JPH0796295A - Method and apparatus for treating suspension or mud - Google Patents

Method and apparatus for treating suspension or mud

Info

Publication number
JPH0796295A
JPH0796295A JP27323893A JP27323893A JPH0796295A JP H0796295 A JPH0796295 A JP H0796295A JP 27323893 A JP27323893 A JP 27323893A JP 27323893 A JP27323893 A JP 27323893A JP H0796295 A JPH0796295 A JP H0796295A
Authority
JP
Japan
Prior art keywords
water
mud
treatment
cyclone
muddy water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27323893A
Other languages
Japanese (ja)
Inventor
Jiro Sasaoka
治郎 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27323893A priority Critical patent/JPH0796295A/en
Publication of JPH0796295A publication Critical patent/JPH0796295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To eliminate or decrease labor, simplify installation, and reduce the driving power consumption by carrying out treatment selected from sterilization or germ suppressing treatment and adsorption purifying treatment for water or filthy water produced in excavating work and containing fine particles. CONSTITUTION:Wastewater or waste mud produced in excavating work is sent to a storage treatment base apparatus 41, thrown to a decomposition tank 2 and after passing a dehydrating and vibrating sieve and a vibrating sieve 5, the wastewater or waste mud goes to a tank section 51. There sand and pebbles precipitate. The resultant muddy water is sent to a cyclone 6 by a pump 7 and circulated. Overflowing water goes to a tank section 52 from a flow outlet 14 and is sent to a two-step cyclone 17 by a pump 16. The processes are carried out in the same way. At that time, a swing type switching apparatus 11 is operated based on the specific gravity measured by a specific gravity measuring apparatus 10 and it is determined whether muddy water should be sent to the tank section 52 or not. When the specific gravity is high, carbon dioxide gas is injected through a nozzle 61 to adjust pH to be, for example, 8-10, and a sodium hypochlorite solution, etc., are added through a sterilizing agent injecting system 62. In this way, together with treatment by a cyclone, sterilizing treatment is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は現場打ち造成杭、連壁工
法、一般掘削、河川、港湾浚渫等において発生した掘削
泥水または泥処理、土壌浄化に適した分級、脱水、浄
化、排水処理法、安全性と経済性が改善されたリサイク
ル等に適した方法と装置に関する。
BACKGROUND OF THE INVENTION The present invention is a method for excavating mud or mud generated in site cast piles, connecting walls, general excavation, rivers, dredging in ports, etc., classification, dehydration, purification, drainage treatment suitable for soil purification. , A method and a device suitable for recycling with improved safety and economy.

【0002】[0002]

【従来の技術】従来、泥水を使用しつつ掘削する掘削工
事等から排出される土砂含有泥水を処理し、リサイクル
する低コスト、簡易または環境衛生的な処理法が無かっ
た。有害物を管理しつつリサイクルする技術思想もその
方法もなかった。泥水からの土砂分離自体は沈降槽が主
体で、時に単段のサイクロンを利用するが完全なもので
なく、掘削条件規格から外れた泥水は系から排出して廃
棄し、新たに調製されて、大量の汚泥発生の原因になっ
ていた。また脱水設備、排水処理は高コストで、汚泥等
はセメント固化、海洋投棄等によるものが多く問題であ
った。発明者は特願平4−302808、特願平4−3
61818、特願平4−362128にリサイクルにお
いて輸送まで含むシステム、分離水浄化技術も述べてい
る。炭酸ガス処理し、泥水または汚泥中の土砂を分離
し、再使用可能な掘削用泥水を得、一方では脱水が容易
な埋立用または土建用土砂を得ることを提案し、実施し
てきた。
2. Description of the Related Art Conventionally, there has been no low-cost, simple or environmentally hygienic treatment method for treating and recycling muddy water containing sediment discharged from excavation work for excavating while using muddy water. There was neither a technical idea nor a method of recycling harmful substances while managing them. Sedimentation itself from muddy water is mainly a sedimentation tank, sometimes using a single-stage cyclone, but it is not perfect, and muddy water that does not meet the drilling condition standards is discharged from the system and discarded, and newly prepared It caused a large amount of sludge. In addition, dewatering equipment and wastewater treatment were expensive, and sludge and other problems were often caused by cement solidification and ocean dumping. The inventor is Japanese Patent Application No. 4-302808, Japanese Patent Application No. 4-3.
No. 61818, Japanese Patent Application No. 4-362128 also describes a system including transportation up to recycling, and separation water purification technology. It has been proposed and carried out that carbon dioxide treatment is performed to separate the sediment in mud or sludge to obtain reusable mud for excavation, while on the other hand to obtain landfill or earth and sand that is easily dehydrated.

【0003】[0003]

【発明が解決しようとする課題】掘削、浚渫汚泥、土砂
含有粗泥水、泥土収集、処理、配送再利用において、広
域の土壌、地下水の有害物、薬品汚染、微生物汚染が問
題になるという認識はなく、当然、その解決法もなかっ
た。設備費および運転用電力費、人件費が問で処理不能
とされていることが多いが、コスト節減の新しい方法が
必要であった。従来、ベントナイト泥水、掘削泥水は使
用の都度、水道水、井戸水等で調製されることが多く、
広域環境汚染の恐れは少ないので、泥水自体の浄化の例
はなく、浄化、貯蔵方法等未知の問題があった。研究の
結果再生泥水を他の掘削現場に使用する場合、有害物、
微生物、放射性物質その他汚染物が広域、不特定現場の
土壌、地下水脈への突出、拡散等の環境汚染事故を起こ
す恐れがあることがわかった。従って分析法、管理法、
装置特性等、多くの問題解決の必要があった。例えば分
析、酸化性消毒剤の添加にあたり泥水は粘度が高く処理
用気体や薬剤の混合不良で、CMC等の有用な添加剤を
分解する恐れがある。また、高比重泥水は水で薄めて比
重を低下できるが、水道水は高価で、下水、汚水等は処
理を要する。掘削あるいは浚渫泥水は瞬間的水質変動が
大で、生物化学的水処理に適しない。高比重泥は紫外線
透過率不良で、しかも薄膜として照射できない。活性炭
吸着処理は水では容易てあるが、泥水、濁水の活性炭吸
着等は劣化が速く、適用困難とされ、ベントナイト溶
液、泥水処理例はなく、従来法では水処理でも廃炭再生
は困難であった。また泥水を曝気した排気中の有害物捕
集にも活性炭吸着がよい。これを比較的軽量で無機物障
害の少ない低温酸化再生装置に着目し可搬型としたい。
これには熱源と排気処理を要し、多目的として経済性を
高めたい。従来の泥水サイクロン付脱水篩は不安定であ
った。稀薄液は処理できず、粘土、シルト分が多い土砂
は篩上に脱水物が固着した。汚濁水、土壌浄化排水、汚
染井戸の等の水処理においては、運搬、試験と実用運
転、装置荷役、据付、使用が容易な装置、運搬法、車載
装置の新たな開発が必要であった。通常型液体サイクロ
ンは濃縮下流管の摩耗破損が激しく、対策は高価であっ
た。軸流サイクロンは動力消費を節約できる。小径サイ
クロン集合体は性能が向上するが、製作が難しく、土砂
の閉塞、摩耗の問題があった。流路切り替え弁も同様で
あった。掘削用泥水を貯蔵する場合、大気に暴露すると
腐敗動植物、有害降下物等により汚染される。フイルム
製覆もあるが、開閉できる簡便なものがなかった。 分
離沈降泥、土砂の流動性確保は省力化の必須条件で、振
動流動が簡易てあるが、機器個数の増加、動力配線の複
雑化、動力消費増加が問題であった。
Problems to be Solved by the Invention It is acknowledged that wide-area soil, groundwater harmful substances, chemical contamination, and microbial contamination pose problems in excavation, dredging sludge, coarse sediment containing sediment, mud collection, treatment, and reuse of reuse. And of course, there was no solution. Equipment costs, operating electricity costs, and personnel costs are often unprocessable, but a new method of cost reduction was needed. Conventionally, bentonite mud and drilling mud are often prepared with tap water, well water, etc. each time they are used.
Since there is little risk of wide-area environmental pollution, there was no example of purification of mud itself, and there were unknown problems such as purification and storage methods. As a result of research, when using recycled mud in other drilling sites, harmful substances,
It was found that microorganisms, radioactive substances, and other pollutants could cause environmental pollution accidents such as widespread, soil at unspecified sites, projection into groundwater veins, and diffusion. Therefore, analysis method, management method,
It was necessary to solve many problems such as device characteristics. For example, in the analysis and addition of an oxidizing disinfectant, mud water has a high viscosity and mixing of processing gas and chemicals is poor, and useful additives such as CMC may be decomposed. High specific gravity muddy water can be diluted with water to reduce its specific gravity, but tap water is expensive and sewage, sewage, etc. require treatment. Drilling or dredging mud water has large instantaneous water quality fluctuations and is not suitable for biochemical water treatment. High specific gravity mud has a poor UV transmittance and cannot be irradiated as a thin film. Activated carbon adsorption treatment is easy with water, but activated carbon adsorption etc. of muddy water and muddy water is considered to be difficult to apply because there is no bentonite solution or muddy water treatment example. It was Also, activated carbon adsorption is good for collecting harmful substances in the exhaust gas aerated with muddy water. We would like to make this portable by paying attention to a low-temperature oxidation / regeneration device that is relatively lightweight and has few inorganic obstacles.
This requires a heat source and exhaust treatment, and wants to improve economic efficiency for multiple purposes. Conventional dewatering screen with muddy cyclone was unstable. Diluted liquid could not be treated, and dehydrated matter adhered to the sieve of clay and earth and sand containing a large amount of silt. For water treatment of polluted water, soil purification drainage, contaminated wells, etc., new development of transportation, testing and practical operation, equipment loading, installation, equipment that is easy to use, transportation method, and vehicle equipment was required. In the conventional liquid cyclone, the concentration downstream pipe was severely worn and damaged, and the countermeasure was expensive. Axial cyclones can save power consumption. The small-diameter cyclone aggregate has improved performance, but is difficult to manufacture, and has problems of clogging of sand and abrasion. The same applies to the flow path switching valve. When storing drilling mud, it is polluted by spoilage plants, harmful fallout, etc. when exposed to the atmosphere. There was a film cover, but there was no convenient one that could be opened and closed. Securing the fluidity of the separated sedimentation mud and sediment is an essential condition for labor saving, and the oscillating flow is simple, but the increase in the number of equipment, the complication of power wiring, and the increase in power consumption were problems.

【0004】[0004]

【問題を解決するための手段】掘削泥水リサイクルは処
理、再生液の貯蔵、広域配送、再使用は有利である。し
かし広域の有害物、病原菌汚染防止の見地から、予防手
段が必要になる。この問題は従来認識がなく対策も知ら
れていなかった。浚渫でも同様である。本発明は粗泥水
等の経済的な処理、汚泥としての廃棄防止の見地に立っ
ている。泥水をサイクロンまたは遠心分離処理して土砂
を分離し浄化すること、または泥からの分離水を処理
し、または浄化して混入汚染物である有害物、菌類、細
菌類、毒素、有害微生物等を実質的に除去し、または殺
菌(または増植抑制、以下同じ)し、あるいはまた貯
蔵、出荷条件の管理し、実質的に処理品を無害化し、か
つ再生泥水の品質を改善する。また本発明者は特に泥
水、または安定化ベントナイト溶液を薬品処理または吸
着処理し直接浄化できることを発見し、発明したもので
ある。土砂を含む泥水を直接処理することは土砂による
機器の摩耗、ケーキ、スケール固着、閉塞、混合撹拌の
困難性とそれに起因する薬剤等の過剰量の消費、等の問
題がある。このために予備操作として土砂を含む泥水ま
たは泥を振動篩あるいはストレーナー、サイクロンにか
け、土砂を除いた後処理する。また本発明により分離し
た土砂は微粒子が少なく、脱水、薬品処理は比較的容易
になる。分離泥水への薬液添加は局部的反応を防止する
ために注入ノズルを管路または筒内に突出させ、かつ剪
断力をかけつつ分散する機能のを与え、多少とも旋回運
動を与えてつつ旋回中心付近に薬液を入れるのが適当で
ある。これは誘導翼を注入点の前に配置することによっ
て一層容易になる。続く混合装置または液体サイクロン
は強い剪断力を与え粒子解砕し薬液を分散しつつ土砂あ
るいは粒子を分離するので、それぞれの操作を単独で行
った時には困難であった添加、反応、分散、分離、消
毒、殺菌等が一挙に実行できる。また液体サイクロン前
同様自体にも炭酸ガスまたは酸性物質をpH調整剤とし
て送入し、消毒剤殺菌処理剤または繁殖抑制処理例えば
過酸化水素水、過炭酸ソーダ、オゾン、塩素(現場電解
による塩素発生機でも良い)、次亜塩素酸ソーダ、塩化
シアヌル等を添加し、強撹拌または剪断力を加えつつ処
理し、土砂分離を同時に行うこと、消毒温度で必要時間
保持すること、サイクロンまたは遠心分離による土砂分
離後に活性炭等炭素質吸着材との直接接触による水また
は泥水系の浄化、イオン交換体による塩類、有害金属イ
オンの除去、沈降あるいは貯蔵槽の併用、処理後のpH
調整のためのアルカリ添加等の選択、組合せによって処
理する。これによって建設、土木掘削工事、浄化工事、
浚渫作業から発生する廃棄泥または泥水の処理、精製、
調整土砂の脱水、浄化処理、貯蔵、使用を比較的低コス
トで安全に実現できる。
[Means for Solving the Problems] Drilling mud recycling is advantageous for treatment, storage of regenerated liquid, wide area distribution, and reuse. However, preventive measures are necessary from the standpoint of preventing contamination of widespread harmful substances and pathogenic bacteria. This problem has not been recognized in the past and no countermeasure was known. The same is true for dredging. The present invention is based on the viewpoint of economical treatment of coarse mud and the like and prevention of disposal as sludge. Cyclone or centrifugal treatment of muddy water to separate and purify soil and sand, or to process or purify separated water from mud to remove contaminants such as harmful substances, fungi, bacteria, toxins and harmful microorganisms. Substantially removed or sterilized (or growth suppression, the same applies below), or also controlled storage and shipping conditions, substantially rendered treated products harmless, and improved the quality of recycled mud. Further, the present inventor discovered and invented that muddy water or a stabilized bentonite solution can be directly purified by chemical treatment or adsorption treatment. Direct treatment of muddy water containing sediment has problems such as equipment wear due to sediment, cake, scale sticking, blockage, difficulty of mixing and stirring, and consumption of excessive amount of chemicals and the like due to it. For this purpose, as a preliminary operation, muddy water containing mud or mud is passed through a vibrating screen, strainer or cyclone to remove the mud and then treated. In addition, the sediment separated according to the present invention has few fine particles, and dehydration and chemical treatment are relatively easy. Addition of chemicals to the separated mud water causes the injection nozzle to project into the pipe or cylinder to prevent local reaction, and also has the function of dispersing while applying shearing force, giving a swinging motion to some extent and giving a swinging center. It is appropriate to put the chemical in the vicinity. This is made easier by placing the guide vane in front of the injection point. Subsequent mixing equipment or hydrocyclone gives strong shearing force and disintegrates particles and separates sand or particles while dispersing the chemical solution, so addition, reaction, dispersion, separation, which was difficult when each operation was performed alone, Disinfection and sterilization can be performed at once. In the same way as before the liquid cyclone, carbon dioxide or an acidic substance is sent to itself as a pH adjuster to disinfect, disinfect, treat or suppress the growth of, for example, hydrogen peroxide solution, sodium percarbonate, ozone, chlorine (chlorine generated by on-site electrolysis). Machine may be used), sodium hypochlorite, cyanuric chloride, etc. are added, treated with strong stirring or shearing force, simultaneously performing sediment separation, holding at disinfection temperature for a required time, by cyclone or centrifugation Purification of water or muddy water system by direct contact with carbonaceous adsorbent such as activated carbon after sedimentation, removal of salts and harmful metal ions by ion exchanger, combined use of sedimentation or storage tank, pH after treatment
Treatment is performed by selection and combination such as addition of alkali for adjustment. By this, construction, civil engineering excavation work, purification work,
Treatment and purification of waste mud or mud generated from dredging work,
Dehydrated, purified, stored, and used conditioned soil can be safely realized at a relatively low cost.

【0005】微生物殺菌は病原菌と土壌中微生物生態系
に関するものであるが、基本的には貯蔵における微生物
増殖条件を除くことにある。汚染は小動物による媒介を
も考慮しなければならない。先の消毒、吸着浄化処理は
その条件にも適う。ところで日本基礎建設協会の安定液
管理指針によると単に掘削用液としてのpHは7−1
1.5で、現場の土質、作業状況、その他によって作業
中または作業終了時、液移動時に8−11.5が普通で
ある。病原細菌の最適増殖条件がpH7−8にあること
に着目して、不利な条件を外して作業、貯蔵pHを調節
して感染事故を防止できることがわかった。 貯蔵、使
用pHは発育可能の上限pH以上とすることが好まし
い。限界pHは土壌あるいは汚水に多く存在し得る菌の
発育可能pH、例えば破傷風菌8.3、炭そ菌8.5、
大腸菌8.8であるから、8.5−8.8程度以上での
再生泥水貯蔵が好ましい。コレラ、サルモネラ、赤痢菌
は同じく9.6程度であるから、これらの存在が懸念さ
れる場合には、比較的高いpHで貯蔵するのが安全であ
る。pHを高くすることが問題になる時、すなわちゲル
化が懸念されるときでも、殺菌剤の本発明の方法による
添加で保証できる。貯蔵温度は同様に最適増殖条件35
〜37℃を避けるべきである。一般に病原菌は菌の拮抗
作用もあり、長時間は生存しにくいので、無処理では一
定時間、例えば6時間以上特に24時間程度以上の貯蔵
が好ましい。出荷時付近での消毒も有効である。水道規
格に準じて残留塩素0.1ppm以上であるが懸濁水で
はアルカリ性で減衰が遅いが掘削に影響せず、実際には
遊離塩素換算0.1−50ppm相当を使用することが
できる。最終残留塩素が水道水使用時と同じ水準以下に
すれば従来と同条件になる。土砂分離操作は比較的低い
pH例えば8−8.5程度において容易であるが、分離
作業後に、8.5以下となった時には、アルカリ性物質
の添加によって8.5以上にするか、殺菌剤添加するこ
とができる。一方、中性付近では、酸化性殺菌剤たとえ
ば次亜塩素酸ソーダは作用が活発になり、比較的高pH
では殺菌剤の抑制効果が保存されやすく、水道水相当の
塩素残留基準に適合する。
Microbial killing is concerned with pathogenic fungi and microbial ecosystems in soil, but basically to eliminate microbial growth conditions in storage. Contamination must also take into account transmission by small animals. The above-mentioned disinfection and adsorption purification treatment are suitable for the conditions. By the way, according to the Japan Basic Construction Association's stable liquid management guidelines, the pH of the excavating liquid is 7-1.
At 1.5, 8-11.5 is common during or after the work and liquid transfer depending on the soil quality, work conditions, and so on. Focusing on the fact that the optimum growth condition of pathogenic bacteria is pH 7-8, it has been found that it is possible to prevent infection accidents by removing the disadvantageous conditions and adjusting the work and storage pH. The storage and use pH are preferably higher than the upper limit pH at which development is possible. The limit pH is a pH at which bacteria that can be present in soil or sewage in a large amount can grow, such as tetanus 8.3, anthrax 8.5,
Since Escherichia coli is 8.8, it is preferable to store the recycled mud water at about 8.5-8.8 or more. Since cholera, salmonella, and shigella are also about 9.6, it is safe to store them at a relatively high pH when their presence is a concern. Even when increasing the pH is a problem, ie when gelation is a concern, it can be ensured by the addition of the fungicide according to the method of the invention. The storage temperature is also the optimum growth condition 35
~ 37 ° C should be avoided. In general, pathogenic bacteria also have an antagonistic effect on bacteria and thus do not survive for a long time. Therefore, it is preferable to store them for a certain period of time without treatment, for example, for 6 hours or more, especially for about 24 hours or more. Disinfection near the time of shipment is also effective. According to the water supply standard, the residual chlorine is 0.1 ppm or more, but in suspended water, it is alkaline and decays slowly, but does not affect excavation. Actually, equivalent to 0.1-50 ppm of free chlorine can be used. If the final residual chlorine is below the same level as when using tap water, the same conditions as before will be obtained. Sediment separation operation is easy at a relatively low pH, for example, about 8-8.5, but when it becomes 8.5 or less after the separation work, it is adjusted to 8.5 or more by addition of an alkaline substance or a bactericide is added. can do. On the other hand, in the vicinity of neutrality, an oxidizing bactericidal agent such as sodium hypochlorite becomes active, and the pH is relatively high.
, The control effect of the bactericide is easily preserved and meets the chlorine residue standard equivalent to tap water.

