the welding current is high, the CPU 58
The correction current value ΔI H is subtracted from the high current value I H of the welding current by the waveform correction circuit 76 (I H ← I
H- ΔI H ) (step S14).

【0041】次いで、CPU58は前記減算によって得
られた高電流値IH 、高電流通電時間tH 、低電流値I
L および通電時間t1 に基づいて平均値IA を演算し、
この平均値IA が前記ステップS7で得られた散り発生
限界電流値IS より大であるか否かを判定する(ステッ
プS15)。
Next, the CPU 58 causes the high current value I H , the high current conduction time t H , and the low current value I H obtained by the above subtraction.
The average value I A is calculated based on L and the energization time t 1 ,
It is determined whether this average value I A is larger than the scattering occurrence limit current value I S obtained in step S7 (step S15).

【0042】この判定の結果、IA ≧IS であれば、前
記減算によって得られた高電流値I H を含む新溶接電流
波形に基づいた溶接電流の通電で良質なナゲットを成長
させることができるとCPU58に判定され、この波形
が、ステップS9において次に溶接されるワークW
(i+3) の溶接点P(i+3)1を溶接する際の新溶接電流波形
として用いられる。
As a result of this judgment, IA≧ ISIf so, before
High current value I obtained by subtraction HNew welding current including
Grow good quality nugget by applying welding current based on waveform
This waveform is determined by the CPU 58 to be able to
Is the work W to be welded next in step S9
(i + 3)Welding point P(i + 3) 1New welding current waveform when welding steel
Used as.

【0043】前記ステップS15において、IA ≧IS
ではないとき、ナゲットを充分に成長させることができ
ない、すなわち、充分な剪断引っ張り強さが得られない
とCPU58に判定され、高電流値IH の通電開始時刻
が所定時刻t1 シフトされた波形が波形修正回路76に
よって生成される(ステップS16)。
In step S15, I A ≧ I S
If not, the CPU 58 determines that the nugget cannot be grown sufficiently, that is, sufficient shear tensile strength is not obtained, and the energization start time of the high current value I H is shifted by a predetermined time t 1 Is generated by the waveform correction circuit 76 (step S16).

【0044】次いで、高電流値IH の通電開始時刻がシ
フト可能な限界に達したか否かが判定され(ステップS
17)、限界に達しない場合はステップS9において前
記シフトされた波形に基づいた溶接電流がワークWに供
給され、一方、通電開始時刻がシフト可能な限界に達し
た場合は、ステップS1に戻り、再び、溶接電流波形記
憶回路74に記憶された基準方形状波形に基づいた電流
の通電が実行され、ステップS7の実行によって新たな
散り発生限界電流値IS が求められる。
Next, it is judged whether or not the energization start time of the high current value I H has reached the limit at which the current can be shifted (step S
17) If the limit is not reached, the welding current based on the shifted waveform is supplied to the work W in step S9, while if the energization start time reaches the shiftable limit, the process returns to step S1. The current is supplied again based on the reference rectangular waveform stored in the welding current waveform storage circuit 74, and a new scattering limit current value I S is obtained by executing step S7.

【0045】このように、ステップS8〜S17が繰り
返し実行され、高電流値IH と低電流値IL とからなる
新溶接電流波形に基づいて生成された溶接電流がワーク
Wに供給され、散り発生が抑止され、且つ高品質のナゲ
ットが得られる。
In this way, steps S8 to S17 are repeatedly executed, and the welding current generated based on the new welding current waveform consisting of the high current value I H and the low current value I L is supplied to the work W and scattered. Generation is suppressed and a high quality nugget can be obtained.

【0046】以上説明したように、本実施例ではワーク
1 の夫々の溶接点P11〜P1Nが順次溶接され、次にワ
ークW2 の夫々の溶接点P21〜P2n、…ワークWn の夫
々の溶接点Pn1〜Pnnと順次溶接されるとき、夫々のワ
ークW1 、ワークW2 、…ワークWn における同一部位
の溶接点、例えば、溶接点P11、P21、…Pn1に通電さ
れる溶接電流の波形は、同一部位の溶接点を溶接した際
に修正された波形に基づいて通電される。
[0046] As described above, in the present embodiment is welded welding point P 11 to P 1N husband of the workpiece W 1 s are sequentially next workpiece W 2 of the welding points each P 21 to P 2n, ... workpiece W When the welding points P n1 to P nn of n are sequentially welded, the welding points of the same part in the respective workpieces W 1 , W 2 , ..., W n , for example, welding points P 11 , P 21 ,. The waveform of the welding current supplied to P n1 is supplied based on the waveform corrected when welding the welding points at the same site.