【0006】このような場合アルカリ添加は最終に近い
サイクロン、ポンプ、混合機前で行い混合を密にする。
これは粒子集団あるいは凝結塊があるとその内部では細
菌増殖条件が満たされていることがあり得るので本発明
によって、処理が粒子集合体に及ぶように剪断力をかけ
チキソトロピー流動性が持続中、再凝集前に操作するの
がよく、粒子解砕、分離と撹拌、消毒、中和可能の反応
装置を兼ねた液体サイクロンを含む工程、それらの固定
または可搬プラント、処理済泥水の複数の貯蔵基地の単
独または組合せ設置が問題解決に有利である。活性炭に
よる吸着処理でも同様で処理系は剪断、分散力がかかっ
た後速やかに処理を終了するのが効果的である。これら
の操作は粒子処理の押出し流れの部分に適用する時に最
も効率がよい。これは現象的にみて高粘性の流体反応の
場合に寧ろ似ていると思われた。静止または緩やかな撹
拌状態にある槽貯蔵では反応系の混合拡散状態が良くな
いからである。特に大量貯蔵槽では循環、回分型反応操
作は動力効率が悪い。処理した掘削用泥水等としては実
質的に無害である条件が存在し、この条件は実験に求め
られることがわかった。たとえばベントナイトの安定化
泥水またはその再生泥水は消毒処理、活性炭または炭素
質吸着材と直接接触して吸着浄化できることもわかっ
た。消毒により、もしトリハロメタン等有害物が発生す
るなら、これも、処理工程後部に活性炭または炭素質吸
着剤処理装置を置くことにより除去できる。
In such a case, the alkali addition is performed before the cyclone, the pump and the mixer near the end to make the mixture intimate.
This is because if there is a population of particles or agglomerates, it is possible that the conditions for bacterial growth are satisfied therein, and therefore, according to the present invention, shearing force is applied so that the treatment extends to the particle aggregates and the thixotropic fluidity is maintained, It is often operated before re-agglomeration, processes involving hydrocyclone, which also serves as a reactor for particle disintegration, separation and agitation, disinfection and neutralization, their fixed or portable plant, multiple storage of treated mud Single or combined installation of bases is advantageous in solving problems. The same applies to the adsorption treatment with activated carbon, and it is effective to terminate the treatment promptly after the treatment system is subjected to shearing and dispersion forces. These operations are most efficient when applied to the extruded stream portion of particle processing. From a phenomenological point of view, this seemed to be similar to the case of a highly viscous fluid reaction. This is because the mixed and diffused state of the reaction system is not good in storage in a tank that is stationary or in a gently stirred state. Especially in a large-scale storage tank, the circulation and batch type reaction operations have poor power efficiency. It was found that there is a condition that is substantially harmless as the treated drilling mud and the like, and this condition is required for the experiment. For example, it was also found that the stabilized mud of bentonite or its recycled mud can be disinfected and adsorbed and purified by direct contact with activated carbon or a carbonaceous adsorbent. If disinfection produces harmful substances such as trihalomethane, these can also be removed by placing an activated carbon or carbonaceous adsorbent treatment device at the rear of the treatment process.

【0007】吸着浄化剤である活性炭または炭素質吸着
剤の劣化が少ない場合には廃棄するか従来型高温再生に
よって再使用できるが汚水処理では特に直接処理では一
般に寿命が短かく、予備的微生物処理が必要とされる
が、処理の滞在時間が長く大きい曝気槽を要し、運転条
件の選択および運転が難しいので、これまで小規模の水
溜り等の浄化は汚水処理の困難性のため実質的に難しか
った。活性炭浄化では運転は簡単で汚水の臭気除去も容
易でかつ低温酸化再生により有利に繰返し使用でき、簡
易に現場再生もできる特徴がある。車載設備、エンジン
発電機では動力、熱、排気ともに利用でき、しかも冷
却、排気浄化は対象汚水の利用によって簡易になる。す
なわち移動可能のこの種の浄化装置は大規模な対象に使
用できることは当然であるが、従来問題であった比較的
小規模の対象についても、装置、設備の兼用によって、
比較的有利に浄化できる。しかも立地条件、敷地面積の
制約、恒久設備において発生しがちな許容限度をめぐっ
ての住民の反対、環境問題を回避して、浄化処理ができ
る。これは炭素質吸着体の低温酸化再生装置の軽量小
型、排気を利用できる低温運転の利点を活かし、しかも
多くの環境処理がかかえるように、技術の適用の可否を
現場実用試験で速やかに決定し、かつ実運転を可能にす
るものである。水の清澄化は難しく費用がかかるもので
あるが、低温再生により、濁水の活性炭処理が可能にな
ったことにより環境浄化が容易になる利点を生ずる。活
性炭は従来微粒子懸濁液には使用できないものとされて
いたにかかわらず、使用可能になったものである。 吸
着剤再生条件はベントナイトや粘土微粒子等鉱物質焼結
温度より低温、短時間が好ましく、吸着した炭素性物
質、可燃性物質その他の低温燃焼、分解、脱離に充分な
温度で空気または遊離酸素を含む雰囲気あるいは燃焼ガ
ス、エンジン排気等を使用した流動化低温酸化再生で炭
素累積もなく多孔性を保ち、目的を達することができる
ことがわかった。なお内燃機、燃焼器を問わず、着火初
期の煤発生時の排気はタール物質を含むおそれがあるの
で浄化系導入または放出とするのが好ましいが、低温再
生条件が延長される他には問題は少ない。即ちエンジン
排気、燃焼器等の排ガス利用による活性炭低温再生はそ
の熱利用になるだけでなく、装置の設計によって排気、
排水浄化にも利用することができる。このような場合に
は後段に活性炭の新しい空気との接触により、仕上げす
るのが好ましい、ここに使用された空気は内部循環空気
として再生の温度調節に使用し、調節に利用するのが容
易である。
When the deterioration of the activated carbon or the carbonaceous adsorbent as an adsorption purification agent is small, it can be discarded or reused by conventional high-temperature regeneration, but in sewage treatment, especially in direct treatment, the life is generally short, and preliminary microbial treatment is carried out. However, it is difficult to select operating conditions and operate because it requires a long aeration tank and a large aeration tank, so purification of small-scale water pools has been difficult due to the difficulty of wastewater treatment. It was difficult for me. With activated carbon purification, the operation is simple, the odor of sewage can be easily removed, low temperature oxidation regeneration can be advantageously used repeatedly, and it can be easily regenerated on site. Power, heat, and exhaust can be used in on-vehicle equipment and engine generators, and cooling and exhaust purification can be facilitated by using target wastewater. That is, it is natural that this type of portable purification device can be used for large-scale objects, but even for relatively small-scale objects, which was a problem in the past, due to the combined use of the device and equipment,
It can be cleaned relatively advantageously. Moreover, it is possible to carry out purification treatment while avoiding site conditions, site area restrictions, residents' opposition to the allowable limit that tends to occur with permanent equipment, and environmental problems. This utilizes the advantages of low temperature and small size of the low temperature oxidation regenerator of carbonaceous adsorbent and low temperature operation that can use exhaust gas.Moreover, whether or not to apply the technology is promptly determined by the field practical test so that many environmental treatments can be taken. It also enables actual operation. Clarification of water is difficult and expensive, but low-temperature regeneration has the advantage of facilitating environmental purification by allowing activated carbon treatment of muddy water. Activated carbon is now available, although it was previously considered unusable for particulate suspensions. The adsorbent regeneration conditions are preferably lower than the sintering temperature of mineral substances such as bentonite and clay fine particles, and for a short time, and the air or free oxygen is at a temperature sufficient for low temperature combustion, decomposition and desorption of adsorbed carbonaceous substances, combustible substances and others. It was found that the purpose can be achieved by maintaining the porosity without carbon accumulation by fluidized low temperature oxidation regeneration using an atmosphere containing, or combustion gas, engine exhaust, etc. Note that regardless of the internal combustion engine or the combustor, the exhaust gas at the time of soot generation in the initial stage of ignition may contain tar substances, so it is preferable to introduce or release the purification system, but there is a problem except that the low temperature regeneration condition is extended. Few. That is, low temperature regeneration of activated carbon by using exhaust gas from engine exhaust, combustor, etc. is not only used as heat but also exhausted by the design of the device.
It can also be used for wastewater purification. In such a case, it is preferable to finish by contacting the activated carbon with fresh air in the subsequent stage. The air used here is used as internal circulation air for temperature control of regeneration and is easy to use for adjustment. is there.

【0008】吸着剤は硬質、高強度、高密度の粒状炭が
泥水との分離の点で便利である。中性pH域で使用する
のが吸着効率が良い、掘削泥水は使用は弱アルカリ性側
なので、在来の活性炭と異なり鉄分を含む活性炭であっ
てもよい。磁性回収を容易にするために磁性酸化鉄ある
いはフェライトを含むものであってもよい。活性炭自体
は弱酸性であってよい、このようなことは従来知られて
いなかった。有害金属等の除去にはフェライト、あるい
はフェライト形成物質を使用し磁性分離と遠心分離を併
用して分離できる。これは粉末炭においても同様であ
る。吸着条件と菌増殖条件とが一致しやすいので、その
場合には処理後の殺菌剤かアルカリ添加が必要になる。
低温酸化再生の例は発明者のさきの特許103141
8,特願63−294945および63−315146
に詳細に示されているが泥水、土質の鉄分を含む低融点
微粒子が共存する可能性があるので特に500−550
℃付近以下特に500℃以下350℃程度以上の酸化再
生が好ましく、再生雰囲気は空気または燃焼ガスで激し
い燃焼にならない条件で流動層、撹拌または振動流動層
によるのが適当である。再生前または後に再生炭は硫酸
または塩酸、亜硫酸またはそれらの含有物等での酸処理
を毎回または必要の都度行うのが好ましい。吸着は粒状
活性の流動吸着層によるのが懸濁粒子による吸着層閉
塞、吸着剤粒子の表面剥離の見地から適当である。分離
土砂からの分離水のように微粒子の少ない水では粉末活
性炭または粉末の炭素性吸着剤を使用することができ
る。無機質濃度が高くなれば、分離する。このように吸
着浄化装置を保有すると泥または泥水からの分離水だけ
でなく。工業用水、下水、雨水、再生水、一般排水を処
理して掘削用泥水を用水として使用することができる。
このように掘削用泥水に直接吸着剤を接触できる理由は
泥水にCMCその他が含まれこれが微粒子粒径を見かけ
上粗大にしているためと、使用されている薬剤例えばC
MC、CMC系のいわゆるポリマー化合物はペントナイ
トや粘土、シルト微粒子に吸着され吸着平衡にあり、液
中の遊離溶解量が少なく、一方除去したい不純物、微生
物等は多くは液中に存在しまたは粒子表面に弱吸着して
いて、有限時間の消毒反応または吸着操作では不純物が
優先的に除去されるためと推測される。
As the adsorbent, hard, high-strength, high-density granular coal is convenient in terms of separation from muddy water. Unlike conventional activated carbon, activated carbon containing iron may be used, since drilling mud is used in the neutral pH range because of its good adsorption efficiency and drilling mud is used on the weakly alkaline side. It may contain magnetic iron oxide or ferrite in order to facilitate magnetic recovery. The activated carbon itself may be weakly acidic, which has not previously been known. To remove harmful metals and the like, ferrite or a ferrite-forming substance is used, and magnetic separation and centrifugation can be used in combination for separation. This also applies to powdered coal. Since the adsorption conditions and the bacterial growth conditions tend to match, in that case, it is necessary to add a bactericide or alkali after the treatment.
An example of low temperature oxidative regeneration is the inventor's patent 103141.
8, Japanese Patent Applications 63-294945 and 63-315146
However, since it is possible that coexistence of muddy water and fine particles of low melting point containing iron in the soil, coexist with 500-550.
Oxidation and regeneration at temperatures of around ℃ or below, particularly 500 ° C. or above and about 350 ° C. or above are preferable, and it is appropriate to use a fluidized bed, stirring or vibrating fluidized bed as a regenerating atmosphere under the condition that air or combustion gas does not violently combust. Before or after regeneration, the regenerated carbon is preferably subjected to acid treatment with sulfuric acid, hydrochloric acid, sulfurous acid, or a substance containing them, each time or whenever necessary. Adsorption is preferably performed with a fluidized bed having a granular activity from the viewpoints of clogging of the adsorption layer with suspended particles and surface separation of adsorbent particles. Powdered activated carbon or a powdered carbonaceous adsorbent can be used in water with a small amount of fine particles such as separated water from separated sediment. If the mineral concentration is high, it will separate. Thus possessing an adsorption purification device not only mud or water separated from muddy water. Industrial water, sewage, rainwater, reclaimed water, general wastewater can be treated and drilling mud can be used as water.
The reason why the adsorbent can be brought into direct contact with the drilling mud is that the mud contains CMC and the like, which makes the particle size of the fine particles appearing to be coarse, and the used chemical such as C
MC, CMC-based so-called polymer compounds are adsorbed to pentonite, clay, and silt particles and are in adsorption equilibrium, and the amount of free dissolution in the liquid is small, while impurities and microorganisms to be removed are mostly present in the liquid or particles. It is presumed that the impurities are weakly adsorbed on the surface and impurities are preferentially removed in the sterilization reaction or adsorption operation for a limited time.

【0009】掘削土から混入する有害物を監視し、処理
することによって実質的に全量再利用できる。これを実
行するために個別業者は従来行ってきた良質泥水野処理
に加えて汚泥相当品の処理を行うことができる。小規模
複数の掘削現場と処理基地あるいは規模の大きい現場に
おける複数の掘削機の泥水処理を輸送システムによって
総合的に結合して物質の授受を行い、廃棄物を最小にし
た処理条件、装置、泥水中の微粒子条件の調節、改善、
比重等の規格制御を行うことができる。監視に公知の計
測器、簡易分析手段が使えるが、揮発性有害物でも単純
な曝気では気相への充分なストリッピングは困難であ
る。したがって泥または泥水に撹拌等で剪断力をかけそ
のチキソトロピー有効時間内に通気または曝気処理して
その気相を分析し、または除去処理とする。地下水の放
射能汚染の可能性は少ないが万一他現場への汚染が波及
すると回復困難であるから、貯蔵基地には放射線検出器
例えばガイガーカウンター、またはバッチ線量計等の設
置が好ましい。泥水処理後の吸着用炭素質の掘削用泥水
への微量混入は掘削環境汚染に無関係であることは活性
炭処理の利点である。炭素質の土壌への混入は寧ろ有益
であるとされていること、吸着有害物は微生物分解によ
って無害化されることによる。汚泥、掘削泥水に混入す
る可能性があるものの中で最も可能性があるのは、有機
塩素化合物なかでもトリクロロエチレン等の溶剤成分で
ある。(それらはまた微量のアミン、フェノールを伴う
がこれらは分解消失するとみられる。)掘削泥水は多少
ともゲル化、凝集傾向があるので、分析の場合に単にバ
ブリングによって追い出し、捕集あるいは分析では検出
力が劣る。したがって本発明ではポンプ、撹拌機、サイ
クロン付近に給気しそれらの解砕分散のチキソトロピー
有効時間内に気液接触して、気相に塩素化合物を分配し
た後ね抽気し、これを分析し、または濃縮分析する。分
析機器としてはガスクロマトグラフ、ハロゲンディテク
ター、検知管等公知の方法を使用できる。
By monitoring and treating harmful substances mixed from excavated soil, substantially all of them can be reused. In order to carry out this, individual contractors can treat sludge equivalent products in addition to the conventional high-quality sludge treatment. The treatment conditions, equipment, and muddy water that minimize waste by combining the muddy water treatment of multiple small-scale excavation sites and treatment bases or multiple excavators at a large-scale site through a transportation system to exchange substances. Adjustment and improvement of fine particle conditions in
Standard control such as specific gravity can be performed. Well-known measuring instruments and simple analytical means can be used for monitoring, but it is difficult to sufficiently strip volatile harmful substances into the gas phase by simple aeration. Therefore, a shearing force is applied to mud or muddy water by stirring or the like, and aeration or aeration is performed within the thixotropy effective time to analyze the gas phase, or the removal treatment is performed. Although there is little possibility of radioactive contamination of groundwater, it is difficult to recover if contamination to other sites spreads. Therefore, it is preferable to install a radiation detector such as a Geiger counter or a batch dosimeter at the storage base. It is an advantage of the activated carbon treatment that the trace amount of adsorbed carbonaceous matter in the drilling mud after the mud treatment is unrelated to the drilling environmental pollution. Contamination of carbonaceous soil is said to be beneficial, and adsorbed harmful substances are rendered harmless by microbial decomposition. Among the organic chlorine compounds that may be mixed in sludge and drilling mud, the solvent components such as trichlorethylene are the most likely. (They are also accompanied by trace amounts of amines and phenols, but these are likely to decompose and disappear.) Since drilling mud tends to gel and flocculate to some extent, it is simply removed by bubbling in the case of analysis and detected by collection or analysis. Inferior in power. Therefore, in the present invention, a pump, a stirrer, gas is supplied to the vicinity of a cyclone, gas-liquid contact is made within the thixotropic effective time of disintegration and dispersion thereof, and after the chlorine compound is distributed in the gas phase, the gas is extracted and analyzed. Or concentrate analysis. As an analytical instrument, a known method such as a gas chromatograph, a halogen detector or a detector tube can be used.

【0010】土砂の機械分離困難の一因であった泥水、
安定化泥水中の砂、シルトの不規則な濃度変動に対し
て、これらを振動篩、制御された液体サイクロン、中間
ポンプ機能、沈降槽、改良脱水篩、微粒子を分離した土
砂、シルトの貯蔵機能、微粒子除去機能、微粒子の濃縮
貯蔵機能、その泥水への還元機能の全部またはそれらか
ら選ばれた機能の重畳組合せによって対応可能にする。
その主体になるものはリサイクルまたは脱水の障害に
なる微粒子の分離とその再利用、濃度、比重の調整機能
と消毒、有害物除去、輸送、貯蔵機能の組合せである。
処理によって得た泥水は比重、粘性、濾過性、導電率等
の特性を処理装置自身、輸送手段または現場装置で掘削
の規格、現場状況に適合し易いように調整し、または出
荷時および掘削現場で調整可能であり、融通性を確保す
るもので、このような発想は近代の一定水準の原料を使
用して一定規格の工業製品を出荷するやり方からは出て
来ない。すなわち多様な掘削現場からの多様な排出物を
比較的簡単な工程で、浄化処理もして、さらに多様な要
求を持つ掘削現場の要求に対応する系として本発明の特
徴がある。勿論個別業者が自己の現場処理設備と貯蔵基
地を持っても良い。本発明はこのために、例えば入り口
高濃度では2段以上にサイクロンを通過し、または2段
と同等の能力を持つ軸流サイクロン付加のサイクロンを
使用できる。2段以降入り口低濃度の時、並列に使用す
ると処理能力が増加し、動力は節約できるので特に車載
設備に適している。サイクロン操作は出口比重により自
動または手動で切り替えできる。サイクロンは単数また
は複数の組合せであってよい。1つの組合せは直径の異
なるものを含んでいてよい。シルト含量を制御には比較
的小径のサイクロンがエネルギー節約の見地から有利で
あり、主流と別にポンプ、小径サイクロンを設けて常時
または必要時使用することができる。同一処理量を得る
ためには小型小径のサイクロンはより多数を要する。
また動力節約のために微粒子分離に特願平4−3028
08の図3記載の流動装置を利用してよい。
Muddy water, which contributed to the difficulty of mechanical separation of soil and sand,
For irregular concentration fluctuations of sand and silt in stabilized mud, vibrating sieve, controlled liquid cyclone, intermediate pump function, settling tank, improved dewatering sieve, sediment separating fine particles, silt storage function , A function of removing fine particles, a function of concentrating and storing fine particles, a function of reducing the same to muddy water, or a combination of functions selected from those functions can be used.
The main components are the combination of separation and reuse of fine particles that hinder recycling or dehydration, the function of adjusting concentration and specific gravity and disinfection, removal of harmful substances, transportation and storage functions.
The muddy water obtained by the treatment is adjusted in characteristics such as specific gravity, viscosity, filterability, and electrical conductivity so that it can be easily adapted to the excavation standard and the situation at the treatment equipment itself, transportation means or on-site equipment, or at the time of shipment and at the excavation site. It is adjustable and secures flexibility, and such an idea does not emerge from the way of shipping industrial products of a certain standard using a certain level of modern raw materials. That is, the characteristic of the present invention is a system that responds to the demands of excavation sites that have various requirements by performing various purification processes on various emissions from various excavation sites with a relatively simple process. Of course, individual companies may have their own on-site processing equipment and storage base. For this purpose, the present invention can use, for example, a cyclone with an axial-flow cyclone that passes through the cyclone in two or more stages at the high concentration of the inlet or has the same ability as the two stages. When the concentration is low at the entrance of the second and subsequent stages, the parallel processing can increase the processing capacity and save the power. The cyclone operation can be switched automatically or manually depending on the outlet specific gravity. Cyclones may be single or multiple combinations. One combination may include those with different diameters. A cyclone having a relatively small diameter is advantageous for controlling the silt content from the viewpoint of energy saving, and a pump and a small cyclone can be provided separately from the main stream and can be used all the time or when necessary. More small and small diameter cyclones are required to obtain the same throughput.
In order to save power, Japanese Patent Application No. 4-3028 is used for separating fine particles.
The flow device described in FIG. 3 of 08 may be used.

【0011】再利用する泥水の特性例えば比重は処理
後、処理貯蔵設備においては、追加の調整余地のある性
状にするのが好ましい。これは複数の掘削現場におい
て、必要とされる泥水の性状が多様であるからである。
この点も従来リサイクルが行われ難かった一つの原因で
あると考えられた。後でベントナイトや安定剤、分散剤
を添加し、必要な性状に調整できる。これは多数の実験
で得た新しい知見であって、これにより多数の新しい掘
削現場にリサイクル泥水を輸送し利用することが可能に
なったのである。再使用可能の証明は例えば掘削壁の超
音波測定、観察と記録により、従来法の調合新泥水と同
様であった。逆に本発明による泥水の供給制御系が最近
の超音波等による測定を利用した掘削制御に有用であ
る。さもなければ、このような測定により膨大な量の廃
棄物を発生することになる。貯蔵泥水の循環、曝気によ
る生化学処理、腐敗の防止、プランクトン等微生物の増
殖抑制は破傷風菌等による事故を防止し病原微生物の増
殖を抑制する。これらは重要な知見である。泥水循環の
阻害物あるいは老廃物の蓄積障害がない理由は、泥水と
分離土砂の間に不純物、老廃物の吸着分配の疑似平衡が
成立しているためと考えられる。また掘削現場では地盤
へ泥水が少量ずつ漏出し品質が平衡するので、有害物、
病原菌等に関する掘削用泥水の衛生管理が必要である。
従来このようなことが考慮されず、従って多数回循環す
るに足る泥水品質の衛生的考慮がなされた例はなかっ
た。掘削技術的には再利用泥水中の砂分(安定液管理指
針の試験法による粒径が74ミクロン以上のもの)3%
以下特に0.5〜1%以下が好ましい。一方本発明によ
る酸性物質は炭酸ガスまたはフミン酸系が自然に存在す
るもで最も安全であるが、少量ならば蓚酸、酢酸、の有
機酸処理および導電性との関連で使用が制約されるが塩
酸または硫酸、燐酸とその系統の酸性化合物を注意して
使用できる。量は液体サイクロンとの併用によって少量
で足りる利点がある。従ってポリアクリルアミドのよう
な沈降用薬剤等と異なり溶解分は衛生上全く無害であ
る。アンモニア、硝酸の使用は衛生上好ましくない。本
発明によって地下への漏出による地下水汚染のない利点
がある。操作条件としてのpHは、土砂分離、消毒にお
ける対象微生物と使用薬剤、吸着浄化、生化学的浄化、
泥水としての掘削現場での使用条件等によってそれぞれ
最適条件が異なる。従って自由にpHの上下制御ができ
ることが好ましいのであって、サイクロンまたは管路に
おける混合器の複数の組合せによって必要に応じ、矛盾
した処理または貯蔵条件の自由な変更と制御が可能にな
る。処理時間が必要な場合にはpHを上下する装置間に
処理装置あるいは槽をはさめばよい。槽は時に大型貯槽
であり得る。
It is preferable that the characteristics such as the specific gravity of the muddy water to be reused after treatment have a property with additional room for adjustment in the treatment and storage facility. This is because the required properties of mud water are diverse at multiple excavation sites.
This point was also considered to be one of the reasons why it was difficult to recycle conventionally. After that, bentonite, a stabilizer, and a dispersant can be added to adjust the properties required. This is a new finding obtained from many experiments, which has made it possible to transport and utilize recycled mud in many new drilling sites. The proof of reusability was similar to the conventional prepared fresh mud, for example by ultrasonic measurement, observation and recording of the excavated wall. On the contrary, the mud supply control system according to the present invention is useful for excavation control utilizing recent measurement by ultrasonic waves or the like. Otherwise, such measurements would generate a huge amount of waste. Circulation of stored mud water, biochemical treatment by aeration, prevention of spoilage, and suppression of growth of microorganisms such as plankton prevent accidents caused by tetanus bacteria and suppress the growth of pathogenic microorganisms. These are important findings. The reason why there is no obstruction of mud circulation or accumulation of wastes is considered to be that a pseudo equilibrium of adsorption distribution of impurities and wastes is established between the mud and the separated sediment. At the excavation site, muddy water leaks little by little to the ground and the quality is balanced, so harmful substances,
It is necessary to manage the mud for excavation concerning pathogenic bacteria.
Conventionally, such a case has not been taken into consideration, and therefore, there has been no example in which the quality of muddy water enough to be circulated many times has been considered hygienically. In terms of excavation technology, sand content in recycled mud water (particle size of 74 microns or more according to the test method of stable liquid management guidelines) 3%
Especially preferably 0.5 to 1% or less. On the other hand, the acidic substance according to the present invention is the safest because carbon dioxide gas or humic acid type is naturally present, but if the amount is small, its use is restricted in relation to oxalic acid, acetic acid, organic acid treatment and conductivity. Hydrochloric acid or sulfuric acid, phosphoric acid and acidic compounds of its family can be used with caution. There is an advantage that a small amount is sufficient when used in combination with a liquid cyclone. Therefore, unlike sedimentation agents such as polyacrylamide, dissolved components are completely harmless in terms of hygiene. The use of ammonia and nitric acid is not hygienic. The present invention has the advantage that there is no groundwater contamination due to underground leakage. The pH as an operating condition depends on the target microorganisms and chemicals used in soil separation and disinfection, adsorption purification, biochemical purification,
The optimum conditions differ depending on the conditions of use as muddy water at the excavation site. Therefore, it is desirable to be able to freely control the up and down of the pH, and multiple combinations of mixers in cyclones or conduits allow for the free modification and control of inconsistent processing or storage conditions as needed. If a treatment time is required, a treatment device or a tank may be inserted between the devices for raising and lowering the pH. The tank can sometimes be a large reservoir.

【0012】殺菌は加熱によっても達成することができ
る。炭酸ガス等で処理したベントナイト安定液を加熱
し、または30−60分間煮沸処理しても相分離、変質
はなかった。殺菌は60℃以上、特に62−65℃、5
−30分以上の病原菌消毒低温殺菌、ないし90−10
0℃の比較的高温での処理もできる。ベントナイト泥水
の場合には固体粒子を含むにかかわらず、高伝熱の薄膜
流下型熱交換器を利用できた。さらに振動付加すればチ
キソトロピーにより液分配、物質移動、伝熱が改善さ
れ、スケール形成を防ぎ、圧損失がない。管内壁に螺旋
を挿入し、小動力で螺旋を振動させることができる。車
載の軽量装置としても有利に使用できる。
Sterilization can also be achieved by heating. There was no phase separation or alteration even when the bentonite stabilizer treated with carbon dioxide gas or the like was heated or boiled for 30 to 60 minutes. Sterilization is 60 ℃ or higher, especially 62-65 ℃, 5
-30 minutes or more pathogen disinfection pasteurization or 90-10
Processing at a relatively high temperature of 0 ° C is also possible. In the case of bentonite muddy water, a thin-film flow-through heat exchanger with high heat transfer could be used regardless of containing solid particles. With additional vibration, thixotropy improves liquid distribution, mass transfer, and heat transfer, prevents scale formation, and eliminates pressure loss. A helix can be inserted into the inner wall of the tube to vibrate the helix with a small amount of power. It can also be used advantageously as a lightweight device for vehicles.

【0013】コンパクト装置を組む場合に、泥水または
泥供給機構、振動篩、槽、ポンプ、サイクロンと土砂ま
たは泥水処理用材料供給装置とからなる装置を1つまた
は2つ以上の単位にまとめることができる。これは中間
貯槽をポンプ作動にさしつかえない程度に小容量にする
こと、代りにポンプ、サイクロン等を大能力多段にする
ことによって達成できる。槽の水位自動制御の装備が便
利である。この場合に耐摩耗性かつ高性能で部品補修、
製作、交換が簡単なサイクロンが有利で、先の発明であ
る特願平4−302808の図17、18が適してい
る。特に摩耗損耗が激しいサイクロン下出口管の差し込
み交換構造が便利になる。 水または泥水供給機構、振
動篩、槽、ポンプ、吸着装置と炭素質吸着体または無機
吸着体の流動低温酸化再生装置とからなる装置を1つま
たは2つ以上の単位にまとめた処理装置は土砂分離装置
と並べて組合わせて掘削用泥水処理浄化装置として使用
できる。浚渫泥水の処理装置、汚濁の激しい水系の浄化
に使用できる。
When assembling a compact device, it is possible to combine the muddy water or mud supply mechanism, the vibrating screen, the tank, the pump, the cyclone and the material supply device for the earth and sand or muddy water treatment into one or more units. it can. This can be achieved by reducing the capacity of the intermediate storage tank to such an extent that the pump cannot be operated, and instead, by increasing the capacity of the pump, cyclone, etc. in multiple stages. It is convenient to equip the automatic water level control of the tank. In this case, wear-resistant and high-performance parts repair,
A cyclone that is easy to manufacture and replace is advantageous, and FIGS. 17 and 18 of Japanese Patent Application No. 4-302808, which is the previous invention, are suitable. In particular, it becomes convenient to insert and replace the cyclone lower outlet pipe, which is heavily worn and worn. The treatment device in which one or more units consisting of a water or muddy water supply mechanism, a vibrating screen, a tank, a pump, an adsorbing device and a low-temperature oxidation regenerating device for a carbonaceous adsorbent or an inorganic adsorbent are combined is earth and sand. It can be used as a mud treatment and purification device for excavation by combining it with a separation device. It can be used for the treatment of dredged mud water and the purification of water systems with severe pollution.

【0014】これら装置をコンパクトに車台に積載して
固定し、または取外し可能に固定した処理装置は現場
に、駐車し仮固定して作業でき機動性を発揮できる。処
理装置に泥水を導入する作業時、滞留する泥水重量分の
荷重増加があり、しかも操業による有害な振動、車台傾
き等を避けるのが好ましい。このため固定用あるいは支
持用アームを車台下あるいは側面に張出して装置を支持
するのがよい。クレーン車等と類似の引込みアームと脚
台の組合わせが振動防止によい。特に振動篩は車台から
持ち上げて負荷を支持アームに負わせて車両への悪影響
を避けられる。車載エンジンを動力源、熱源または再生
用流動化ガスとする装置は燃焼ガス発生装置が不要にな
るか、小型化できる。また活性炭、炭素質吸着体の低温
酸化再生装置使用に廃熱をも有効利用できる。車載装置
による現場試験で使用可能が示されれば、直ちに必要な
ユニット装置を架台または槽上に移して据え付け使用し
空車は帰すことができる。トレーラーはそのまま使用状
態に置くことができる。従来多くの試験が試料を持ち帰
り実験室試験、中間試験したが、現場に機材を運び現場
試験に至る手続き、出費と時間を省き、企業化リスクを
避ける。なお、分離された微粒子を粗粒子分離段階にあ
るサイクロンの供給側に戻すと、その前置サイクロンに
おける粗粒子の分離性能も低下させることがわかった。
これは液の比重を上げ、沈降速度を下げるためと考えら
れる。したがって別のサイクロンまたは運転サイクルへ
の簡単に切り替えて、分離濃縮するのが好ましい。
The processing device in which these devices are compactly loaded and fixed on the chassis or detachably fixed can be parked on site and temporarily fixed for work, thereby exhibiting mobility. During the work of introducing muddy water into the processing apparatus, there is an increase in the load due to the weight of the muddy water that accumulates, and it is preferable to avoid harmful vibrations, tilting of the chassis, etc. due to operation. For this reason, it is preferable that the fixing or supporting arm is extended below the chassis or on the side surface to support the device. The combination of the retractable arm and the footrest, which is similar to a crane truck, is good for vibration prevention. In particular, the vibrating screen can be lifted from the chassis to impose a load on the support arm to avoid adverse effects on the vehicle. A device that uses an in-vehicle engine as a power source, a heat source, or a fluidizing gas for regeneration does not require a combustion gas generator or can be downsized. In addition, waste heat can be effectively used for the low-temperature oxidation regeneration device for activated carbon and carbonaceous adsorbent. If a field test with an in-vehicle device indicates that the device can be used, the required unit device can be immediately moved to a stand or tank for installation, and the empty vehicle can be returned. The trailer can be left in use. Conventionally, many tests have brought back samples to carry out laboratory tests and intermediate tests, but the procedure to bring the equipment to the site and carry out the field test, save money and time, and avoid the risk of commercialization. It has been found that when the separated fine particles are returned to the supply side of the cyclone in the coarse particle separation stage, the separation performance of the coarse particles in the preceding cyclone also deteriorates.
This is considered to increase the specific gravity of the liquid and decrease the sedimentation speed. Therefore, it is preferable to simply switch to another cyclone or operating cycle to separate and concentrate.

【0015】現場打ちセメント杭のアースドリル工法に
おける安定化泥水はベントナイト微粒子、粘性成分であ
るCMC類、分散剤等を含み、濾過脱水の場合に濾材の
目詰まりが激しく作業中に含まれてくる土砂、シルトの
分離が困難である。しかし微粒子を本発明により水側に
分離することによって、濾過あるいは遠心脱水が容易に
なり、簡易な堆積脱水か可能になり、真空脱水も容易に
なった。従って固化剤使用の減量、または不要になっ
た。
Stabilized mud in the ground drilling method for cast-in-place cement piles contains bentonite fine particles, CMCs that are viscous components, dispersants, etc., and in the case of filtration and dehydration, the clogging of the filter medium is severely included in the work. Separation of soil and silt is difficult. However, by separating the fine particles on the water side according to the present invention, filtration or centrifugal dehydration was facilitated, simple sedimentation dehydration was possible, and vacuum dehydration was also facilitated. Therefore, the amount of solidifying agent used is reduced or unnecessary.

【0016】分離泥または土砂に付着した有機物は34
0〜500℃の流動加熱で有機炭素性有害物が分解また
は分離され、炭素質残渣を残す、この残渣は必要ならば
同温度空気または遊離酸素を含む雰囲気中に維持するこ
とによって、低温燃焼し、さらに無害化をはかり同時に
燃焼熱を発生して、処理用熱源にあてることができる。
低温処理であるから装置構成材質は、高価な耐熱材料を
必要とせず、大型の装置が比較的容易に製作でき、熱収
支をとるために大量集積による処理が有機性汚泥処理を
容易にする。操作条件と装置は活性炭等の炭素質吸着剤
再生と類似する。低温燃焼は価値の低い煙突、焼却炉、
エンジン排ガスを利用できる利点がある。
Organic matter adhering to the separated mud or earth and sand is 34
Organic carbon harmful substances are decomposed or separated by fluidized heating at 0 to 500 ° C., and a carbonaceous residue is left. This residue is burned at a low temperature by maintaining it at the same temperature in air or an atmosphere containing free oxygen. In addition, the heat of combustion can be generated at the same time by making it harmless and applied to the heat source for processing.
Since it is a low-temperature treatment, the equipment constituent material does not require an expensive heat-resistant material, a large-sized equipment can be manufactured relatively easily, and the treatment by mass accumulation facilitates the organic sludge treatment because of the heat balance. Operating conditions and equipment are similar to carbonaceous adsorbent regeneration such as activated carbon. Low temperature combustion is a low value chimney, incinerator,
There is an advantage that engine exhaust gas can be used.

【0017】[0017]

【実施例1】比重1.42で土砂を含む廃ベントナイト
汚泥に強撹拌しつつ炭酸ガスを吹き込みpH8として土
砂を沈降させ、比重1.05の再生ベントナイト安定液
100mlを得た。これに塩素酸ソーダ13%液0.1
mlを加え常温で強撹拌した。120分後、真空濾過に
よって試料液を得、市販寒天培養基によって24時間培
養試験を行い、コロニー数によって、消毒剤不添加試料
液と比較した。消毒液添加物はいずれも未処理物に比し
減少または消失が認められた。過酸化水素漂白剤の添加
撹拌、オゾン化空気を撹拌しつつ相当量を吹き込んでも
同様の効果を認めた。炭酸ガスの代りにフミン酸類酢
酸、蓚酸、無機酸、酸性塩類によるpH調整でも同様の
結果が得られた。強撹拌で剪断力を与えつつ消毒液を添
加すればベントナイト等の微細粒子の消毒剤に対する無
駄な分解が避けられ、pHアルカリ側で分解速度が遅く
なり、殺菌または増殖抑制作用が持続した。[対照例]
炭酸ガス処理またはpH調整を強撹拌下で行わない汚
泥または泥水は撹拌が不良のため、pH調整は難しく、
処理結果不安定、不充分であった。
Example 1 Carbon dioxide gas was blown into a waste bentonite sludge containing specific gravity of 1.42 and containing earth and sand while vigorous stirring to set the pH of the sediment to sediment, and 100 ml of a regenerated bentonite stabilizer having a specific gravity of 1.05 was obtained. Sodium chlorate 13% solution 0.1
ml was added and the mixture was vigorously stirred at room temperature. After 120 minutes, a sample solution was obtained by vacuum filtration, and a 24-hour culture test was performed using a commercially available agar culture medium, and compared with the sample solution containing no disinfectant according to the number of colonies. The disinfectant additive was decreased or disappeared compared with the untreated product. The same effect was observed by adding a hydrogen peroxide bleaching agent and agitating a considerable amount of agitated air. Similar results were obtained by adjusting the pH with humic acids acetic acid, oxalic acid, inorganic acids, and acidic salts instead of carbon dioxide. When the disinfectant was added while applying shearing force with strong stirring, wasteful decomposition of fine particles such as bentonite with respect to the disinfectant was avoided, the decomposition rate slowed on the pH alkaline side, and the sterilization or growth inhibitory action was maintained. [Control example]
If sludge or muddy water that does not undergo carbon dioxide treatment or pH adjustment under strong stirring is poorly stirred, pH adjustment is difficult,
The treatment result was unstable and insufficient.

【0018】[0018]

【実施例2】実施例1において、COD指標としてメチ
レンブルー溶液(1mg相当)を加え同様に試験し、p
H中性付近で脱色することができた。ただし染料は粒子
に吸着され易く、その脱色操作は酸性側、40〜45℃
付近で速やかであった。従ってCOD物質含有の泥水、
あるいは土砂では中性付近あるいは弱酸性側で処理して
再びアルカリ側に戻すのが適当である。pH調整は中性
付近の操作で足り、本発明の混合、反応操作を使用すれ
ば、極少量の薬剤添加でよい。ゲル化の影響なく、アル
カリ性カルシウム、マグネシウム化合物を使用し自由に
調整できる。[対照例] 実施例1、2において反応槽
を大きくすると同条件では消毒または反応率が低下し、
pH調整薬剤と撹拌動力増加し不安定であった。
Example 2 A methylene blue solution (corresponding to 1 mg) was added as a COD index in Example 1, and the same test was conducted.
It was possible to decolorize near H neutrality. However, the dye is easily adsorbed on the particles, and the decolorizing operation is on the acidic side, 40 to 45 ° C.
It was prompt in the vicinity. Therefore, muddy water containing COD substances,
Alternatively, it is appropriate to treat the earth and sand near neutral or weakly acidic side and return it to the alkaline side again. The pH adjustment may be carried out in the vicinity of neutrality, and a very small amount of the drug may be added if the mixing and reaction operations of the present invention are used. It can be adjusted freely using alkaline calcium and magnesium compounds without the effect of gelation. [Comparative Example] In Examples 1 and 2, when the reaction tank was enlarged, the disinfection or reaction rate decreased under the same conditions.
It was unstable because the pH adjusting agent and stirring power increased.

【0019】[0019]

【実施例3】泥水または汚泥から土砂を分離した泥水、
あるいは土砂から分離した水を、それぞれ200ml、
ビーカーにとり、pH8.5以下で石炭系球状活性炭1
グラム加えて撹拌処理したところ濾過液のCOD120
ppmのものが40ppmに浄化された。得られた廃活
性炭は発明者のさきの発明になる特公昭55−2241
0号の例にしたがい空気により350〜500℃、で3
0分流動低温酸化再生し、稀薄酸処理併用によって再生
できた。接触時間が限定時間内の接触では泥微粒子内
部、活性炭内部のpHは泥水の液相の浄化に必ずしも関
係しないことを示した。これは泥水処理をコスト面で可
能にする
[Example 3] Muddy water obtained by separating soil from mud or sludge,
Or 200 ml of water separated from the earth and sand,
In a beaker, a coal-based spherical activated carbon with a pH of 8.5 or less 1
After adding gram and stirring treatment, COD120 of the filtrate
The thing of ppm was purified to 40 ppm. The waste activated carbon obtained is the invention of the inventor of the present invention.
According to the No. 0 example, with air at 350-500 ℃, 3
It was regenerated by 0 minute fluidized low temperature oxidation regeneration and dilute acid treatment. It was shown that the pH within the mud particles and activated carbon is not necessarily related to the purification of the liquid phase of the mud water when the contact time is within the limited time. This makes muddy water treatment cost-effective

【0020】[0020]

【実施例4】図1は本発明による泥水処理に適した装置
である。掘削穴から注入コンクリートと置換して排出さ
れた泥水は現場の処理装置に入り、廃棄泥水または廃泥
あるいは沈降含水土砂は輸送手段たとえば配管、タンク
車、バキューム車等によって掘削現場装置、車載装置ま
たは貯蔵処理基地装置41に輸送され、スラリーポンプ
等で供給管1から分離槽2にはいり、土砂は槽底流出口
から脱水振動篩9上に供給される。2の溢流はガイド3
から分配器4を経て振動篩5上に供給され、小石や雑物
を分離後、槽区画51に入る。槽2の制御は本発明の図
3、図6、図7によるのが適当である。土砂は槽底に沈
降し、邪魔板である傘57付きの水中サンドポンプ6に
より泥水とともに管46からサイクロン7に入る。分離
土砂流は例えば本発明または発明者の先の特願平4−3
61818で提案の流出制御装置8を経て脱水振動篩9
によって脱水され槽外に排出される。沈降物の流動性は
格子状振動体45によって補助することができる。 溢
流泥水は溢流口から槽区画52に落下する。土砂分を含
み易い条件の作業では、サイクロン7の上流は比重計1
0によって測定して流出口14から自動または手動のス
イング型切り替え装置11により手動または自動で切り
替え、比重によって区別して、区画51または52に入
れる。処理能力の過不足により同様11で切り替えて5
2に入れることもできる。区画52のポンプ16は47
から第2段サイクロン17へと泥水を送り下流は調節装
置18を経て濃縮泥水を脱水篩15に供給する。篩を通
過した泥水は樋19により区画51または52に戻り再
び脱水篩9、または15にかけることができる。17の
上流は比重測定制御計20または手動によってスイング
切り替え装置21を切り替えて区画52、53または区
画54にはいる。輸送は管または樋を使用できる。 ポ
ンプ26は区画52内の箱型または堰型の小区画53に
あり、泥避けのギヤラリー22によって包囲されてい
る。 ポンプ26は第3段目のサイクロン27に液を供
給し、下流は調節装置28を通り樋29に落下して区画
51、52または53に入る。同様にポンプ36はサイ
クロン37に泥水を供給し、比重測定制御計30を経て
スイング流路切り替え装置31により受器32を経て出
口33から次の貯槽等に入る。多孔管40は処理済泥水
を吹き出し撹拌し、または沈降泥を流動化する。60は
振動機である。この装置は複数サイクロンを分離性能の
異なる諸元または条件で操作することができ、複数の流
路中間槽を省略でき小型化可能な点に特徴がある。沈降
槽には並行傾斜板沈降器を挿入できる。この傾斜板には
堆積固着防止のため連続または断続振動を加えるのが適
当であり、振動は弱いものでもよい。60は振動篩、樋
19、29等の粒子移動用、堆積、固着防止用振動機構
である。
Fourth Embodiment FIG. 1 shows an apparatus suitable for treating mud water according to the present invention. The mud discharged from the excavation hole after being replaced with the injected concrete enters the treatment equipment at the site, and the waste mud or waste mud or sedimented hydrous sediment is excavated at the excavation site equipment, on-vehicle equipment or by means of transportation means such as pipes, tank trucks and vacuum trucks. It is transported to the storage processing base unit 41, enters the separation tank 2 from the supply pipe 1 by a slurry pump or the like, and the earth and sand is supplied from the tank bottom outlet onto the dehydration vibrating screen 9. 2 overflow is guide 3
It is supplied to the vibrating screen 5 through the distributor 4 from which pebbles and foreign matters are separated, and then enters the tank compartment 51. It is appropriate to control the tank 2 according to FIGS. 3, 6 and 7 of the present invention. The earth and sand settle to the bottom of the tank and enter the cyclone 7 from the pipe 46 together with the muddy water by the submersible sand pump 6 with the umbrella 57, which is a baffle plate. The separated sediment flow is, for example, the present invention or the previous Japanese Patent Application No. 4-3 of the inventor.
61818 via the outflow control device 8 proposed and the dehydration vibrating screen 9
It is dehydrated and discharged outside the tank. The fluidity of the sediment can be assisted by the lattice-shaped vibrating body 45. The overflow mud drops from the overflow port into the tank compartment 52. When working under conditions that tend to contain sediment, the hydrometer 1 is located upstream of the cyclone 7.
It is measured by 0 and is automatically or manually switched from the outlet 14 by the swing type switching device 11 which is automatic or manual, distinguished by specific gravity and put in the compartment 51 or 52. Due to excess or deficiency of processing capacity, switch to 11 in the same way and change to 5
You can put it in 2. The pump 16 in the compartment 52 is 47
From the second stage cyclone 17 to feed the concentrated muddy water to the dewatering sieve 15 via the adjusting device 18 downstream. The muddy water that has passed through the sieve can be returned to the compartment 51 or 52 by the gutter 19 and can be applied again to the dehydration sieve 9 or 15. The upstream of 17 enters the section 52, 53 or section 54 by switching the swing switching device 21 by the specific gravity measurement controller 20 or manually. Pipes or gutters can be used for transportation. The pump 26 is located in a box-shaped or weir-shaped small section 53 in the section 52, and is surrounded by the gear rally 22 for avoiding mud. The pump 26 supplies the liquid to the cyclone 27 of the third stage, and the downstream side passes through the adjusting device 28 and drops into the gutter 29 to enter the compartment 51, 52 or 53. Similarly, the pump 36 supplies muddy water to the cyclone 37, the specific gravity measurement controller 30, the swing flow path switching device 31, the receiver 32, and the outlet 33 into the next storage tank. The perforated pipe 40 blows and agitates the treated mud or fluidizes the sedimented mud. Reference numeral 60 is a vibrator. This device is characterized in that a plurality of cyclones can be operated under specifications or conditions with different separation performances, a plurality of flow path intermediate tanks can be omitted, and the size can be reduced. A parallel inclined plate settler can be inserted into the settling tank. It is appropriate to apply continuous or intermittent vibration to the inclined plate to prevent the deposition and fixation, and the vibration may be weak. Reference numeral 60 denotes a vibrating screen, a vibrating mechanism such as gutters 19 and 29 for moving particles, preventing accumulation, and fixing.