【0047】従って、ワークWにおける夫々の溶接点
が、ワークWの重ね枚数、端部若しくは中央部等のワー
クWにおける溶接点の部位、溶接点間のピッチ、溶接さ
れるワークWの厚さ、および溶接されるワークWの材質
等、溶接点毎に溶接電流の通電条件が異なる場合であっ
ても、夫々の溶接点は通電条件が同一である他のワーク
Wの同一部位を溶接した際に修正された夫々の新溶接電
流波形に基づいた溶接電流の通電によって溶接すること
ができる。
Therefore, the respective welding points on the work W are the number of overlapping work W, the welding point portions on the work W such as the end portion or the central portion, the pitch between the welding points, the thickness of the work W to be welded, Also, even when the welding current energization conditions are different for each welding point, such as the material of the workpiece W to be welded, each welding point has the same energization condition when the same portion of another workpiece W is welded. Welding can be performed by applying a welding current based on each of the modified new welding current waveforms.

【0048】なお、本実施例では散り発生の有無を2次
電流I2 によって検出したが、1次電流I1 によっても
2次電流I2 と同様に散り発生の有無を検出することが
できる。
[0048] Incidentally, it is possible to have been detected by the secondary current I 2 the presence of occurrence scattering in this embodiment, to detect the presence or absence of the occurrence scattering similarly as secondary current I 2 by the primary current I 1.

【0049】[0049]

【発明の効果】本発明に係る抵抗溶接機の溶接電流制御
方法および装置では、複数の溶接点を有する同一形状の
ワークをワーク毎に順次溶接するとき、夫々の溶接点
は、他のワークの同一部位の溶接によって高電流値が修
正された波形の溶接電流で溶接されるため、溶接点毎に
溶接電流の通電条件が異なる場合であっても夫々の溶接
点には最適な溶接電流が供給され、安定した形状のナゲ
ットを生成することができる。
In the welding current control method and apparatus for a resistance welding machine according to the present invention, when workpieces of the same shape having a plurality of welding points are sequentially welded for each workpiece, the respective welding points are different from those of other workpieces. Since welding is performed with a welding current with a waveform in which the high current value has been corrected by welding the same part, even if the welding current energization conditions differ for each welding point, the optimum welding current is supplied to each welding point. As a result, a nugget having a stable shape can be generated.

【0050】さらに、高電流値と低電流値とを有する波
形の高電流値を散り発生状態に基づいて修正することに
より、高い溶接強度を安定して得ることができるという
効果を奏する。
Further, by correcting the high current value of the waveform having the high current value and the low current value based on the scattered occurrence state, there is an effect that a high welding strength can be stably obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する抵抗溶接機の全体構成を示す
ブロック図である。
FIG. 1 is a block diagram showing an overall configuration of a resistance welding machine for carrying out the present invention.

【図2】図1の抵抗溶接機における溶接コントローラの
構成を示すブロック図である。
2 is a block diagram showing a configuration of a welding controller in the resistance welding machine of FIG. 1. FIG.

【図3】図1の抵抗溶接機において、同一形状のワーク
の同一部位の溶接点を溶接する方法を説明するフローチ
ャトである。
FIG. 3 is a flow chart for explaining a method of welding the welding points of the same part of the work of the same shape in the resistance welding machine of FIG.

【図4】図1の抵抗溶接機において、同一形状のワーク
の同一部位の溶接点を溶接する方法を説明するフローチ
ャトである。
FIG. 4 is a flow chart for explaining a method of welding the welding points of the same part of the work of the same shape in the resistance welding machine of FIG.

【図5】図1の抵抗溶接機において、連続的に搬送され
る同一形状の夫々のワークを説明する図である。
FIG. 5 is a view for explaining each work of the same shape that is continuously conveyed in the resistance welding machine of FIG.

【図6】図1の抵抗溶接機において、ワークに通電され
る方形状波形の溶接電流を説明する図である。
FIG. 6 is a diagram illustrating a square-wave welding current supplied to a work in the resistance welding machine of FIG. 1;

【図7】図1の抵抗溶接機において、ワークに通電され
る高電流値と低電流値とからなる波形の溶接電流を説明
する図である。
FIG. 7 is a diagram illustrating a welding current having a waveform including a high current value and a low current value applied to a work in the resistance welding machine of FIG. 1.