【0021】比較的高pH、高比重で流動性の悪い泥は
炭酸ガス吹き込みまたはpH調節剤注入装置またはノズ
ル61からの炭酸ガス等によりpH8−10程度に調節
して、薬剤添加に続いて、サイクロンでの剪断力付加、
解砕、混合、これらと同時になされる分離効果を上げ、
測定、操作も容易になった。同時に消毒薬剤注入系62
から適量の次亜塩素酸ソーダ液、オゾン化空気等を注入
し、サイクロン作用による強撹拌、解砕、土砂分離と同
時に均一な消毒剤、殺菌剤混入ができる。処理後pHが
8−8.5以下になっている時には注入機構63からア
ルカリ性物質を添加できる。アルカリ性物質としては、
水酸化カルシウム液、石灰乳、重炭酸カルシウム液を少
量加えてpH8.5−10程度に調節できる。カルシウ
ムイオンはゲル化原因になり得るが、自然界に存在する
もので、装置、生物に無害であり、調節が容易な利点が
ある。炭酸ソーダはナトリウムイオン障害の恐れがある
が、注意して制限量使用できる。高濃度では苛性ソーダ
を遊離している恐れがある。装置41は区画間あるいは
装置相互の連通、ポンプ、樋19、切り替え機構11、
12、21等(自動−手動切り替え機構を含む)の簡易
化によって泥水の受入れ、払出を任意区画に行うことが
でき、装置内での工程短縮、サイクロン群の並列運転、
これによる一時的能力増加、その後の精製運転等が自由
にできる。、微粒子の含有量は液体サイクロンの径、
数、組合せ、繰返し処理、運用により比重制御で任意に
調整することができる。微粒子含有量が多い排泥水処理
でも、比重を1.1程度以下にする場合には、アースド
リル工法等に使用するカルボキシメチルセルローズ系そ
の他の増粘剤あるいは分散剤、腐食土質、カルシウム分
等が含まれているにかかわらず液体サイクロンの下流に
74〜45ミクロン以下の微粒子を分離できた。この微
粒子泥は泥水中あるいは含水状態で保存することがで
き、槽中で水あるいは泥水中に撹拌によって必要により
増粘剤を加えて再分散可能であった。 これは保存中、
必要時間毎に撹拌機構42、45で撹拌するのが好まし
く水遊離を防止し、分散性を保持することができる。微
細ベントナイトあるいは増粘剤の添加により安定性を増
すことができる。 炭酸ガス添加と、剪断力加工は径2
00mm以下のサイクロンと、標準操作条件でなされ
た。吹き込み圧0.5〜2.5kg/cmが適当であ
った。 pHは10.4のものは、サイクロン通過後
9.5と低下し、炭酸ガス量を増加すると容易に8.2
程度まで低下し,定量的反応であった。ゲル化傾向解消
は条件により10.5以下で炭酸ガスまたはフミン酸系
酸の吹き込みと土砂分離に伴いゲル性は消失した。条件
の有効性はpH測定と沈降物の凝固性の目視、砂分離
性、脱水性、沈降剤の効果等により容易に判定できる。
For mud having a relatively high pH, high specific gravity and poor fluidity, the pH is adjusted to about 8-10 by carbon dioxide gas blowing or a carbon dioxide gas from a pH adjuster injection device or a nozzle 61, and following the addition of the chemicals. Shear force added by cyclone,
Crushing, mixing, increasing the separation effect done at the same time,
Measurement and operation became easier. At the same time, the disinfectant injection system 62
A suitable amount of sodium hypochlorite solution, ozonized air, etc. can be injected from the above to strongly mix, disintegrate, and separate the soil by the cyclone action, and at the same time mix the uniform disinfectant and bactericide. After the treatment, when the pH is below 8-8.5, the alkaline substance can be added from the injection mechanism 63. As an alkaline substance,
The pH can be adjusted to about 8.5-10 by adding a small amount of calcium hydroxide solution, lime milk, and calcium bicarbonate solution. Calcium ions may cause gelation, but they exist in nature, are harmless to devices and organisms, and have the advantage of being easy to control. Sodium carbonate can cause sodium ion damage, but can be used with caution and in limited amounts. High concentrations may liberate caustic soda. The device 41 includes communication between compartments or between devices, a pump, a gutter 19, a switching mechanism 11,
By simplification of 12, 21, etc. (including automatic-manual switching mechanism), muddy water can be received and discharged to any section, shortening the process in the device, parallel operation of cyclone group,
As a result, temporary capacity increase and subsequent refining operation can be freely performed. , The content of fine particles is the diameter of the hydrocyclone,
It can be arbitrarily adjusted by specific gravity control by the number, combination, repeated processing, and operation. Even in the case of treating wastewater containing a large amount of fine particles, if the specific gravity is set to about 1.1 or less, the carboxymethyl cellulose-based other thickeners or dispersants used in the earth drill method, corrosive soil, calcium content, etc. It was possible to separate fine particles of 74-45 microns or less downstream of the hydrocyclone, regardless of their inclusion. This fine particle mud could be stored in mud water or in a water-containing state, and could be redispersed by adding a thickener to water or mud water in a tank by stirring if necessary. This is being saved,
It is preferable to stir with the stirring mechanisms 42 and 45 at every required time so that water release can be prevented and dispersibility can be maintained. Stability can be increased by adding fine bentonite or a thickening agent. Carbon dioxide addition and shear force processing are 2 diameters.
Made under standard operating conditions with cyclones less than 00 mm. A blowing pressure of 0.5 to 2.5 kg / cm 2 was suitable. The pH of 10.4 drops to 9.5 after passing through the cyclone, and easily increases to 8.2 by increasing the amount of carbon dioxide.
It decreased to a certain degree and was a quantitative reaction. Depending on the conditions, the gelling tendency was eliminated by 10.5 or less, and the gelling property disappeared due to the blowing of carbon dioxide or humic acid and the separation of the sediment. The effectiveness of the conditions can be easily determined by measuring pH, visually observing the coagulability of the sediment, sand separability, dewaterability, the effect of the sedimentation agent, and the like.

【0022】処理によって、比重は排泥水で1.2〜
1.3が1.05〜1.15となりサイクロンで2段、
3段と直列に処理するに従って1.04〜1.06程度
まで沈降剤なしで容易に低下した。砂分はゲル化にも関
係するが、5〜25%のものを容易に1%以下0.3〜
0.5%程度にできた。掘削作業に使用可能の泥水は比
重1.04〜1.15の程度であるが、再生品は掘削泥
水として使用可能であり、ほぼ砂分が除去されたものに
相当する泥水が得られるのが特徴である。 有害物を含
む泥水はサイクロン37出口から出たら直に撹拌装置付
き活性炭流動吸着装置101で処理して有害物を除去し
た後、槽32を経て33から工程、掘削現場または貯槽
に送られる。廃活性炭は水洗浄、酸処理装置102、乾
燥系103を経て流動低温酸化再生装置で再生し、水中
に投じて後、吸着装置101に戻す。再生用熱源は、燃
焼炉、内燃機関投の排気、太陽熱、風乾により賄える。
微粒子に富む排泥水処理から、74ミクロン以下50
%、44ミクロン以下が35%で泥水用に再使用可能の
泥が得られた。これはサイクロンによる遠心力場で、発
明者のさきの発明になる縦断面壁部に折れ点のない連続
曲面型異型サイクロンにおいて達成された。カルボキシ
メチルセルローズ等が逆に多価凝集剤として作用するの
を促進しているとも考えられる。乾燥篩分と湿式篩分で
は粒度分布が異なり測定方法によって粒度が異なってい
る。これは新しい知見である。 このようにして土砂分
離して比重を下げると、活性炭真比重1.8〜2(見か
け比重(水中で1.1〜1.5)との比重差が確保さ
れ、低温酸化再生との組合せにより、泥水との接触によ
る泥水浄化が可能になったものである。吸着、再生にお
ける撹拌機は泥粒子の凝結による活性炭の固結、局部反
応等を防止するもので間歇的駆動であってもよい。なお
図において単位機能の平面的あるいは立体的大きさと配
置は任意に選択できることは当然である。図2は図1の
側面視の例である。槽43の底は曲面にして軽量化しい
る。掘削孔等からの泥水供給1は振動篩ストレーナー5
を通して自動比重弁71を備えた予備分離槽2に入り、
分離能力を強化している。
Depending on the treatment, the specific gravity of the discharged mud water is 1.2 to
1.3 becomes 1.05 to 1.15, and it is a cyclone in two stages,
As it was treated in series with three stages, it was easily lowered to about 1.04 to 1.06 without a precipitating agent. The sand content is related to gelation, but 5% to 25% is easily 1% or less 0.3%
It could be about 0.5%. The muddy water that can be used for excavation work has a specific gravity of about 1.04 to 1.15, but the recycled product can be used as excavation muddy water, and it is possible to obtain muddy water that is almost the same as sand removed. It is a feature. The muddy water containing harmful substances is processed by the activated carbon fluidized adsorption device 101 with a stirring device to remove the harmful substances immediately after coming out from the cyclone 37 outlet, and then sent through the tank 32 from 33 to a process, an excavation site or a storage tank. The waste activated carbon is washed with water, passed through an acid treatment device 102 and a drying system 103, regenerated by a fluidized low-temperature oxidation regeneration device, thrown into water, and then returned to the adsorption device 101. The heat source for regeneration can be covered by the combustion furnace, exhaust gas from the internal combustion engine, solar heat, and air drying.
From the wastewater treatment of fine particles, 74 microns or less 50
%, And 44% or less was 35%, and reusable mud for muddy water was obtained. This is a centrifugal force field by a cyclone, and was achieved in a continuous curved surface type atypical cyclone having no break points in the longitudinal section wall portion, which was the invention of the inventor of the present invention. It is also considered that carboxymethyl cellulose and the like, on the contrary, promote the action as a polyvalent flocculant. The particle size distribution differs between the dry sieve and the wet sieve, and the particle size differs depending on the measuring method. This is a new finding. When the specific gravity is reduced by separating the sediment in this way, the specific gravity difference between the activated carbon true specific gravity of 1.8 to 2 (apparent specific gravity (1.1 to 1.5 in water) is secured, and the combination with low temperature oxidation regeneration It is possible to purify mud water by contact with mud water.The agitator in adsorption and regeneration prevents the solidification of activated carbon due to the coagulation of mud particles and local reaction, and may be intermittently driven. It is a matter of course that the planar or three-dimensional size and arrangement of the unit functions can be arbitrarily selected in the figure, and Fig. 2 is an example of the side view of Fig. 1. The bottom of the tank 43 is curved to reduce the weight. The muddy water supply 1 from the drill hole etc. is the vibrating screen strainer 5
Through the pre-separation tank 2 equipped with an automatic specific gravity valve 71,
The separation ability is strengthened.

【0023】[0023]

【実施例5】図3は自動弁または自力弁を設けた分離槽
2または8、18、28等に連結して使用できる調節装
置構造例を示す。弁71は浮子秤を兼ね、動作を円滑に
し、位置を規制するために棒75によって拘束されてい
る。浮子形状は縦または横円筒あるいは球その他であっ
てもよい。移動し、固定できる重錘79で液の比重調整
ができる。槽底に振動機60の振動により流動性が保持
されている砂が溜ると見かけ比重が大になり、浮子71
を浮上させるのて弁座77との隙間から流出し、口78
を通って脱水篩または槽に落下する。図4は2の平面図
の例である。但し図では比重調節棒90と重錘79が槽
外側にあり軸82と軸受構造83によって連結し調節を
容易にしている。図5は重錘に鎖を使用して鎖車85を
調節モーター86によって自動調節または遠隔操作を容
易にするものである。
[Embodiment 5] FIG. 3 shows an example of the structure of an adjusting device which can be used by being connected to a separation tank 2 or 8, 18, 18, etc. provided with an automatic valve or a self-powered valve. The valve 71 also functions as a float balance, and is restrained by a rod 75 for smoothing the operation and regulating the position. The float shape may be a vertical or horizontal cylinder or a sphere or the like. The specific gravity of the liquid can be adjusted by the weight 79 that can be moved and fixed. When the sand whose fluidity is retained by the vibration of the vibrator 60 accumulates on the bottom of the tank, the apparent specific gravity increases, and the float 71
To flow out through the gap between the valve seat 77 and the mouth 78
Through it to a dewatering sieve or tank. FIG. 4 is an example of a plan view of 2. However, in the figure, the specific gravity adjusting rod 90 and the weight 79 are located outside the tank, and are connected by the shaft 82 and the bearing structure 83 to facilitate the adjustment. In FIG. 5, a chain is used as a weight to facilitate automatic adjustment or remote operation of the chain wheel 85 by an adjusting motor 86.

【0024】[0024]

【実施例6】図6は槽側面または側斜面に調節弁を設け
る例である。大型槽から土砂を調節しつつとり出す装置
に適している。槽底に流動用振動子(例えば、バネ等緩
衝材89付き振動格子)45と弁91を備え沈降土砂を
流動させる。比重秤である浮子71と連動する弁74と
弁座77で流出制御し土砂を脱水篩9に排出する。液は
ポンプ6からサイクロン、別の槽等に供給することがで
きる。
[Sixth Embodiment] FIG. 6 shows an example in which a control valve is provided on the side surface or side slope of a tank. It is suitable for a device that takes out soil from a large tank while adjusting it. A flow oscillator (for example, a vibration lattice with a cushioning material 89 such as a spring) 45 and a valve 91 are provided at the bottom of the tank to flow the sediment. The outflow is controlled by a valve 74 and a valve seat 77 which are interlocked with a float 71 which is a specific gravity scale, and the sediment is discharged to the dewatering sieve 9. The liquid can be supplied from the pump 6 to a cyclone, another tank or the like.

【0025】[0025]

【実施例7】図7は並行斜面板沈降装置とスラリー比重
によって3分割できる自動弁を備えた分離槽82であ
る。粗泥水を1から振動篩5上に供給し、礫、雑物を分
離して槽の分配部111にはいる。土砂は沈降して、傾
斜板99からの土砂と共に槽底に沈下し、振動機60と
それによって振動輸送機となっている底板によって斜面
を流れて底部排出機構から排出する。中間比重の泥水は
中間からの排出機構から排出する。比重小な液が得られ
ない時には溢流3がないことがある。斜面板は2方向に
斜面になるように例えば長手方向と幅方向の2方向の斜
面としてよい。図8は図7の側面視断面に相当する。但
し並行斜面板は曲面に張られていて、軽量化をはかって
いる。同じ理由で断面がハニカム構造のものを2方向に
斜面になるように例えば長手方向と幅方向の2方向の斜
面としてよい。
[Embodiment 7] FIG. 7 shows a separation tank 82 equipped with a parallel slope plate settling device and an automatic valve that can be divided into three parts depending on the specific gravity of the slurry. Coarse muddy water is supplied from 1 to the vibrating screen 5 to separate gravel and foreign matters and enter the distribution unit 111 of the tank. The earth and sand settle and settle on the bottom of the tank together with the earth and sand from the inclined plate 99, and flow through the slope by the vibrating machine 60 and the bottom plate serving as a vibration transport machine, and are discharged from the bottom discharging mechanism. Muddy water of intermediate specific gravity is discharged from the intermediate discharge mechanism. There may be no overflow 3 when a liquid with a small specific gravity cannot be obtained. The slope plate may be a slope in two directions, for example, the longitudinal direction and the width direction, so that the slope plate is a slope in two directions. FIG. 8 corresponds to a side view cross section of FIG. 7. However, the parallel slope plate is stretched on a curved surface to reduce the weight. For the same reason, a honeycomb structure having a honeycomb structure may be inclined in two directions, for example, in two directions, that is, the longitudinal direction and the width direction.

【0026】[0026]

【実施例8】図9は埀下管14、24を動かさずに切り
替え板11、21のスイング反転機構で簡単に流路切り
替えする機構である。83は支点、109はストッパー
である。板または樋状の板11によって槽区画51、5
2への流路を切り替える。
[Embodiment 8] FIG. 9 shows a mechanism for easily switching the flow path by the swing reversing mechanism of the switching plates 11 and 21 without moving the lowering pipes 14 and 24. 83 is a fulcrum and 109 is a stopper. The tank compartments 51, 5 by the plate or gutter-shaped plate 11
Switch the flow path to 2.

【0027】[0027]

【実施例9】図10は可動管例えばホースの先端を移動
して、流路を切り替えるものである。台123には、ス
トッパーを兼ねたリミットスイッチ、固定用鉤棒差し込
み用穴122、軸受け支点83を備え、固定用環12
0、124、結束用孔121、を支えている。125は
制御シリンダーで遠隔切り替え制御ができる。リミット
スイッチは流路の遠隔表示に使用できる。
[Embodiment 9] FIG. 10 shows a flow path switched by moving the tip of a movable tube such as a hose. The table 123 is provided with a limit switch also serving as a stopper, a fixing hook bar insertion hole 122, and a bearing fulcrum 83.
0, 124 and the bundling hole 121 are supported. Reference numeral 125 is a control cylinder that can be remotely controlled. The limit switch can be used for remote indication of the flow path.

【0028】[0028]

【実施例10】図11は横に這った管を動かして切り替
える機構である。図10の横型に相当する。図12は図
11の平面図に相当する。86は遠隔または自動切り替
え用の駆動機構である。
[Embodiment 10] FIG. 11 shows a mechanism for moving and switching a horizontally crawling pipe. It corresponds to the horizontal type in FIG. FIG. 12 corresponds to the plan view of FIG. 86 is a drive mechanism for remote or automatic switching.

【0029】[0029]

【実施例11】図13はシリンダー125によって、直
接ホースを動かして流路切り替えをする機構である。図
14はその側面視である。
[Embodiment 11] FIG. 13 shows a mechanism for directly moving a hose by a cylinder 125 to switch a flow path. FIG. 14 is a side view thereof.

【0030】[0030]

【実施例12】図15は泥水貯槽の水面の一部または全
部に泥水より低比重のプラスチックフイルムあるいはゴ
ムシート製カバー132を浮かべる遮蔽装置である。普
通の水面と異なり泥水比重が大きいので汎用のプラスチ
ックフイルム、カーボンブラック等の充填剤を減じて軽
量にした天然ゴム、ポリオレフイン系合成ゴム等は沈ま
ないので水面と異なり、便利である。強化縁139を走
行機135に連結している索134を引くとカバーは展
張され、巻取ロール138、巻取モーター136で駆動
すると水面は開放される。ポンプ133は雨水の排出用
である。図16、図17はそれぞれ円形槽、角型槽の平
面図である。
[Embodiment 12] FIG. 15 shows a shielding device in which a plastic film or rubber sheet cover 132 having a specific gravity lower than that of muddy water is floated on a part or all of the surface of the muddy water storage tank. Unlike ordinary water surface, it has a large specific gravity of muddy water, so general-purpose plastic film, natural rubber with reduced filler such as carbon black to make it lightweight, and polyolefin-based synthetic rubber are convenient because they do not sink. When the rope 134 connecting the reinforcing edge 139 to the traveling machine 135 is pulled, the cover is stretched, and when driven by the winding roll 138 and the winding motor 136, the water surface is released. The pump 133 is for draining rainwater. 16 and 17 are plan views of a circular tank and a rectangular tank, respectively.

【0031】[0031]

【実施例13】図18は旋回型混合機の例で、出口側は
軸流サイクロンに接続している。旋回羽根を同方向にす
れば圧損失を小にすることができる。入り口141から
流体が入り中心錐体部188で加速し、差し込み型旋回
羽根142によって旋回した後、流れに注入口61から
炭酸ガスまたはその他の酸が入り、さらに旋回羽根で混
合し、pHを調節した後、消毒剤、等を62から注入す
る,図19は旋回羽根の例である。軸流サイクロン、軸
流旋回混合機は従来旋回羽根の組立てが困難で、従って
高価なので、手軽に使用されることはなかった。本発明
は筒外殻に切り込みを入れて平面羽根を差し込み固定す
る。固定とシールは溶接と接着剤、シール材料によるこ
とができ容易である。混合機長さを長くすれば188は
省略できる。図19は図18に対応する旋回型混合機ま
たは液体サイクロンの横断面図である。翼全体は短冊型
にするのが簡便、安価で量産に適するが、内部翼縁は曲
線、鋸刃状、種々の歯型、有孔板等にして撹乱効果を与
えてもよい。翼自体を多孔板にして同様撹乱効果を与え
てもよい。撹乱突起を穴から差込んでもよい。
[Embodiment 13] FIG. 18 shows an example of a swirl type mixer, the outlet side of which is connected to an axial cyclone. If the swirl vanes are in the same direction, the pressure loss can be reduced. Fluid enters from the inlet 141, accelerates at the central cone 188, swirls with the insertion swirl vane 142, and then carbon dioxide gas or other acid enters the flow from the inlet 61, further mixes with the swirl vane, and adjusts the pH. After that, a disinfectant or the like is injected from 62. FIG. 19 shows an example of a swirl vane. Conventionally, axial cyclones and axial swirling mixers have not been easily used because it is difficult to assemble swirl vanes and therefore expensive. According to the present invention, a cut is made in the outer shell of a cylinder and flat blades are inserted and fixed. Fixing and sealing can be easily done by welding, adhesive and sealing material. If the mixer length is increased, 188 can be omitted. 19 is a cross-sectional view of a swirl mixer or a hydrocyclone corresponding to FIG. Although it is convenient and cheap to make the entire blade in a strip shape and suitable for mass production, the inner blade edge may be curved, saw-toothed, various tooth shapes, perforated plates or the like to give a disturbing effect. The blade itself may be a perforated plate to give the same disturbing effect. The disturbing protrusion may be inserted from the hole.

【0032】[0032]

【実施例14】図20は液体サイクロン187である。
濃縮液取り出しは内筒149との隙間148から流出さ
せる。取り出し量調節は斜面のある内筒の差し込み深さ
で隙間断面積を調節するか、適当な弁の開閉による。加
速用部材188は旋回力を増すので効率改善に有効であ
る。土砂含量が多い泥水処理には省略してもよい。
[Embodiment 14] FIG. 20 shows a hydrocyclone 187.
The concentrated liquid is taken out through a gap 148 with the inner cylinder 149. The amount of removal can be adjusted by adjusting the cross-sectional area of the gap with the insertion depth of the inner cylinder with the slope, or by opening and closing an appropriate valve. Since the acceleration member 188 increases the turning force, it is effective in improving efficiency. It may be omitted for the treatment of muddy water with high sediment content.

【0033】[0033]

【実施例15】図21は旋回翼差し込み取付け用の室を
有し、翼交換容易な旋回翼構造である。土砂分が多い泥
水の直接処理では、翼磨滅が激しく、しかも溶接取付け
構造では材質が限定されるが、翼保持構造146で交換
可能になる。翼材質は普通鋼から耐摩耗金属、セラミッ
ク、ゴム被覆、金属溶射等選択範囲が広い。図は耐摩耗
表面材142を翼144で補強している。緩衝材145
は金属、ゴム、プラスチックその他で、ねじ151で留
める。蓋152で水密を保持する。図21、22の構造
は小径軸流サイクロン等を可能にした。図22は図21
の横断面図に相当するが差し込み溶接翼146表面に耐
摩耗材142を表面材として取付けている。
[Embodiment 15] FIG. 21 shows a swirl vane structure having a chamber for inserting and mounting swirl vanes, which facilitates blade replacement. The blades are worn away by the direct treatment of the muddy water having a large amount of sediment, and the material is limited in the welded mounting structure, but the blade holding structure 146 allows replacement. The blade material has a wide selection range from ordinary steel to wear-resistant metal, ceramic, rubber coating, metal spraying, etc. In the figure, the wear resistant surface material 142 is reinforced by the blade 144. Buffer material 145
Is metal, rubber, plastic or the like, and is fastened with screws 151. Watertightness is maintained by the lid 152. The structure of FIGS. 21 and 22 has made possible a small diameter axial flow cyclone and the like. FIG. 22 shows FIG.
The wear-resistant material 142 is attached to the surface of the insertion welding blade 146 as a surface material.

【0034】[0034]

【実施例16】図23、24、25、26、27は車載
にも適した操作範囲が広い脱水篩の説明図である。汚
泥、泥水、含水土砂の脱水に使用できる。閉塞性雑物を
予め除いてから分離槽2またはサイクロンによって振動
機60によって駆動される脱水篩面9上に供給すると、
泥、土砂は板、張られた線、棒からなる複数のほぼ並行
した分割機能で分割されつつ通過し、稀薄泥水を分離
し、固形または半流動状態で延長部163を通って排出
される。堰161、浮動弁構造162は泥水の流れを制
約し脱水を補助し、しかも固形分の滞留、篩面閉塞を防
止する。 浮動弁構造162は見かけ比重が大きい土
砂、泥固形物、スラリーでは篩面の振動作用によるそれ
らの振動によって流動するので浮上して、土砂等を通過
する調節弁として作用する。堰161は有効高さを調節
できることが好ましく、また含水土砂を分配機構4から
直接脱水する場合、雑物により堰構造が閉塞することが
あるので浮動弁構造とともに引上げて解除する機構の付
与が便利である。 通過泥水は傾斜板99、壁13で集
められてポンプ6で沈降物が蓄積されればサイクロン7
または2に戻し、沈降物がなくなれば停止し、または次
の工程に送る。車載装置にした時、現場での操業状態で
は、車両タイヤ負荷は機器重量と水重量に振動機の振動
が加わり、過負荷と材料疲労破壊の恐れを生ずる。従っ
て固定装置1−57を装備するのがよい。これは移動ク
レーン車に使用されている固定用脚に類似していて引込
み脚156と引込みピストン158、脚台159とから
なる。脚台159はスキーのように長く、複数の引込み
脚を連結できるものが好ましい。また必要により、装置
の台155を車台164あるいは車軸部166から固定
機構190を遠隔または直接操作で解除して、荷重、振
動からの縁きり可能であることが望ましい。図24、2
5は脱水振動篩の堰161と弁構造、泥分割機能160
の関係を示す平面説明図である。それぞれ、球型、鍔付
き円筒型の弁構造を示す。堰161の引き開けアーム7
5は可撓性支持であるバネまたは鎖185で弁構造と連
結している。図26は堰161の形と泥分割機能160
を振動篩の下流から見た例で線、棒198を補助に使用
してもよい。図27はこれらの見取り図である。
[Embodiment 16] FIGS. 23, 24, 25, 26 and 27 are explanatory views of a dewatering sieve having a wide operation range suitable for vehicle mounting. It can be used for dewatering sludge, muddy water, and hydrated soil. When the blocking foreign matter is removed in advance and then supplied onto the dehydration sieving surface 9 driven by the vibrator 60 by the separation tank 2 or the cyclone,
The mud and earth and sand pass through while being divided by a plurality of substantially parallel dividing functions consisting of plates, stretched wires and rods, separating the diluted mud water, and discharged through the extension portion 163 in a solid or semi-fluid state. The weir 161 and the floating valve structure 162 restrict the flow of muddy water to assist dewatering, and prevent retention of solids and blockage of the sieve surface. The floating valve structure 162 floats on earth and sand, mud solids, and slurry having a large apparent specific gravity due to their vibrations due to the vibration of the sieve surface, so that the floating valve structure 162 acts as a control valve that passes through the earth and sand. It is preferable that the weir 161 can adjust the effective height, and when dewatering hydrated earth and sand directly from the distribution mechanism 4, since the weir structure may be blocked by foreign matters, it is convenient to add a mechanism for pulling it up and releasing it together with the floating valve structure. Is. If the passing mud is collected by the inclined plate 99 and the wall 13 and sediment is accumulated by the pump 6, the cyclone 7
Or, return to 2 and stop when the sediment disappears, or send to the next step. When used as an in-vehicle device, the vehicle tire load is subject to overloading and material fatigue failure due to the vibration of the vibrator in addition to the equipment weight and water weight when operating in the field. Therefore, it is preferable to equip the fixing device 1-57. It is similar to the fixing legs used in mobile cranes and consists of a retracting leg 156, a retracting piston 158 and a foot 159. The leg stand 159 is preferably long like a ski and capable of connecting a plurality of retractable legs. Further, if necessary, it is desirable that the base 155 of the apparatus can be released from the chassis 164 or the axle 166 by remote or direct operation to release the fixing mechanism 190 so that it can be trimmed from the load and vibration. 24, 2
5 is a weir 161 of the dehydration vibration sieve, a valve structure, and a mud dividing function 160
It is a plane explanatory view showing a relation of. The valve structures of a spherical type and a cylindrical type with a collar are shown respectively. Opening arm 7 of weir 161
5 is connected to the valve structure by a flexible support spring or chain 185. FIG. 26 shows the shape of the weir 161 and the mud dividing function 160.
In the example seen from the downstream side of the vibrating screen, the wire and rod 198 may be used as an auxiliary. FIG. 27 is a sketch of these.

【0035】[0035]

【実施例17】図28は混合機を兼ね、分離槽、沈降槽
を省略したコンパクト装置の説明図である。礫や雑物を
予め分離した粗泥水はポンプでサイクロン入口141か
ら入り、注入口61、62からpH調節剤、薬剤を加え
られ、混合しつつ土砂分離と反応あるいは消毒され、濃
縮土砂は脱水篩上に放出され、分離泥水は9をバイパス
して傾斜板沈降機99または51にはいる。傾斜板沈降
機には振動篩9とバネ等の連結具により連結して適度の
振動を与え、沈降粒子の滞留を防止する。
[Embodiment 17] FIG. 28 is an explanatory view of a compact device which doubles as a mixer and omits a separation tank and a sedimentation tank. Rough mud water from which gravel and foreign matter have been separated in advance enters from the cyclone inlet 141 by a pump, pH adjusters and chemicals are added from the inlets 61 and 62, reacts with the sediment separation and reacts or is sterilized, and the concentrated soil is dehydrated and sieved The muddy water discharged upwards bypasses 9 and enters the inclined plate settler 99 or 51. The inclined plate settler is connected to the vibrating screen 9 by a connecting member such as a spring to give appropriate vibration to prevent the settling particles from staying.

【0036】[0036]

【実施例18】図29は内壁面に折れ点のない回転曲面
で構成されたサイクロンで摩耗防止し、下出口にも摩耗
障害防止用の差し込み管171を取り付けている。管材
質は金属、耐摩耗性金属、プラスチック、セラミツク、
ゴム等から選ばれ、その組合せでもよい。 取付けはフ
ランジ、ネジの組合せが便利である。流量は比重検出自
動弁178によることができ、比重測定槽8の底部は土
砂を流出する孔172を持つ底板170である。閉塞防
止のために振動機60を付けている。泥流の流動性を確
保して、溢流3から流出があれば、制御状態になる。低
粘度、低比重の液が流下すると弁は閉じるが、孔179
からの流出は停止せず、閉塞障害は起きない。
[Embodiment 18] In FIG. 29, wear is prevented by a cyclone constituted by a curved surface without breaks on the inner wall surface, and a plug 171 for wear failure prevention is also attached to the lower outlet. Tube material is metal, wear resistant metal, plastic, ceramic,
It may be selected from rubber or the like and may be a combination thereof. A combination of flange and screw is convenient for mounting. The flow rate can be controlled by the specific gravity detection automatic valve 178, and the bottom of the specific gravity measuring tank 8 is a bottom plate 170 having a hole 172 through which soil and sand flow out. A vibrator 60 is attached to prevent clogging. The fluidity of the mud flow is secured, and if there is an outflow from the overflow 3, the control state is entered. The valve closes when a liquid with low viscosity and low specific gravity flows down, but the hole 179
Outflow does not stop and obstruction does not occur.

【0037】[0037]

【実施例19】図30は振動篩5または脱水篩9の下に
傾斜板沈降機を設けた時にその効率を上げるための泥水
分配機構4と水面上に上端を出した傾斜板99の上部の
関係を示す。泥水の流れはポンプ付近を通り、仕切22
から次の区画に入る。装置を振動篩ストレーナー5と脱
水篩9の対にして並べ低動力の処理装置を構成できる。
[Embodiment 19] FIG. 30 shows a muddy water distribution mechanism 4 for increasing the efficiency when an inclined plate settler is provided below the vibrating screen 5 or the dehydration screen 9 and an upper part of the inclined plate 99 having an upper end above the water surface. Show the relationship. The flow of muddy water passes near the pump, and the partition 22
Enter the next section from. A low-power processing device can be configured by arranging the devices in pairs of a vibrating screen strainer 5 and a dehydrating screen 9.

【0038】[0038]

【実施例20】図31は土砂を含む大量の泥水の処理に
適した液体サイクロン187の縦断面である。振動スト
レーナーを通過し、pH調節剤例えば炭酸ガス、殺菌剤
を混合した泥水は入り口141から入り旋回しつつ流れ
る。分離した含水土砂流は套室191から管189、比
重測定室で作動する流出制御弁74を経て、脱水篩また
は槽に放出される。残りの土砂は同様に2段目ないし最
終段から放出される。段差があってもよい。大量の土砂
を含む泥水は多段にサイクロンにかける必要があり通常
型サイクロンだけでは動力消費が大きいが、軸流サイク
ロンを組み合わせると難点が回避される。流れ方向を逆
にして泥や二流体混合機にも使用できる。図32は中心
管が拡大型または円錐型140で、套190は土砂流通
路を形成する。沈降物に斜方向の運動慣性を与え、しか
も流れの分割を円滑にする。中心管は異型の溶接管継手
を利用するのが便利で経済的である。砂分30%の土砂
は1〜3段の合計抜取り比率約50%ならば砂分50〜
60%程度になり、チキソトロピー流動を示す程度に濃
縮分離するのが有利である。振動機60によって流動補
助ができ、代りに他の振動系例えば脱水振動篩に連結し
てもよい。低濃度の砂含有でも直接脱水篩にかける程度
に自動濃縮できる。抜取り段が単位置では分離した土層
はサイクロン内面に層状に集まり干渉沈降の状態になる
ので分離効率は低下する。よって多段に取り出すのが好
ましいが、濃度は土砂あるいは固形分の質、量の測定に
より試験的、自動的に定めることができ、必要により弁
74の開度を重錘79で調節できる。 最終の抜取り段
の制御は比重測定容器8等の代りに出口150側に同様
の比重制御を適用してもよい。閉塞時には193から
水、処理済泥水等を供給し解消できる。振動も使える。
図32の装置は泥水中に沈めて使用でき、分離槽2、沈
降槽の能力増強になる。図33はA−A断面、B−B断
面視で両者とも類似している。図34はサイクロン、ま
たは混合機の翼型の例である。孔194は混合機では混
合効果を上げ、サイクロンの場合には補集土砂粒子によ
る翼摩耗は軽減された。
[Embodiment 20] FIG. 31 is a vertical cross section of a liquid cyclone 187 suitable for treating a large amount of mud water containing sediment. After passing through the vibration strainer, the muddy water mixed with the pH adjusting agent such as carbon dioxide and the sterilizing agent enters from the inlet 141 and flows while swirling. The separated water-containing sediment flow is discharged from the chamber 191 through the pipe 189 and the outflow control valve 74 operating in the specific gravity measuring chamber to the dehydrating sieve or tank. The remaining sediment is likewise discharged from the second or final stage. There may be steps. Muddy water containing a large amount of earth and sand needs to be applied to the cyclone in multiple stages, and power consumption is large with a normal cyclone alone, but difficulties can be avoided by combining with an axial cyclone. It can also be used in mud and two-fluid mixers with the flow direction reversed. In FIG. 32, the central tube is an enlarged type or a conical type 140, and the sleeve 190 forms a sediment flow passage. It imparts oblique motion inertia to the sediment and also facilitates flow splitting. It is convenient and economical to use an atypical welded pipe joint for the central pipe. If the total extraction ratio of the first to third steps is about 50%, the sand content of 30% will be 50%
It is about 60%, and it is advantageous to concentrate and separate to the extent that thixotropic flow is exhibited. The vibrator 60 may provide flow assistance and may alternatively be connected to another vibrating system, such as a dewatering vibrating screen. Even if it contains a low concentration of sand, it can be automatically concentrated to the extent that it can be directly sieved. When the sampling stage is a single position, the separated soil layers gather in layers on the inner surface of the cyclone and are in a state of interference sedimentation, so the separation efficiency decreases. Therefore, it is preferable to take out in multiple stages, but the concentration can be experimentally and automatically determined by measuring the quality and amount of soil or solid matter, and the opening of the valve 74 can be adjusted by the weight 79 if necessary. For the final control of the withdrawal stage, similar specific gravity control may be applied to the outlet 150 side instead of the specific gravity measuring container 8 or the like. At the time of blockage, it can be solved by supplying water, treated muddy water, etc. from 193. Vibration can also be used.
The apparatus of FIG. 32 can be used by submerging it in muddy water, which enhances the capacity of the separation tank 2 and the sedimentation tank. FIG. 33 is similar in both AA cross section and BB cross section. FIG. 34 shows an example of a cyclone or a wing type of a mixer. The holes 194 increased the mixing effect in the mixer, and in the case of the cyclone, the blade wear due to the collected sediment particles was reduced.

【0039】[0039]

【実施例21】図35の側流出しサイクロンである。通
常型では、土砂、シルト等の含量が多い泥または泥水処
理の場合、分離容易な成分がある場合にも、吹き込み口
上部付近に分離粒子の滞留が起きることがある。これは
材質摩耗を発生し、しかも粒子滞留はサイクロン短絡、
回転力低下の原因となり、分離、濃縮効率低下となるこ
とがわかった。導入部上部周辺の胴または天板付近、及
び胴に分離粒子取り出し用側流流路191を設けたもの
である。摩耗痕は無くなり、下流取り出し管磨滅は減
じ、上流中の砂分含量は減少した。図36は側流流路が
周部にある。スリット192とするのが効率、取り出し
の容易さから適当である。
Twenty-first Embodiment A side outflow cyclone in FIG. In the normal type, in the case of treating mud or muddy water containing a large amount of earth and sand, silt, etc., retention of separated particles may occur near the upper part of the blowing port even if there are easily separable components. This causes material wear, and particle retention is a cyclone short circuit,
It was found that the rotation force was reduced, and the separation and concentration efficiency was reduced. A side flow passage 191 for taking out separated particles is provided in the vicinity of the cylinder or the top plate around the upper part of the introduction section and in the cylinder. The wear marks disappeared, wear on the downstream take-off pipe was reduced, and the sand content in the upstream was reduced. In FIG. 36, the side flow passage is in the peripheral portion. The slit 192 is suitable because of its efficiency and ease of taking out.

【0040】[0040]

【実施例22】図37は槽底、または平行斜面板沈降装
置で底板等の一体振動でなく振動効果を与え、動力と構
成材料を節約する沈降物の流動化装置である。可動的な
固定である支点格子89で支持された弾性振動子45
を、適当な位置に設けた振動機能60で2次元または3
次元進行波あるいは定常波振動を与えて、沈降物200
を流動化し、ポンプ6または低位置へ輸送する。これに
よって平底槽から沈降物の低動力で円滑なポンプ輸送が
可能になった。従来は平底槽の底に溜った沈降物の取り
出しは手数がかかるものであった。振動源は振動篩との
連結によってもよい。振動波は自動で間欠に与えてもよ
い。もし長時間静置すると沈降物は固結する傾向がある
が、振動を与えると固結防止効果がある。図38は平面
図である。振動子は199または182によってピアノ
の弦のように張力を与えている。同様に弦あるいは網目
を図38、41のように独立の枠に構成し、比較的振
幅、振動数の小な振動と、遅いが振幅が比較的大な分断
作用のある振動を合わせて粒子堆積層に加えることがで
きる。両種の振動は別の振動子によって加えてもよい。
振動子は立体的に重ねた振動子都市手分離と流動性を促
進してもよい。またルーズかつ密に重ねて濾過作用を持
たせることができる。
[Embodiment 22] FIG. 37 shows a sedimentation fluidizing device which saves power and constituent materials by providing a vibration effect instead of an integral vibration of a bottom plate or the like in a tank bottom or a parallel slope plate sedimentation device. Elastic oscillator 45 supported by a fulcrum lattice 89 that is movably fixed
With a vibration function 60 installed at an appropriate position
Two-dimensional traveling wave or standing wave vibration is applied to sediment 200
Fluidize and transport to pump 6 or low position. This enabled low-power and smooth pumping of sediment from a flat bottom tank. In the past, it took a lot of time to take out the sediment accumulated at the bottom of the flat bottom tank. The vibration source may be connected to a vibrating screen. The vibration wave may be automatically and intermittently applied. If left standing for a long time, the sediment tends to solidify, but if vibration is applied, it has an effect of preventing solidification. FIG. 38 is a plan view. The oscillator applies tension like a piano string by 199 or 182. Similarly, the strings or meshes are formed in independent frames as shown in FIGS. 38 and 41, and vibrations with a relatively small amplitude and frequency and vibrations with a slow but relatively large amplitude and a dividing action are combined to deposit particles. Can be added to layers. Both types of vibration may be applied by another oscillator.
The oscillators may facilitate three-dimensionally stacked oscillator city separation and fluidity. Further, they can be loosely and densely stacked to have a filtering effect.