【符号の説明】[Explanation of symbols]

20…抵抗溶接機 24…インバー
タ回路 26…溶接トランス回路 28…溶接ガン
部 30…溶接コントローラ 34…2次電流
検出器 40、41…可動ガンアーム 42、43…電
極チップ 50、52…A/D変換回路 54…検出電流
選択回路 55…散り検出回路 56…溶接条件
記憶回路 58…CPU 64…ROM 66…RAM 68…波形生成
パラメータ記憶回路 70…散り発生限界電流値演算回路 74…溶接電流
波形記憶回路 76…波形修正回路
20 ... Resistance welding machine 24 ... Inverter circuit 26 ... Welding transformer circuit 28 ... Welding gun part 30 ... Welding controller 34 ... Secondary current detector 40, 41 ... Movable gun arm 42, 43 ... Electrode tip 50, 52 ... A / D conversion Circuit 54 ... Detection current selection circuit 55 ... Dispersion detection circuit 56 ... Welding condition storage circuit 58 ... CPU 64 ... ROM 66 ... RAM 68 ... Waveform generation parameter storage circuit 70 ... Dispersion occurrence limit current value calculation circuit 74 ... Welding current waveform storage circuit 76 ... Waveform correction circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の溶接点を有する同一形状のワーク
を、ワーク毎に順次溶接する抵抗溶接機の溶接電流制御
方法において、 予め記憶された波形の溶接電流を前記ワークの所定の溶
接点に供給して、溶接時における散り発生の有無を検出
し、当該散り発生の有無に基づいて前記溶接電流の波形
を修正する第1のステップと、 前記修正された波形に基づいて散り発生限界電流値を求
める第2のステップと、 前記散り発生限界電流値に基づいて、前記散り発生限界
電流値より大なる高電流値と前記散り発生限界電流値よ
り小なる低電流値からなる新たな溶接電流波形を生成す
る第3のステップと、 前記新たな溶接電流波形の溶接電流を前記ワークの所定
の溶接点と同一部位の他のワークの溶接点に供給し、溶
接時における散り発生の有無を検出する第4のステップ
と、 前記第4のステップで検出された散り発生の有無に基づ
いて前記新たな溶接電流波形の前記高電流値を修正し
て、この修正された波形に基づいて生成された溶接電流
を同一形状のワークの同一部位の溶接点に供給する第5
のステップと、 からなることを特徴とする抵抗溶接機の溶接電流制御方
法。
1. A welding current control method for a resistance welding machine, in which workpieces of the same shape having a plurality of welding points are sequentially welded for each workpiece, wherein a welding current having a waveform stored in advance is applied to a predetermined welding point of the workpiece. The first step of supplying and detecting the occurrence of spatter during welding, and correcting the waveform of the welding current based on the presence or absence of the spatter, and the spatter occurrence limit current value based on the corrected waveform And a new welding current waveform consisting of a high current value larger than the dispersion generation limit current value and a low current value smaller than the dispersion generation limit current value based on the dispersion generation limit current value. And a welding current of the new welding current waveform is supplied to a welding point of another workpiece at the same site as the predetermined welding point of the workpiece to detect the occurrence of scattering during welding. The high current value of the new welding current waveform is modified based on the fourth step of performing the above, and the presence or absence of the scattering detected in the fourth step, and the high current value of the new welding current waveform is generated based on the modified waveform. Fifth welding current is supplied to the welding point of the same part of the work of the same shape
And a welding current control method for a resistance welding machine.
【請求項2】複数の溶接点を有する同一形状のワーク
を、ワーク毎に順次溶接する抵抗溶接機の溶接電流制御
装置において、 予め記憶された波形の溶接電流が前記ワークの所定の溶
接点に供給され、溶接時に検出された散り発生の有無に
よって修正された前記波形に基づいて散り発生限界電流
値を求める散り発生限界電流値演算手段と、 前記散り発生限界電流値に基づいて、前記散り発生限界
電流値より大なる高電流値と前記散り発生限界電流値よ
り小なる低電流値とからなる新たな溶接電流波形を生成
する溶接電流波形生成手段と、 前記新たな溶接電流波形に基づいた溶接電流を前記ワー
クの所定の溶接点と同一部位の他のワークの溶接点に供
給する溶接電流供給手段と、 前記溶接電流供給手段によってワークに供給された溶接
電流による散り発生の有無を検出する散り発生検出手段
と、 前記検出された散り発生の有無に基づいて前記新たな溶
接電流波形の前記高電流値を修正する波形修正手段と、 を備え、前記修正された新たな溶接電流波形に基づいて
生成された溶接電流を同一形状のワークの同一部位の溶
接点に供給することを特徴とする抵抗溶接機の溶接電流
制御装置。
2. A welding current control device of a resistance welding machine, which sequentially welds workpieces of the same shape having a plurality of welding points for each workpiece, wherein a welding current having a pre-stored waveform corresponds to a predetermined welding point of the workpiece. Supply occurrence limit current value calculation means for obtaining the occurrence limit current value of occurrence of dispersion based on the waveform corrected by the presence or absence of occurrence of occurrence of dispersion detected during welding; Welding current waveform generation means for generating a new welding current waveform consisting of a high current value larger than a limit current value and a low current value smaller than the scattering occurrence limit current value, and welding based on the new welding current waveform A welding current supply means for supplying an electric current to a welding point of another work at the same site as the predetermined welding point of the work, and a welding current supplied to the work by the welding current supply means. And a waveform correction unit that corrects the high current value of the new welding current waveform based on the detected presence or absence of the dispersion. A welding current control device for a resistance welding machine, characterized in that a welding current generated based on the new welding current waveform is supplied to a welding point on the same portion of a work having the same shape.
JP24318893A 1993-09-29 1993-09-29 Method and apparatus for controlling welding current of resistance welding machine Expired - Fee Related JP2756403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24318893A JP2756403B2 (en) 1993-09-29 1993-09-29 Method and apparatus for controlling welding current of resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24318893A JP2756403B2 (en) 1993-09-29 1993-09-29 Method and apparatus for controlling welding current of resistance welding machine

Publications (2)

Publication Number Publication Date
JPH0796375A true JPH0796375A (en) 1995-04-11
JP2756403B2 JP2756403B2 (en) 1998-05-25

Family

ID=17100141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24318893A Expired - Fee Related JP2756403B2 (en) 1993-09-29 1993-09-29 Method and apparatus for controlling welding current of resistance welding machine

Country Status (1)

Country Link
JP (1) JP2756403B2 (en)

Also Published As

Publication number Publication date
JP2756403B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US6833529B2 (en) Power supply for short-circuiting arc welding, and automatic welding machine utilizing the same
JP2617668B2 (en) Welding current control method for DC resistance welding machine
US9272356B2 (en) Feed control method for consumable electrode AC arc welding
KR19990066732A (en) Welding power supply and its manufacturing method
CN111745264B (en) Real-time resistance monitoring of arc welding circuits
CN109483033B (en) Resistance welding method and resistance welding device
EP0756914A2 (en) Method and apparatus for controlling inverter resistance welding
US20200139469A1 (en) Welding Type Power Supply For TIG Starts
JP5120073B2 (en) AC pulse arc welding apparatus and control method
US20200101550A1 (en) Welding apparatus and welding method
JPH0796375A (en) Method and device for controlling welding current of resistance welding machine
JPH05337655A (en) Method and device for controlling welding current of resistance welding machine
JP4211724B2 (en) Arc welding control method and arc welding apparatus
JPH0788659A (en) Method and device for controlling welding current of dc resistance welding machine
JPH09141451A (en) Resistance welding control method
JP4646483B2 (en) Consumable electrode type arc spot welding method and consumable electrode type arc welding apparatus
JP3173159B2 (en) Control method of AC TIG welding
JP4759233B2 (en) Non-consumable electrode type gas shielded arc welding power supply
JP7258445B2 (en) CONTROL DEVICE FOR RESISTANCE WELDING MACHINE, METHOD FOR MONITORING ELECTRICAL CONDITION OF WELDED PORTION, AND METHOD FOR JUDGING GOOD OR FAILURE
JPH09277063A (en) Resistance welding controller
JPH05337656A (en) Method and device for controlling welding current of resistance welding machine
JPH0796374A (en) Method and device for controlling welding current of resistance welding machine
JP3163530B2 (en) Control device for resistance welding
JPH11291041A (en) Method for controlling pulse arc welding and device therefor
CN105382377B (en) Arc welding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100306

LAPS Cancellation because of no payment of annual fees