【0041】[0041]

【実施例23】図39は目が粗い分断作用と流動用を兼
ね、鎖、鉤止め等であり得る軸支持、軸83を支点にし
て弦または網である上下できる振動子45、89と振動
脱水装置である。泥の脱水に使用できる。濾布を張って
下または上側に真空引きしてもよく、在来の脱水篩同様
連続脱水することができ、脱水面に粘土が板状にはりつ
くこともなく、浮動弁作用のあるローラー162または
堰161によって水流をせきとめるので比較的稀薄な泥
水をも処理できる。平面図は図38と同様である。これ
に脱水面の主要部の在来型脱水篩同様の振動と必要によ
り真空吸引−ブローの併用によって脱水振動篩の利点と
真空瀘過の利点を兼ね備えた装置になる。
Twenty-third Embodiment FIG. 39 shows a vibrating part which has a coarse mesh and a flow function, and supports a shaft which may be a chain, a hook or the like, and a vibrator 45, 89 which is a string or a net which can be moved up and down with the shaft 83 as a fulcrum. It is a dehydrator. Can be used for dewatering mud. A filter cloth may be stretched and vacuumed downward or upward, and continuous dewatering can be performed like a conventional dewatering sieve. Clay does not stick to the dewatering surface in a plate shape, and a roller 162 having a floating valve action or Since the water flow is stopped by the weir 161, it is possible to process relatively thin mud water. The plan view is similar to FIG. In addition to this, vibration similar to that of a conventional dewatering sieve of the main part of the dewatering surface and, if necessary, combined use of vacuum suction-blowing provide a device having both the advantages of the dewatering vibration sieve and the advantage of vacuum filtration.

【0042】[0042]

【実施例24】土砂を分離した比重1.06、pH8.
5の再生ベントナイト泥水を管型熱交換器で蒸気加熱
し、80℃とし2時間保持した後に同様管型熱交換器で
新しい再生ベントナイト泥水と熱交換し常温にした。泥
水の性状は変らなかった。振動機をつけた流下膜熱交換
器も使用することができた。
Example 24 Sediment is separated from a specific gravity of 1.06, pH of 8.
The regenerated bentonite muddy water of No. 5 was steam-heated by a tubular heat exchanger, kept at 80 ° C. for 2 hours, and then heat-exchanged with new regenerated bentonite muddy water by the same tubular heat exchanger to reach room temperature. The properties of the muddy water did not change. A falling film heat exchanger equipped with a vibrator could also be used.

【0043】[0043]

【実施例25】図40は廃泥水、廃泥、分離または浄化
処理(以下、処理と称する)した調整泥水、埋め戻しま
たは埋立て用の脱水あるいは含水流動性土砂、泥土の集
配、処理、貯蔵、使用の系統図である。掘削穴211と
現場の処理装置212は泥水、泥土の処理と、それを利
用した掘削作業を繰返し、終業時および現場装置では技
術的にまたは時間的に再生できない泥水および沈降泥を
タンク車213によって貯蔵処理基地の処理装置付属の
貯槽218に運搬し、処理し、貯蔵設備220に貯蔵す
る。そして再び各作業現場へと運搬する。分離された土
砂219は含水率が低くそのまままたは少量の固化剤あ
るいは脱水剤を加えてダンプ車等で運搬できる。サイク
ロン下からの濃縮含水微粒子は貯槽221に湿状態で貯
蔵され、解膠して利用しまたは自装置で比重調整用その
他に使用するほか泥水とともに他の貯蔵処理装置の間で
も授受する。61、62、226は炭酸ガス、pH調整
剤、殺菌剤、ベントナイト、安定剤、増粘剤、水等の供
給系を示す。移動式処理装置222は現場処理装置また
は簡易分離沈降槽212の強化または補助装置あるいは
現場試験装置として使用できる。220は微粒子粒度分
布の異なった泥水、濃縮含水微粒子の貯蔵、配合施設を
有することが好ましい。これは掘削した土質によって異
なる還流泥水の処理後の性状を均一化するためで、再生
使用可能の範囲をひろげることができる。配合は片方を
添加薬剤と見做して、ノズル61等から添加し解砕しつ
つ混合し均一化する。または図51の混合装置を2流体
混合機として有利に使用できる。単に沈降槽で短時間混
合したものとは微細ゲルあるいは粒子集団の混合物とな
り、沈降性その他の性質が異なる。従来法では性質改善
には時間と大きい消費動力が必要である。これは知られ
ていなかった。
Twenty-fifth Embodiment FIG. 40 shows waste mud water, waste mud, adjusted mud water that has been separated or purified (hereinafter referred to as treatment), dehydrated or water-containing fluidized sand for backfilling or landfill, collection, treatment and storage of mud. , Is a systematic diagram of use. The drilling hole 211 and the on-site treatment device 212 repeat the treatment of muddy water and mud and excavation work using the muddy water and muddy soil, and the tank car 213 removes muddy water and settled mud that cannot be technically or temporally regenerated at the end of work and on-site equipment. It is transported to the storage tank 218 attached to the processing device of the storage processing base, processed, and stored in the storage facility 220. Then it is transported to each work site again. The separated sand 219 has a low water content and can be carried by a dump truck or the like as it is or after adding a small amount of a solidifying agent or a dehydrating agent. The concentrated water-containing fine particles from under the cyclone are stored in a storage tank 221 in a wet state and used for deflocculation or for the purpose of adjusting the specific gravity of the device itself, and also for exchanging with other storage treatment devices together with muddy water. Reference numerals 61, 62 and 226 denote supply systems for carbon dioxide, pH adjuster, bactericide, bentonite, stabilizer, thickener, water and the like. The mobile processing device 222 can be used as an in-situ processing device or a reinforcement or auxiliary device for the simple separation settling tank 212 or an in-situ testing device. 220 preferably has a facility for storing and compounding muddy water and concentrated water-containing fine particles having different particle size distributions. This is to equalize the properties after treatment of the reflux mud, which varies depending on the excavated soil quality, and it is possible to expand the reusable range. As for the compounding, one of them is regarded as an additive drug, and the compound is added from a nozzle 61 or the like and mixed while being crushed to be homogenized. Alternatively, the mixing device of FIG. 51 can be advantageously used as a two-fluid mixer. It is a mixture of a fine gel or a population of particles and is different in sedimentation and other properties from what is simply mixed in a sedimentation tank for a short time. The conventional method requires time and large power consumption to improve the properties. This was unknown.

【0044】[0044]

【実施例26】図42は複数列の可動の浮子堰161、
162と真空濾過脱水面234を持つ脱水振動篩であ
る。2、4、8からの泥または泥水は横漏れ防止翼43
を持つ堰161で流下泥水の短絡流下を防止しつつ流下
し、自動弁232からの吸引で濾過脱水する濾過面23
4上の濾過ケーキは弁232を閉じ、切替え給気弁23
1からのブロー空気によって剥離し、振動輸送によって
下流へとおくられる。235は底板235と濾過面の間
の薄い液流路のためのスペーサーである。直接泥水脱水
にも使用できるが、脱水篩にかけなお水分がある土砂、
泥漿の脱水に適している。図43はその説明平面図であ
る。
Twenty-sixth Embodiment FIG. 42 shows a plurality of rows of movable floating weirs 161,
It is a dehydration vibrating screen having 162 and a vacuum filtration dehydration surface 234. Mud or muddy water from 2, 4, and 8 is a side leakage prevention blade 43.
The filtering surface 23 that flows down while preventing the short-circuiting of the flowing mud by the weir 161 having the above, and filters and dehydrates by suction from the automatic valve 232.
The filter cake on No. 4 closes the valve 232 and switches the air supply valve 23.
It is separated by blown air from 1, and is sent downstream by vibration transport. 235 is a spacer for a thin liquid flow path between the bottom plate 235 and the filtration surface. It can also be used directly for dewatering mud water, but the debris that still has water through the dewatering sieve,
Suitable for dehydrating sludge. FIG. 43 is an explanatory plan view thereof.

【0045】[0045]

【実施例27】図44は泥水流入口240とサンドポン
プ差し込み口258を持つ邪魔板装置にサンドポンプを
設置した断面説明図である。槽43を沈降槽として使用
する時には吸入口241を開けて主として上層液をポン
プ6で送り、沈降物を送る時には蓋242を閉じて孔2
40から底層を吸入する。斜面57の孔は充分小か、数
を少なくして底からの吸入を円滑にする。振動機または
振動系60を付属し斜面の沈降物を下降させるのが適当
である。この邪魔板構造とボンプは一体構造としてもよ
い。邪魔板は槽壁や底と異なり水圧等に耐える必要がな
いので軽量に製作できる。また沈降物を集めるための円
錐あるいは角錐底構造に比べ容量大で、全体構造は簡易
になる。槽でなく池、湖沼の浚渫に使用してもよい。そ
の時は底、側面に掻取羽根を付け、移動、回転して使用
できる。図45はその平面図である。
[Embodiment 27] FIG. 44 is a sectional view showing a sand pump installed in a baffle device having a muddy water inlet 240 and a sand pump inlet 258. When the tank 43 is used as a sedimentation tank, the suction port 241 is opened and the upper layer liquid is mainly sent by the pump 6, and when the sediment is sent, the lid 242 is closed and the hole 2 is formed.
Inhale bottom layer from 40. The holes in the slopes 57 are small enough or small in number to facilitate suction from the bottom. It is suitable to attach a vibrator or vibration system 60 to lower the sediment on the slope. The baffle structure and the pump may be integrated. Unlike the tank wall and bottom, the baffle plate does not need to withstand water pressure, so it can be made lightweight. In addition, it has a larger capacity than the conical or pyramidal bottom structure for collecting sediment, and the overall structure is simple. It may be used for dredging of ponds and lakes instead of tanks. At that time, scraping blades are attached to the bottom and side surfaces, and can be moved and rotated for use. FIG. 45 is a plan view thereof.

【0046】[0046]

【実施例28】図46は振動の切り替え伝達機構で傾斜
板沈降機の板を複数組に分け振動系60で駆動されてい
る棒182から制御モーター85で回転する回転伝達片
244を介して間歇的に駆動し、動力と起動電流を節約
する。振動機は連続運転は脱水篩を除いては必ずしも必
要でないが、振動力の大きいものは動力消費が大きい。
しかし機動停止を繰り返すのは起動電流が大で得策でな
い。このように振動すべきものを組分けして順次きりか
えて、振動させることができる。振動源は振動篩等であ
ってもよい。図47は振動を線あるいはワイヤロープ1
99とプリー、その他の支点247等を使用して方向変
換すること、伝達片244に線あるいは剛性の棒を押し
つけ伝達効率を上げる弾性体あるいは可動片250の作
用を示す。
Twenty-Eighth Embodiment FIG. 46 shows a vibration switching transmission mechanism in which the plates of the inclined plate settling machine are divided into a plurality of sets, and the rods 182 driven by the vibration system 60 are intermittently moved through a rotation transmission piece 244 rotated by a control motor 85. Drive, saving power and starting current. Except for the dehydration sieve, continuous operation of the vibrator is not always necessary, but those with a large vibration force consume a large amount of power.
However, it is not a good idea to repeat the operation stop because the starting current is large. In this way, the objects to be vibrated can be grouped and sequentially switched to vibrate. The vibration source may be a vibrating screen or the like. Fig. 47 shows the vibration line or wire rope 1
99 and pulleys and other supporting points 247 are used to change the direction, and a wire or a rigid rod is pressed against the transmission piece 244 to show the action of the elastic body or the movable piece 250.

【0047】[0047]

【実施例29】図48は移動式処理装置に適した槽43
と槽に設けた支点83を中心に回転して槽内に収納する
サイクロン装置7である。収納、据付けの固定は支持枠
344による。槽枠344は曲面を強化する。図49は
脱水振動篩を収納できる泥水処理槽の側面断面説明図で
ある。槽は余分の振動の吸収と軽量化、泥排出の容易化
のために外面に凸な外板の殻構造とこれを強化し、機器
を支持するための強化枠からなる。従って有害な振動を
他に伝えることなく、車載のままあるいは他の構造物の
上に置きあるいは必要により固定して運転できる。
[Embodiment 29] FIG. 48 shows a tank 43 suitable for a mobile processing apparatus.
The cyclone device 7 rotates around a fulcrum 83 provided in the tank and is housed in the tank. The storage and installation are fixed by the support frame 344. The tank frame 344 strengthens the curved surface. FIG. 49 is a side cross-sectional explanatory view of a muddy water treatment tank that can accommodate a dehydration vibrating screen. The tank consists of a shell structure with a convex outer shell to absorb extra vibration, reduce weight, and facilitate mud discharge, and a strengthening frame for supporting this and supporting the equipment. Therefore, the vehicle can be operated as it is on the vehicle, placed on another structure, or fixed if necessary without transmitting harmful vibrations to others.

【0048】[0048]

【実施例30】図50は簡易クレーン348を備えたユ
ニーク車349に泥水処理装置43等を積載したもので
ある。コンパクト化、操作性の見地から、少なくとも単
位装置の一部に本発明による装置を使用した組合せであ
ることが好ましい。転倒と振動防止のためにクレーン車
と類似の引込み脚157を付けるのが好都合である。単
位装置の固定、分離を容易にできるものは現場で実地試
験の後、有効な機器を選択して作業現場に残すこともで
きる。固定したものは比較的小型の汎用車台の場合にて
きする。運搬、現場運転のため車輌は切離し可能のトレ
ーラーであってもよい。
[Embodiment 30] FIG. 50 shows a unique vehicle 349 equipped with a simple crane 348 and a mudwater treatment device 43 and the like loaded therein. From the viewpoint of compactness and operability, it is preferable that the device according to the present invention is used for at least part of the unit device. It is convenient to attach a retractable leg 157 similar to a mobile crane to prevent tipping and vibration. For those that can easily fix and separate unit devices, it is also possible to select a valid device and leave it at the work site after a field test at the site. The fixed one comes in the case of a relatively small general-purpose chassis. The vehicle may be a detachable trailer for transportation and field operation.

【0049】[0049]

【実施例31】図51は水、安定化泥水、その分離再生
ベントナイト泥等の混合に適した混合機である。比較的
高密度の液または半流動泥は中央入口141から導入す
るのが適当である。異なった粒度の混合ではそれぞれが
小集団になっている可能性が高いので、剪断力を掻けつ
つ分散混合することによって再現性ある均一な液の供給
と取扱いが簡単でない泥状物からの掘削用泥水の急速調
製が可能になった。図52は図50に相当する混合機を
直立姿勢で取り付けた例で、開口287から振動機60
付の槽に泥を投入し、弁286で調節しつつ混合機14
7に供給する。旋回による吸引力と槽の圧によって中央
入り口管141から入った再生濃縮ベントナイト泥等は
周辺からの水または泥水入り口284、285からの水
と共に旋回し、強い剪断力をかけつつ分散混合し、出口
150から貯槽あるいは沈降槽等にはいる。61、62
から炭酸ガス、分散剤、安定剤等の添加剤を注入でき
る。
[Embodiment 31] FIG. 51 shows a mixer suitable for mixing water, stabilized mud water, bentonite mud separated and regenerated thereof. A relatively dense liquid or semi-solid mud is suitably introduced through the central inlet 141. Since mixing with different particle sizes is likely to be a small group, it is possible to reproducibly and uniformly supply a liquid by drilling from mud that is not easy to handle by dispersing and mixing while scratching the shearing force. It became possible to rapidly prepare mud water for use. FIG. 52 shows an example in which the mixer corresponding to FIG.
The mud is put into the tank provided with the mixer 14 while adjusting it with the valve 286.
Supply to 7. The regenerated concentrated bentonite mud and the like that entered from the central inlet pipe 141 by the suction force due to the swirling and the pressure of the tank swirl together with the water from the surroundings or the water from the mud inlets 284 and 285 to disperse and mix while applying a strong shearing force, and then the outlet. Enter from 150 to storage tank or sedimentation tank. 61, 62
It is possible to inject additives such as carbon dioxide gas, a dispersant and a stabilizer.

【0050】[0050]

【実施例32】図53は軸流型マルチクロンである。通
常型サイクロン同様小型小径サイクロンは分級能力が改
善され装置が平面的に構成できるので製作、保管、運
搬、利用とも簡易になった。これは軸流サイクロン製作
と修理が容易になり、実現容易になったものである。炭
酸ガス等の処理剤、添加剤等を添加された粗泥水または
前処理された泥水等は入り口主管46から入り、複数の
軸流サイクロン7に分岐し、翼で剪断力と旋回を与えら
れ、土砂は周部隙間148 から排出され槽に流下す
る。吹き上げを防止するために図54のように覆い87
を被せ、あるいは固定できる。またこの装置を液中に沈
めることもできる。
[Embodiment 32] FIG. 53 shows an axial flow type multi-clone. Similar to the normal type cyclone, the small size and small diameter cyclone has improved classification ability and the device can be configured in a plane, so it is easy to manufacture, store, transport and use. This makes the axial cyclone easier to manufacture and repair and easier to realize. The treatment mud such as carbon dioxide, the crude mud added with the additive or the pretreated mud enters through the inlet main pipe 46, branches into a plurality of axial cyclones 7, and is given a shearing force and a swirl by the blades. The earth and sand are discharged from the peripheral gap 148 and flow down into the tank. Cover 87 as shown in FIG. 54 to prevent blowing up.
Can be covered or fixed. The device can also be submerged in the liquid.

【0051】[0051]

【実施例33】図55は流下面または伝熱面350の内
壁に螺旋352を装備した表面更新促進管または伝熱促
進管である。体流下膜は螺旋の内面と漏洩流が管表面側
を流れるので物質更新すなわち表面境膜が関係する吸
収、光照射、伝熱等の効率、蒸発能力を向上する。従来
凹凸面を持つ伝熱促進管として、伝熱のよい通常流下膜
蒸発器のさらに2〜10倍の能力を持つリンデ管がある
が、外面加工したものは種々の方法で容易に製作できた
が、内面加工が必要な場合は加工困難で、利用し難いも
のであった。本発明はバネを伸ばした状態で差し込み、
これを縮めることによって、ネジを切ることなく、管内
面に全面または部分接触した凹凸、あるいは螺旋を容易
に加工できる。螺旋断面を僅かに異型に、例えば楕円、
角に変形すれば管内面と螺旋の間に安定した隙間を設け
ることもできる。スポット溶接等によって管内面に留め
ることもできる。懸濁液や泥水処理には流下膜装置は伝
熱面への粒子沈着のため、従来使用できないものとされ
ていた。このように加工した促進管はさらに微粒子が沈
積し易いので問題であった。伝熱面内面掻取をする装置
は従来存在したが、複雑、効果なもので剥離し易い軽い
付着あるいは粘性障害を簡易に除くものはなかった。し
かし研究の結果、土砂を分離した液について、内装螺旋
を回転、上下運動または特に振動させることによって低
動力で使用できることを発見した。これは管内面を清掃
すること、濃縮粒子高粘性物の振動によるチキソトロピ
ーの発現によるものと思われる。螺旋上部に内装螺旋あ
るいは内装バネより弱いバネを連結し、螺旋下端に錘7
9を下げ、バネ振子としての振動を起こさせると、特に
動力を節約できる。棒363は回転駆動のための伝達棒
である。バネの特性から管外面巻よりも管内面螺旋の方
が直線あるいは回転運動による付着物剥離動作は円滑で
ある。これは力がかかった場合に、内面螺旋は径が縮小
が容易だからである。外面螺旋の場合には回転を与えつ
つ伸縮運動させるか、螺旋径が膨張、伸縮を繰り返すよ
うに運動させることによって容易に流下膜の表面更新、
清掃または掻取りができる。主として上下の弾性振動に
使用する比較的弱いバネ353は内装バネ352を吊り
具364によって吊り、板バネ等であってもよい弾性部
品354を介して流体または電磁駆動機能355によっ
て振動する。振動は間歇でもよく、手動によることもで
きる。入り口管1から供給された液あるいは懸濁液は公
知の種々の分配器364によって管350の内面を膜状
になって流下する。熱交換する加熱流体は357から外
套2に入り、隙間356を上昇して出口管358から出
る。流下膜は螺旋による乱れで境膜を更新しつつ加熱さ
れ、堰362で集められて、出口359から出る。ず5
6はB−B横断面に相当する。但し、管352の外表面
にも螺旋を巻いた場合を示している。流下面の蒸気等の
熱媒体による加熱も可能でこの場合には、伝熱促進蒸発
管として作動する。
[Embodiment 33] FIG. 55 shows a surface renewal promotion tube or a heat transfer promotion tube in which a spiral 352 is provided on the inner surface of the heat transfer surface 350 or the lower surface. The body flow membrane improves the efficiency of material renewal, that is, absorption, light irradiation, heat transfer, etc., and evaporation ability related to the material renewal, that is, the surface boundary membrane, since the inner surface of the spiral and the leak flow flow on the tube surface side. Conventionally, there is a Linde tube which has an ability of 2 to 10 times that of a normal falling film evaporator, which has good heat transfer, as a heat transfer promotion tube having an uneven surface, but the outer surface processed tube can be easily manufactured by various methods. However, when it was necessary to process the inner surface, it was difficult to process and difficult to use. The present invention inserts the spring in a stretched state,
By contracting this, it is possible to easily process the unevenness or the spiral which is in full or partial contact with the inner surface of the pipe without cutting a screw. The spiral cross section is slightly atypical, for example, an ellipse,
If it is deformed into a corner, a stable gap can be provided between the inner surface of the tube and the spiral. It can also be fastened to the inner surface of the pipe by spot welding or the like. Conventionally, the falling film device cannot be used for suspension or muddy water treatment because of the deposition of particles on the heat transfer surface. The thus-fabricated facilitation tube was problematic because particles were more likely to deposit. Conventionally, there have been devices for scraping the inner surface of the heat transfer surface, but none of them are complicated and effective, and easily remove light adhesion or viscous disorder that easily peels off. However, as a result of research, it was discovered that the liquid from which soil and sand were separated can be used with low power by rotating, vertically moving or particularly vibrating the inner spiral. This seems to be due to the cleaning of the inner surface of the tube and the expression of thixotropy due to the vibration of the highly viscous material of concentrated particles. An internal spiral or a spring weaker than the internal spring is connected to the upper part of the spiral, and a weight 7 is attached to the lower end of the spiral.
Lowering 9 to cause vibrations as a spring pendulum saves power in particular. The rod 363 is a transmission rod for rotational driving. Due to the characteristics of the spring, the spiral of the inner surface of the tube is smoother than the outer surface of the tube, so that the adhered matter can be easily removed by a straight line or a rotational movement. This is because the diameter of the inner surface spiral can be easily reduced when a force is applied. In the case of an external spiral, the surface of the falling film can be easily renewed by expanding or contracting while giving rotation, or by making the spiral diameter expand and contract repeatedly.
Can be cleaned or scraped. A relatively weak spring 353, which is mainly used for upper and lower elastic vibrations, suspends the internal spring 352 by a suspending tool 364 and vibrates by a fluid or an electromagnetic drive function 355 through an elastic component 354 which may be a leaf spring or the like. The vibration may be intermittent or manual. The liquid or suspension supplied from the inlet pipe 1 flows down in the form of a film on the inner surface of the pipe 350 by various known distributors 364. The heating fluid that exchanges heat enters the jacket 2 through 357, rises through the gap 356, and exits through the outlet pipe 358. The falling film is heated while renewing the film due to turbulence due to the spiral, is collected by the weir 362, and exits from the outlet 359. No 5
6 corresponds to a BB cross section. However, a case where a spiral is also wound on the outer surface of the pipe 352 is shown. It is also possible to heat the underflow surface with a heat medium such as steam, and in this case, it operates as a heat transfer promotion evaporation tube.

【0052】[0052]

【実施例34】図56は紫外線オゾン灯365と流下膜
装置300とからなるオゾン溶解または殺菌装置であ
る。脱臭装置としても使用できる。螺旋の挿入によって
表面皮膜が更新されるので、水に比し紫外線透過率の劣
る懸濁液あるいは泥水の紫外線殺菌にてきする。液また
は懸濁液は供給管1から入り分配器4から充填層366
でオゾンを吸収しつつ流下し、傘371と分配器364
により、流下膜を形成する。ステンレス鋼管350内面
と紫外線灯あるいはオゾン灯の器よりは紫外線照射とオ
ゾン発生の有効距離とされる50〜60mm以内とする
のが適当である。振動機60によって微粒子閉塞を防止
するが、灯365には振動をかけないよう独立させるの
がよい。懸濁液の場合でも装置の閉塞はなく、実施例1
同様殺菌または菌抑制効果が認められた。運転温度は効
果に影響するが、温度は水套356によって調節でき
る。
[Embodiment 34] FIG. 56 shows an ozone dissolving or sterilizing apparatus comprising an ultraviolet ozone lamp 365 and a falling film apparatus 300. It can also be used as a deodorizing device. Since the surface film is renewed by the insertion of the spiral, it can be used for the ultraviolet sterilization of a suspension or mud having a lower ultraviolet transmittance than water. The liquid or suspension enters from the supply pipe 1 and the distributor 4 to the packed bed 366.
It flows down while absorbing ozone at the umbrella 371 and the distributor 364.
To form a falling film. It is appropriate that the distance from the inner surface of the stainless steel pipe 350 to the ultraviolet lamp or ozone lamp is within 50 to 60 mm which is the effective distance for ultraviolet irradiation and ozone generation. Although the vibrating machine 60 prevents the particles from being blocked, it is preferable that the lamp 365 is independent so as not to vibrate. Even in the case of a suspension, there was no blockage of the device, and Example 1
Similarly, a bactericidal or bacteriostatic effect was observed. The operating temperature affects the effect, but the temperature can be adjusted by the water jacket 356.

【0053】[0053]

【実施例35】図58は大量の液または懸濁液あるいは
汚水の熱交換に適した流下膜式大面積の熱交換装置であ
る。普通鋼またはステンレス鋼薄板伝熱面350は曲面
または波板で軽量に製作できる。分配器364は伝熱面
の両面に設けて薄板を挾み、補強を兼ねている。高温流
体363入り口低温のそれ364は反対面の分配室に入
り、流下して並流接触する。懸濁液の場合には振動器6
0を使用する。この単位装置を直列につないで、向流熱
交換に近い効果を出すことができる。振動効果をあげる
ために、槽との接続は伝熱面の横流れ防止用の縁373
を利用して、ゆるい固定をすることができる。373は
伝熱面、槽のいずれに固定してもよい。図59は流体の
片方が一回通過で、他方が複数回、接触し向流熱交換と
同等の効果を得るものである。振動のための支持具36
9は棒368似よって振動器に連絡する。多数回通過側
は最下段供給口1から入り、伝熱面350下部を流下し
下段ポンプ6で中段流下膜に供給され、次に中段ポンプ
により最上段流下膜に境杞憂される。この伝熱装置は図
58のように組み立てることによってね容易に大容量熱
交換の経済性を改善する。
[Embodiment 35] FIG. 58 shows a falling film type large area heat exchange apparatus suitable for heat exchange of a large amount of liquid, suspension or sewage. The heat transfer surface 350 of the ordinary steel or stainless steel thin plate may be a curved surface or a corrugated plate, and may be made lightweight. Distributors 364 are provided on both sides of the heat transfer surface to sandwich a thin plate and also serve as reinforcement. The cold fluid inlet 364 at the inlet of the hot fluid 363 enters the distribution chamber on the opposite side and flows down into parallel flow contact. Vibrator 6 for suspension
Use 0. By connecting the unit devices in series, an effect close to countercurrent heat exchange can be obtained. In order to increase the vibration effect, the connection with the bath is a rim 373 for preventing lateral flow of the heat transfer surface.
Can be used for loose fixing. 373 may be fixed to either the heat transfer surface or the tank. In FIG. 59, one of the fluids passes once and the other contacts a plurality of times, and an effect equivalent to countercurrent heat exchange is obtained. Supports for vibration 36
Nine communicates with the vibrator by analogy with rod 368. The multiple-passage side enters from the lowermost stage supply port 1, flows down the lower part of the heat transfer surface 350, is supplied to the middle stage falling film by the lower stage pump 6, and then is interrupted by the uppermost stage falling film by the middle stage pump. The heat transfer device can be assembled as shown in FIG. 58 to easily improve the economical efficiency of large capacity heat exchange.

【0054】[0054]

【実施例36】粒子に付着した有機物は240℃付近で
熱分解、酸化を始め、350〜520℃付近1分〜10
0時間で低温燃焼する。泥水処理した活性炭等の炭素質
または無機吸着剤は過剰空気を含む熱風を流動化ガスと
して内径200mm、高さ3mの鋼製流動炉で450
℃、10〜60分再生し30kg/時、流動低温酸化再
生できた。歩留97%で繰返しできた。同装置で汚泥を
280℃、10分熱処理し、脱臭できた。排気は活性炭
吸着処理した。有機質汚泥からの臭気を吸引し、流動活
性炭再生装置で活性炭を再生しつつ、低温燃焼脱臭がで
きた。有機質汚泥または有機物付着土砂の長時間処理は
加熱の後、静置し、断熱状態または間歇的流動で熱補給
状態で処理し、炭素を焼却除去し、目視確認できた。大
量集積処理では加熱の後、空気補給と必要により可燃物
補給によって所要温度を維持できる。
[Example 36] Organic substances attached to particles begin to undergo thermal decomposition and oxidation at around 240 ° C, and near 350 to 520 ° C for 1 minute to 10 minutes.
Burns at low temperature in 0 hours. A carbonaceous material such as activated carbon treated with muddy water or an inorganic adsorbent uses hot air containing excess air as a fluidizing gas in a steel fluidized furnace with an inner diameter of 200 mm and a height of 3 m.
It was regenerated at 10 ° C. for 10 to 60 minutes, and at 30 kg / hour, it was possible to regenerate at low temperature by flowing. It was possible to repeat with a yield of 97%. The sludge was heat-treated by the same apparatus at 280 ° C. for 10 minutes to be able to deodorize. The exhaust gas was treated with activated carbon adsorption. The odor from the organic sludge was sucked in, and the low temperature combustion deodorization was possible while regenerating the activated carbon with the fluidized activated carbon regenerator. After long-term treatment of organic sludge or organic matter-adhered sediment, after heating, it was allowed to stand, treated in a heat-insulated state or in a heat-supplemented state by intermittent flow, carbon was incinerated, and visually confirmed. In the mass accumulation process, after heating, the required temperature can be maintained by supplying air and, if necessary, combustible substances.

【0055】[0055]

【発明の効果】泥水等の液相−懸濁質あるいは汚泥等の
ゲル性溶液に薬剤、材料を加える反応あるいは操作は従
来法では低効率で処理時間がかかるが、本発明は泥水等
と処理薬剤、pH調整剤、消毒剤その他の添加剤単独ま
たは共存で剪断力をかけることによって泥水に同時分散
しつつ分離し、あるいは別の複数の処理、例えばpHを
下げる条件で速やかに分離と殺菌処理し、所定時間の
後、再び速やかに適当なpHに上げる等の処理を可能に
し、最適処理条件と最適保存条件が異なる場合でも、任
意かつ比較的小型装置に拘らず高い効率で、同時にまた
は順次、反応または消毒と分離を良い分散解離状態で処
理し、分離された土砂成分についても脱水を容易にし、
pH調整し、または消毒できる。処理された泥水につい
ては比重は下がり、無害化または安定化した。沈降した
微粒子でも、サイクロンの遠心作用による高密度化しつ
つ脱水しているので土壌化が促進される。処理された泥
水は循環曝気が容易になり、有害微生物の増殖も防止で
きる。また少ない動力消費で薬剤添加や曝気が可能にな
る。処理に必要な場合、活性炭等炭素質吸着剤、無機吸
着剤の低温酸化再生、低温酸化脱臭、水、泥水浄化、排
気処理が簡易になり、同様な低温熱処理を含めて掘削、
浚渫汚泥処理に適した比較的低コスト、低公害装置、現
場個別処理にも適した方法と装置が可能になった。
EFFECTS OF THE INVENTION The reaction or operation of adding chemicals or materials to a liquid-suspended substance such as muddy water or a gel solution such as sludge takes a low efficiency and a long treatment time in the conventional method, but the present invention treats it with muddy water. Chemicals, pH adjusters, disinfectants, and other additives alone or in coexistence to apply shearing force for simultaneous dispersion in muddy water for separation, or multiple different treatments, for example, rapid separation and sterilization treatment under conditions of lowering pH However, after a predetermined period of time, it is possible to promptly raise the pH to a suitable level again, and even if the optimum processing conditions and the optimum storage conditions are different, high efficiency can be achieved simultaneously or sequentially regardless of the arbitrary and relatively small device. , Reaction or disinfection and separation are processed in a good dissociation state to facilitate dehydration of separated sediment components,
It can be pH adjusted or disinfected. The specific gravity of the treated mud water decreased, and it became harmless or stabilized. Even the fine particles that have settled down are dehydrated while being densified by the centrifugal action of the cyclone, so that soil formation is promoted. Circulating aeration of the treated muddy water becomes easy and the growth of harmful microorganisms can be prevented. In addition, it is possible to add chemicals and aerate with less power consumption. When required for treatment, carbonaceous adsorbents such as activated carbon, low temperature oxidation regeneration of inorganic adsorbents, low temperature oxidative deodorization, water, mud purification, exhaust treatment are simplified, drilling including similar low temperature heat treatment,
A relatively low cost, low pollution equipment suitable for dredging sludge treatment, and a method and equipment suitable for individual site treatment have become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 泥、汚泥、泥水、安定化泥水の処理、浄化
装置の立面断面説明図.
FIG. 1 is an elevation cross-sectional explanatory view of a device for treating and purifying mud, sludge, muddy water, and stabilized muddy water.

【図2】 図1の側面視断面図.FIG. 2 is a side view cross-sectional view of FIG.

【図3】 比重制御自力弁を有する土砂分離槽または
沈降槽断面図.
FIG. 3 is a sectional view of a sediment separating tank or a sedimentation tank having a gravity-controlled self-operated valve.

【図4】 図3の平面図.FIG. 4 is a plan view of FIG.

【図5】 図4の立面図に相当する比重制御重錘の別
例説明図.
5 is an explanatory view of another example of the specific gravity control weight corresponding to the elevation view of FIG.

【図6】 側壁下部に土砂自動排出弁を設けた分離
槽、脱水装置の断面説明図.
FIG. 6 is a cross-sectional explanatory view of a separation tank and a dehydrator having an automatic sediment discharge valve provided on the lower side wall.

【図7】 並行斜面板沈降装置を内蔵した土砂分離
槽.
FIG. 7 Sediment separation tank with a built-in parallel slope plate settling device.

【図8】 図7の側面視断面説明図.FIG. 8 is a side view cross-sectional explanatory view of FIG. 7.

【図9】 垂下排出管の流路切り替え装置の立面説明
図.
FIG. 9 is an elevational explanatory view of the flow path switching device for the drooping discharge pipe.

【図10】 垂下排出管の流路切り替え装置の平面説明
図.
FIG. 10 is an explanatory plan view of the flow path switching device for the drooping discharge pipe.

【図11】 横型排出管の流路切り替え装置の立面説明
図.
FIG. 11 is an elevational view of a flow path switching device for a horizontal discharge pipe.

【図12】 横型排出管の流路切り替え装置の平面説明
図.
FIG. 12 is an explanatory plan view of a flow path switching device for a horizontal discharge pipe.

【図13】 排出管のシリンダー操作装置.FIG. 13: Cylinder operating device for the discharge pipe.

【図14】 図13の立面断面図FIG. 14 is an elevation sectional view of FIG.

【図15】 ベントナイト泥水貯槽水面遮蔽膜展張装置
率面断面図.
FIG. 15 is a sectional view of a bentonite muddy water storage tank water surface shielding film spreading device at an area ratio.

【図16】 図15の円形槽相当平面図.16 is a plan view corresponding to the circular tank of FIG.

【図17】 図15の角形槽相当平面図.FIG. 17 is a plan view corresponding to the rectangular tank of FIG.

【図18】 軸流旋回型混合装置の図.FIG. 18 is a diagram of an axial flow swirl type mixing device.

【図19】 図18の断面図.19 is a sectional view of FIG.

【図20】 軸流サイクロンの側面図.FIG. 20 is a side view of an axial cyclone.

【図21】 交換可能翼の差し込み固定室を示す横断面
説明図.
FIG. 21 is an explanatory cross-sectional view showing the insertion fixing chamber of the replaceable blade.

【図22】 交換可能翼の差し込み固定室と別型の翼を
示す断面説明図.
FIG. 22 is a cross-sectional explanatory view showing the insert fixed chamber of the replaceable blade and a different type blade.

【図23】 車載に適した脱水篩と中間槽の説明図.FIG. 23 is an explanatory view of a dehydrating sieve and an intermediate tank suitable for mounting on a vehicle.

【図24】 堰、分割流路、球型浮動弁を有する脱水篩
平面図..
FIG. 24 is a plan view of a dewatering sieve having a weir, a divided flow path, and a spherical floating valve. .

【図25】 堰、分割流路、円筒型浮動弁を有する脱水
篩平面図.
FIG. 25 is a plan view of a dehydrating sieve having a weir, a divided flow path, and a cylindrical floating valve.

【図26】 脱水篩の堰を示す側面図.FIG. 26 is a side view showing a weir of a dewatering sieve.

【図27】 堰開放機構を有する脱水篩面説明図.FIG. 27 is an explanatory view of a dehydrated sieve surface having a weir opening mechanism.

【図28】 並行斜面板沈降装置を有する脱水振動篩装
置断面説明図.
FIG. 28 is a cross-sectional explanatory view of a dewatering vibrating screen device having a parallel slope plate sedimentation device.

【図29】 摩耗障害対策用挿入管と比重制御機構を有
するサイクロン.
FIG. 29 is a cyclone having an insertion tube for wear failure prevention and a specific gravity control mechanism.

【図30】 振動分配機構と並行斜面沈降装置を有する
脱水振動篩断面説明図.
FIG. 30 is an explanatory view of a cross section of a dewatering vibrating screen having a vibration distribution mechanism and a parallel slope sedimentation device.

【図31】 中間取り出し機能を有する多段軸流サイク
ロン縦断面図.
FIG. 31 is a vertical cross-sectional view of a multi-stage axial flow cyclone having an intermediate take-out function.

【図32】 中間取り出し機能を有する断面拡大型多段
軸流サイクロン縦断面図.
FIG. 32 is a vertical cross-sectional view of an enlarged cross-sectional multi-stage axial flow cyclone having an intermediate take-out function.

【図33】 図31、32の側面視A−A、B−B断
面.
33 is a side view taken along the lines AA and BB in FIGS.

【図34】 旋回用固定翼例図.FIG. 34 is a diagram showing an example of a fixed blade for turning.

【図35】 側流取り出し機構を有する通常型サイクロ
ン縦断面図.
FIG. 35 is a vertical cross-sectional view of a normal cyclone having a side-stream extraction mechanism.

【図36】 図35の下側から上を見た横断面図.FIG. 36 is a cross-sectional view as seen from the bottom to the top of FIG. 35.

【図37】 板面、槽底沈降物の振動流動化移動機構の
断面説明図.
FIG. 37 is a cross-sectional explanatory view of a vibration fluidization moving mechanism of plate surface and tank bottom sediment.

【図38】 図37等の振動子平面図.38 is a plan view of the oscillator shown in FIG.

【図39】 浮子作用がある可動堰.塊分割機能を持つ
脱水振動篩断面説明図.
FIG. 39 is a movable weir having a float function. Cross-sectional view of dehydration vibrating screen with lump dividing function.

【図40】 集配、貯蔵、処理、使用系の説明図.FIG. 40 is an explanatory diagram of a collection / delivery, storage, processing, and usage system.

【図41】 濾過面と浮子堰を持つ脱水振動篩の断面説
明図.
FIG. 41 is a cross-sectional explanatory diagram of a dewatering vibrating screen having a filtration surface and a float weir.

【図42】 図41の平面図.42 is a plan view of FIG. 41. FIG.

【図43】 移動式処理装置.FIG. 43 is a mobile processing device.

【図44】 泥水流入口とサンドポンプ口を持つ邪魔板
装置にサンドポンプを設置した断面説明図.
FIG. 44 is a cross-sectional explanatory view in which a sand pump is installed in a baffle device having a muddy water inlet and a sand pump inlet.

【図45】 図44の平面図.45 is a plan view of FIG. 44.

【図46】 振動伝達の切替え装置.FIG. 46 is a vibration transmission switching device.

【図47】 異なる機器の振動伝達切替え装置.FIG. 47 is a vibration transmission switching device for different devices.

【図48】 サイクロン装置を収納した泥水槽立体説明
図.
FIG. 48 is a three-dimensional explanatory view of a muddy water tank accommodating a cyclone device.

【図49】 脱水振動篩を収納した泥水槽側面断面図.FIG. 49 is a side sectional view of a mud tank containing a dehydration vibrating screen.

【図50】 移動式処理装置.FIG. 50 is a mobile processing device.

【図51】 混合機縦断面図.FIG. 51 is a vertical sectional view of the mixer.

【図52】 泥と泥水混合溶解装置の立面説明図.FIG. 52 is an elevational explanatory view of a mud / muddy water mixing / dissolving apparatus.

【図53】 軸流型マルチクロン説明平面図.FIG. 53 is an explanatory plan view of an axial flow type multi-clon.

【図54】 軸流型マルチクロン説明側面図.FIG. 54 is an explanatory side view of an axial flow type multi-clone.

【図55】 螺旋流下膜装置断面説明図.FIG. 55 is a cross sectional explanatory view of a spiral falling film device.

【図56】 螺旋流下膜装置説明平面図.FIG. 56 is a plan view showing the spiral falling film device.

【図57】 紫外線−オゾン処理装置説明断面図.FIG. 57 is an explanatory sectional view of the ultraviolet-ozone processing apparatus.

【図58】 平行板流下膜熱交換器説明図.FIG. 58 is an explanatory view of a parallel plate falling film heat exchanger.

【図59】 図58に対応する向流流下膜熱交換器の断
面説明図.
59 is a cross-sectional explanatory view of a countercurrent falling film heat exchanger corresponding to FIG. 58. FIG.

【符号の説明】[Explanation of symbols]

1 供給管.2 分離槽.4 分配器.5、15 振動
篩.6、16、26 水中サンドポンプ.7、17、2
7、47 サイクロン.8 流出制御装置.9 脱水振
動篩.10、20、30 比重計.11、12、21
自動または手動のスイング型切流路り替え装置.18、
28 調節装置.19、29 樋.40 多孔管.42
撹拌機構.45 格子状振動体.53 箱型または堰
型の小区画.60 振動機 61 炭酸ガス等pH調節剤注入装置またはノズル.6
2 消毒剤注入装置.62 消毒薬剤注入系.63 注
入機構.71 自動比重弁.79浮子、重錘.86 調
節モーター.89 バネ等緩衝材.99 傾斜板.10
1 撹拌装置付き活性炭流動吸着装置. 102 水洗
浄、酸処理装置.103 乾燥系. 104 流動低温
酸化再生装置. 111 分配部.123 台. 12
5 制御シリンダー. 136 巻取モーター.138
巻取ロール. 142 差し込み型旋回羽根. 15
5 装置の台.156 引込み脚. 157 固定装
置.158 引込みピストン.160 泥分割機能16
0.161 堰.162 浮動弁構造.64 車台.1
66 車軸部. 190 固定機構. 190分離粒子
取り出し用側流流路 192 周部に設けたスリット.200 沈降物.24
4 振動伝達体 284 水または泥水入り口.350 伝熱面.352
螺旋.364分配器.
1 Supply pipe. 2 separation tanks. 4 distributors. 5, 15 Vibrating sieve. 6, 16, 26 Submersible sand pump. 7, 17, 2
7, 47 Cyclone. 8 Outflow control device. 9 Dewatering vibrating screen. 10, 20, 30 Hydrometer. 11, 12, 21
Automatic or manual swing type cut-off channel switching device. 18,
28 Adjustment device. 19, 29 Gutter. 40 Perforated tube. 42
Stirring mechanism. 45 grid-like vibrating body. 53 Box-shaped or weir-shaped subdivisions. 60 Vibrator 61 Injecting device or nozzle for pH adjusting agent such as carbon dioxide. 6
2 Disinfectant injection device. 62 Disinfectant injection system. 63 injection mechanism. 71 Automatic gravity valve. 79 floats, weights. 86 Adjustment motor. 89 Buffer materials such as springs. 99 inclined plate. 10
1 Activated carbon fluidized adsorption device with stirring device. 102 water washing and acid treatment equipment. 103 dry system. 104 fluidized low-temperature oxidation regenerator. 111 distributor. 123 units. 12
5 Control cylinder. 136 winding motor. 138
Take-up roll. 142 Insertable swirl vane. 15
5 Equipment stand. 156 retractable leg. 157 fixing device. 158 retracting piston. 160 Mud dividing function 16
0.161 weir. 162 floating valve structure. 64 chassis. 1
66 axles. 190 fixing mechanism. 190 Side flow channel for taking out separated particles 192 Slits provided in the peripheral portion. 200 sediment. 24
4 Vibration transmitter 284 Water or muddy water inlet. 350 heat transfer surface. 352
Spiral. 364 distributor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/50 520 J 9045−4D 531 R 9045−4D M 9045−4D 540 A 9045−4D 550 H 9045−4D 560 A 9045−4D B 9045−4D C 9045−4D 1/72 Z 101 1/76 A 1/78 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 1/50 520 J 9045-4D 531 R 9045-4D M 9045-4D 540 A 9045-4D 550 H 9045-4D 560 A 9045-4D B 9045-4D C 9045-4D 1/72 Z 101 1/76 A 1/78 ZAB

Claims (36)

【特許請求の範囲】[Claims] 【請求項1】掘削、浚渫または土壌浄化工事で発生した
泥水または泥を工事現場から集めて処理設備により土砂
分を分離し、分離泥水または水を浄化処理し、または工
事に再使用する処理において、微粒子を含む水または泥
水に殺菌、菌抑制処理または吸着浄化から選ばれた処理
をする懸濁水または泥土の処理法。
[Claim 1] In a process of collecting mud water or mud generated by excavation, dredging or soil purification work from the construction site and separating earth and sand with a treatment facility, purifying the separated mud water or water, or reusing it for construction , A method of treating suspended water or mud in which water or muddy water containing fine particles is subjected to a treatment selected from sterilization, bacterial suppression treatment or adsorption purification.
【請求項2】工事が現場打設杭または地中連続壁工事で
あり、土砂分離前または後にpH調整物質または殺菌あ
るいは菌抑制処理をする請求項1記載の懸濁水または泥
土処理方法。
2. The suspension water or mud treatment method according to claim 1, wherein the construction is on-site pile construction or underground continuous wall construction, and a pH adjusting substance or sterilization or microbial control treatment is carried out before or after sediment separation.
【請求項3】殺菌または菌抑制処理が加熱、オゾン、紫
外線照射、過酸化物、活性酸素、無機塩素系殺菌剤また
は塩素酸化合物から選ばれた1つまたは2つ以上の組合
せからなる請求項1または2記載の懸濁水処理方法。
3. The sterilization or bacteriostatic treatment comprises one or a combination of two or more selected from heating, ozone, ultraviolet irradiation, peroxide, active oxygen, an inorganic chlorine-based bactericide or a chloric acid compound. The method for treating suspended water according to 1 or 2.
【請求項4】土砂を分離した微粒子懸濁水または洗浄泥
水を炭素質吸着体で吸着処理し、または土と直接または
隔壁を介して接触した炭素質吸着体を低温酸化再生して
再使用する請求項1または3記載の懸濁水または泥土処
理法。
4. A method of adsorbing fine particle suspension water or washing mud water from which sediment has been separated with a carbonaceous adsorbent, or reusing the carbonaceous adsorbent contacting soil directly or through a partition wall by low-temperature oxidation to reuse. Item 4. The method for treating suspended water or mud according to item 1 or 3.
【請求項5】酸性物質、炭酸ガス、分散剤、殺菌剤から
選ばれた1つまたは2つ以上の組合せを泥水または泥に
加えつつ、または加えた後、粒子分級する2段以上の液
体サイクロンと1つ以上の振動篩からなる装置におい
て、(1)分離した泥水、または分離水を炭素質吸着体
で浄化する操作と、(2)使用した炭素質吸着体を低温
再生すること、からなる泥水または泥状物処理方法。
5. A liquid cyclone having two or more stages for classifying particles while adding to or after adding to mud or mud one or more combinations selected from an acidic substance, carbon dioxide gas, a dispersant and a bactericide. And a device comprising one or more vibrating screens, which comprises (1) an operation of purifying separated muddy water or separated water with a carbonaceous adsorbent, and (2) low-temperature regeneration of the used carbonaceous adsorbent. Muddy water or sludge treatment method.
【請求項6】加熱処理が連続または断続振動を付与され
た伝熱面により土砂分離泥水の熱交換をする請求項1ま
たは3記載の懸濁水または泥水処理装置。
6. The suspended water or muddy water treatment device according to claim 1 or 3, wherein the heat treatment heat-exchanges heat with a heat transfer surface to which continuous or intermittent vibration is applied.
【請求項7】殺菌処理と吸着処理を併用する請求項1ま
たは3記載の懸濁水または掘削用泥水処理方法。
7. The method for treating suspended water or mud water for excavation according to claim 1, wherein sterilization treatment and adsorption treatment are used in combination.
【請求項8】泥水または泥から土砂または成分粒子を分
離する脱水篩において含水土砂流または泥を排出するサ
イクロン下流の濃縮排出物または直接供給泥を、縦リブ
または縦線状物と振動篩面付近の切れ目または隙間と、
切れ目または隙間に適合する浮動体弁を有する篩上に供
給する脱水振動篩。
8. A vertical rib or a vertical line-shaped object and a vibrating screen surface for a concentrated discharge product or a direct supply mud product downstream of a cyclone that discharges a water-containing sediment flow or mud in a dewatering screen for separating mud water or sediment or component particles from mud. A break or gap in the vicinity,
Dewatering vibrating screen fed over a screen with a floating valve that fits in cuts or gaps.
【請求項9】泥水または泥漿から土砂を分離するサイク
ロンにおいて、含水土砂流を排出するサイクロン下流排
出部に内壁保護管を付けた液体サイクロン。
9. A cyclone for separating sediment from muddy water or sludge, wherein the cyclone downstream discharge part for discharging a water-containing sediment flow is provided with an inner wall protection pipe.
【請求項10】泥または泥水流出口において流出管また
は流れ誘導機能をスイングさせて流路を変更する手動ま
たは自動の流路制御装置。
10. A manual or automatic flow path control device for changing a flow path by swinging an outflow pipe or a flow guiding function at a mud or muddy water outlet.
【請求項11】泥水処理において、液体サイクロンまた
は混合機処理後に引続いて多孔板流下膜装置でオゾン処
理または曝気処理する泥水の浄化方法。
11. A method for purifying muddy water, which comprises performing ozone treatment or aeration treatment with a perforated plate falling film apparatus after treatment with a liquid cyclone or a mixer in muddy water treatment.
【請求項12】泥水ポンプ付近またはサイクロン付近に
気体を注入し泥水に接触させた後この気体を分析装置に
かける泥水中揮発成分の分析法。
12. A method for analyzing a volatile component of muddy water, which comprises injecting a gas near a muddy water pump or a cyclone, bringing the gas into contact with muddy water, and then applying this gas to an analyzer.
【請求項13】吸引口と水中ボンプ取付け口を有する拡
大された邪魔板構造。
13. An enlarged baffle structure having a suction port and a submersible pump mounting port.
【請求項14】泥水処理の脱水操作において、分離土砂
または泥を個別に脱水し、または粒子集団の混在物とし
て処理する請求項1または8記載の装置。
14. The apparatus according to claim 1 or 8, wherein in the dewatering operation of the muddy water treatment, the separated sediment or mud is individually dehydrated or treated as a mixture of particle groups.
【請求項15】掘削用処理泥水の貯蔵操作において、貯
蔵水面に水面に接して移動する膜状浮屋根または遮蔽物
を設けた懸濁水の貯蔵または処理装置。
15. A storage or treatment device for suspended water, comprising a membrane floating roof or a shield that moves in contact with the water surface in the storage operation of treated mud water for excavation.
【請求項16】掘削用処理泥水の貯蔵操作において、貯
蔵水面を比重1付近のゴムまたはプラスチックのシート
あるいはフィルム製遮蔽物で水面を覆う懸濁水または泥
水の貯蔵または処理装置。
16. An apparatus for storing or treating suspended water or muddy water, which covers the water surface with a rubber or plastic sheet or film shield having a specific gravity of about 1 in the storage operation of the treated mud water for excavation.
【請求項17】泥水処理装置において、筒状または管状
路に水流の軸流旋回運動を与える固定翼と、水流の旋回
の中心部付近のガスまたは薬剤導入機能と液体サイクロ
ンとからなる泥水処理装置。
17. A muddy water treatment device comprising a stationary vane for imparting an axial swirling motion of a water flow to a tubular or tubular passage, a gas or chemical introduction function near the center of swirling of the water flow, and a liquid cyclone. .
【請求項18】サイクロン装置において、サイクロンに
単数または複数の側流取り出し口を設けた軸流または通
常サイクロン装置。
18. A cyclone device, which is an axial flow or normal cyclone device in which one or more side flow outlets are provided in the cyclone.
【請求項19】泥水処理装置において、筒状または管状
路に水流の軸流旋回運動を与える固定翼と、水流の旋回
の中心部付近に泥状物、ガスまたは薬剤導入機能を設け
た複数流体混合装置。
19. A mud water treatment apparatus, wherein a plurality of fluids having a fixed blade for giving an axial swirling motion of a water flow to a tubular or tubular passage and a mud, gas or chemical introduction function near the center of swirling of the water flow. Mixing device.
【請求項20】出入口の主管の間に複数の軸流サイクロ
ンを連結したサイクロン装置。
20. A cyclone device in which a plurality of axial-flow cyclones are connected between main pipes at the entrance and exit.
【請求項21】泥または泥水の振動脱水篩において、篩
との接触面付近に隙間を持つ堰と隙間を塞ぐが脱水泥に
より浮動する開閉弁を設けた振動脱水篩。
21. A vibrating dewatering sieve of mud or muddy water, comprising a weir having a gap near a contact surface with the sieve and an opening / closing valve for closing the gap but floating by the dewatering mud.
【請求項22】泥または泥水の振動脱水篩において、篩
の下に泥水の傾斜板またはハニカム沈降装置を設けた振
動脱水篩。
22. A vibrating dewatering sieve of mud or muddy water, wherein a slanting plate of muddy water or a honeycomb sedimentation device is provided below the sieve.
【請求項23】液系の沈降装置において、液の分配装置
と水面付近に各傾斜板またはハニカムの流入口を設けた
沈降機能とからなる沈降装置。
23. A liquid-type sedimentation device comprising a liquid distribution device and a sedimentation function provided with an inflow port for each inclined plate or honeycomb near the water surface.
【請求項24】液系の沈降装置において、液の分配装
置、沈降機能、槽の振動子、底板から選ばれた一つまた
は組合せに連続的または断続的に振動を加える振動系を
有する分離装置。
24. A liquid-type sedimentation device, which has a vibration system for continuously or intermittently vibrating one or a combination selected from a liquid distribution device, a sedimentation function, a tank oscillator, and a bottom plate. .
【請求項25】振動源が振動篩または振動モーターであ
り、解除可能の振動系結合機構により連続的または断続
的に振動を加える請求項24記載の分離装置。
25. The separation apparatus according to claim 24, wherein the vibration source is a vibrating screen or a vibration motor, and the vibration is continuously or intermittently applied by a releasable vibration system coupling mechanism.
【請求項26】解除可能の振動系結合機構を自動または
手動で切り替え、振動源と組分けした振動対象との順次
結合−解除動作を繰り返す振動流動装置または沈降物移
動装置。
26. A vibrating fluidizing device or a sediment moving device, which automatically or manually switches a releasable vibrating system coupling mechanism and repeats sequential coupling-releasing operations of a vibrating source and a group of vibrating objects.
【請求項27】流下膜装置とオゾン発生機またはオゾン
灯とからなる請求項3記載の懸濁水または泥土処理装
置。
27. The suspended water or mud treatment device according to claim 3, comprising a falling film device and an ozone generator or an ozone lamp.
【請求項28】液または懸濁液を流下する流下膜装置に
おいて、液分配装置と管と管壁に沿い挿入された螺旋状
線とからなる流下膜装置。
28. A falling film device for flowing down a liquid or a suspension, comprising a liquid distribution device, a tube, and a spiral line inserted along the tube wall.
【請求項29】螺旋状線がバネまたは懸吊構造で支えら
れ、下端に錘機能を設け、機械的または電気的に、上下
あるいは回転運動可能とした流下膜装置。
29. A falling film apparatus in which a spiral wire is supported by a spring or a suspension structure, and a weight function is provided at a lower end thereof, and which is mechanically or electrically movable vertically or rotationally.
【請求項30】平板、折れ面板、波板または曲面板を接
近して平行に並べ、各板両面に温度差がある液を流下す
る流下膜伝熱装置。
30. A falling film heat transfer device for arranging flat plates, bent plates, corrugated plates or curved plates in close proximity to each other and flowing a liquid having a temperature difference on both surfaces of each plate.
【請求項31】流下面上下にわたり複数の分配装置と集
合部の対からなる流下面を設け、下段流体を上の段に順
次送る請求項30記載の流下膜伝熱装置。
31. The falling film heat transfer device according to claim 30, wherein the lower surface of the falling film is provided with a lower surface composed of a plurality of pairs of distribution devices and a collecting portion, and the lower fluid is sequentially sent to the upper step.
【請求項32】泥水または泥供給機構、振動篩、脱水振
動篩槽、ポンプ、サイクロンと炭酸ガスまたは処理用薬
剤供給装置、濾過脱水装置から選ばれた装置を1つまた
は2つ以上にユニット化した請求項1または2記載の処
理装置。
32. A device selected from a muddy water or mud supply mechanism, a vibrating screen, a dehydration vibrating screen tank, a pump, a cyclone and carbon dioxide gas or a processing chemical supply device, and a filter dehydrator is unitized into one or more units. The processing device according to claim 1,
【請求項33】水または泥水供給機構、振動篩、サイク
ロン、槽、脱水機、ポンプ、気相または液相吸着装置と
炭素質吸着体または無機吸着体の流動低温酸化再生装
置、汚泥または有機物付着土の低温燃焼または熱処理装
置、気相低温酸化脱臭装置から選ばれた装置を1つまた
は2つ以上組合せたプラント。
33. A water or muddy water supply mechanism, a vibrating screen, a cyclone, a tank, a dehydrator, a pump, a vapor phase or liquid phase adsorber and a fluidized low-temperature oxidation regenerator for a carbonaceous adsorbent or an inorganic adsorbent, sludge or organic matter adhesion. A plant that combines one or more devices selected from a low temperature soil combustion or heat treatment device and a gas phase low temperature oxidative deodorization device.
【請求項34】車台に積載して固定し、または取外し可
能に固定した請求項32または33記載の処理装置。
34. The processing apparatus according to claim 32, wherein the processing apparatus is mounted on a chassis and fixed, or detachably fixed.
【請求項35】請求項32または33記載の装置を載架
する車台と装置をのせた架台または槽を地盤上に支持固
定する引込み脚とからなる車輌。
35. A vehicle comprising a chassis on which the device according to claim 32 or 33 is mounted and a retractable leg for supporting and fixing the frame or tank on which the device is mounted on the ground.
【請求項36】燃焼炉、焼却炉、車載エンジンまたはエ
ンジン発電機から選ばれた排気系から排気を取り入れ、
殺菌用熱源、活性炭または炭素質吸着体の再生用熱源あ
るいは再生用流動化ガスとする請求項5または7記載の
装置。
36. Intake exhaust gas from an exhaust system selected from a combustion furnace, an incinerator, an in-vehicle engine or an engine generator,
8. The apparatus according to claim 5, wherein the heat source for sterilization, the heat source for regenerating the activated carbon or the carbonaceous adsorbent, or the fluidizing gas for regeneration is used.
JP27323893A 1993-09-27 1993-09-27 Method and apparatus for treating suspension or mud Pending JPH0796295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27323893A JPH0796295A (en) 1993-09-27 1993-09-27 Method and apparatus for treating suspension or mud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27323893A JPH0796295A (en) 1993-09-27 1993-09-27 Method and apparatus for treating suspension or mud

Publications (1)

Publication Number Publication Date
JPH0796295A true JPH0796295A (en) 1995-04-11

Family

ID=17525048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27323893A Pending JPH0796295A (en) 1993-09-27 1993-09-27 Method and apparatus for treating suspension or mud

Country Status (1)

Country Link
JP (1) JPH0796295A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183915A (en) * 2008-02-08 2009-08-20 Kigaku To Method of cleaning supercritical sand and sand product
KR101147220B1 (en) * 2010-01-27 2012-05-25 한국기계연구원 Purifying apparatus for dredged soil using the micro bubbles
KR101435006B1 (en) * 2014-05-12 2014-08-29 (주)동일캔바스엔지니어링 Recovery liquid spray type ion exchange deodorizer
US9447646B1 (en) 2012-12-07 2016-09-20 Mud Maxx, LLC Combination unit for managing fluid
CN108643964A (en) * 2018-07-10 2018-10-12 长沙矿山研究院有限责任公司 Cyclone energy dissipation by hydraulic jump device and energy dissipating method in a kind of classified tailings filling system
CN110326384A (en) * 2019-07-10 2019-10-15 台州长天能源技术有限公司 Desert removes stone method and facility
CN113273400A (en) * 2021-05-13 2021-08-20 张伟丽 Solar water circulating device for waste drilling mud
CN115091608A (en) * 2022-07-19 2022-09-23 广东省源天工程有限公司 Construction treatment equipment for ultra-deep underground diaphragm wall in karst cave development area
CN115166108A (en) * 2022-06-13 2022-10-11 深圳市鑫宇环标准技术有限公司 Method for measuring residual quantity of metrafenone

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183915A (en) * 2008-02-08 2009-08-20 Kigaku To Method of cleaning supercritical sand and sand product
KR101147220B1 (en) * 2010-01-27 2012-05-25 한국기계연구원 Purifying apparatus for dredged soil using the micro bubbles
US9447646B1 (en) 2012-12-07 2016-09-20 Mud Maxx, LLC Combination unit for managing fluid
KR101435006B1 (en) * 2014-05-12 2014-08-29 (주)동일캔바스엔지니어링 Recovery liquid spray type ion exchange deodorizer
CN108643964B (en) * 2018-07-10 2023-12-22 长沙矿山研究院有限责任公司 Cyclone underflow energy dissipater in graded tailing filling system and energy dissipation method
CN108643964A (en) * 2018-07-10 2018-10-12 长沙矿山研究院有限责任公司 Cyclone energy dissipation by hydraulic jump device and energy dissipating method in a kind of classified tailings filling system
CN110326384A (en) * 2019-07-10 2019-10-15 台州长天能源技术有限公司 Desert removes stone method and facility
CN110326384B (en) * 2019-07-10 2024-02-09 台州长天能源技术有限公司 Method and facility for removing stones in desert
CN113273400A (en) * 2021-05-13 2021-08-20 张伟丽 Solar water circulating device for waste drilling mud
CN113273400B (en) * 2021-05-13 2023-08-22 靖边县铠泓商贸有限责任公司 Solar water circulation device for waste drilling mud
CN115166108B (en) * 2022-06-13 2023-12-22 深圳市鑫宇环标准技术有限公司 Method for measuring residue quantity of metrafenone
CN115166108A (en) * 2022-06-13 2022-10-11 深圳市鑫宇环标准技术有限公司 Method for measuring residual quantity of metrafenone
CN115091608A (en) * 2022-07-19 2022-09-23 广东省源天工程有限公司 Construction treatment equipment for ultra-deep underground diaphragm wall in karst cave development area

Similar Documents

Publication Publication Date Title
WO2006108326A1 (en) Magnetizing photocatalytic compact wastewater reclamation and reuse device
CN107973484A (en) The industrial sewage processing unit that band eliminates the unusual smell
JPH0796295A (en) Method and apparatus for treating suspension or mud
CN100375718C (en) Water purification, mud treatment and water purifier
JP2008246273A (en) Washing treatment system for soil contaminated with dioxins and the like
CN101531424A (en) Sewage purification and reuse process and equipment thereof
JP2010036066A (en) Method for dehydrating sludge deposited in storage tank of night soil treatment facility
CN101090868B (en) Magneting photocatalytic compact wastewater reclamation and reuse device
CN216584562U (en) Underground sewage treatment device for coal mine
JP6191903B1 (en) Soil purification system and soil purification method
JP4043124B2 (en) Purification device
KR100628881B1 (en) Compact waste water treatment apparatus
CN205442858U (en) Ozone air floating recycling treatment device
KR200377629Y1 (en) Compact waste water treatment apparatus
CN210764796U (en) Domestic waste penetrant purifier
RU2328454C2 (en) Water purification station
JPH11116368A (en) Treatment of organic material-containing waste liquor and apparatus therefor
CN110550845B (en) Domestic sewage treatment system
CN208829443U (en) A kind of processing system for wet gas cabinet water seal water
JPH11300400A (en) Mobile sludge dehydrating car
CN107935326A (en) A kind of black river sewage bactericidal purifying treatment process that chlorine process is removed with heating
CN107935271A (en) A kind of Heihe road sewage disposal system
CN109607850A (en) A kind of urban sewage purification system and method based on solid absorbent
CN215250063U (en) Mine waste water purification treatment device
CN210065405U (en) Shield constructs effluent treatment plant