JPH0796133A - Treatment of waste gas containing gaseous chlorine and device therefor - Google Patents

Treatment of waste gas containing gaseous chlorine and device therefor

Info

Publication number
JPH0796133A
JPH0796133A JP5239834A JP23983493A JPH0796133A JP H0796133 A JPH0796133 A JP H0796133A JP 5239834 A JP5239834 A JP 5239834A JP 23983493 A JP23983493 A JP 23983493A JP H0796133 A JPH0796133 A JP H0796133A
Authority
JP
Japan
Prior art keywords
treatment
absorption
liquid
exhaust gas
detoxification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5239834A
Other languages
Japanese (ja)
Inventor
Fumitaka Uchino
史貴 内野
浩司 ▲高▼田
Koji Takada
Ayumi Kikuchi
歩 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5239834A priority Critical patent/JPH0796133A/en
Publication of JPH0796133A publication Critical patent/JPH0796133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To neutralize a hypochlorite at high pH and to eliminate the need for measuring pH and oxidation-reduction potential by allowing a part of a liq. absorbent contg. a salt formed by the reaction with a waste gas to react with sodium thiosulfate in an alkali side. CONSTITUTION:A waste gas is introduced into an absorption tower 1, and a liq. absorbent is supplied to the tower 1 by an absorbent circulating pump 2 and a contaminated absorbent transport pump 3. An aq. sodium hydroxide soln. kept at about pH10-12 is used as the absorbent, and the waste gas is sufficiently mixed with the absorbent in the tower 1. Sodium chloride formed by the absorption reaction and the absorbent contaminated with sodium hypochlorite are drawn off at all times in a fixed amt. from the bottom of the tower 1 by the pump 3 and sent to a reducing and detoxicating tank 6 together with the sodium thiosulfite which is mixed in a fixed amt. at all times by a reducing agent delivery pump 5. The contaminated absorbent and sodium thiosulfite are sufficiently mixed in the tank still at high pH and detoxicated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は塩素ガス含有排ガスの処
理、詳しくはガス及び/又は蒸気の形態で、塩素ガスを
含む汚染物質を含有する排ガスから汚染物質を除去する
処理方法及び処理装置に関し、特に光ファイバプリフォ
ームの製造等における排ガス中のダストを除去した後の
塩素ガス含有排ガスの精製に利用できるものであり、汚
染物質吸収液のpH調整等処理系による最終処理工程に
おいて、還元されることにより処理性能に影響を及ぼす
化学薬品を使用する場合に適した方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to treatment of exhaust gas containing chlorine gas, and more particularly to a treatment method and treatment apparatus for removing pollutant from exhaust gas containing pollutant containing chlorine gas in the form of gas and / or steam. In particular, it can be used for purification of chlorine gas-containing exhaust gas after removing dust in exhaust gas in the production of optical fiber preforms, etc., and is reduced in the final treatment step by the treatment system such as pH adjustment of pollutant absorption liquid. This method is suitable when using a chemical that affects the processing performance.

【0002】[0002]

【従来の技術】従来ダスト除去後の塩素ガス含有排ガス
の処理方法としては、例えば特公平3−62442号公
報に記載される方法がある。その概要は、吸収液として
NaOH水溶液等のアルカリ水溶液を用いることによ
り、下記化1の(1) に示すように塩素ガスを吸収液と反
応させてNaCl及びNaOClとして反応容器底部か
らNaCl及びNaOClで汚染された吸収液を抜き取
り、且つ排ガス中のSiO 2 やGeO2 が吸収液中に析
出しないように吸収液のpHを高い状態に維持するため
に、pH測定装置によりpHを測定しながらアルカリ水
溶液を添加する。抜き取られた汚染吸収液は解毒循環系
に送られ、還元剤として亜硫酸水素ナトリウムを添加し
て下記化1の(2) に示すようにNaOClをNaClに
還元する。液中のClO- イオンは、下記化1の(3)に
示す可逆反応によりその存在割合が変化し、pHが高い
ほど反応は右側に進行する。従って未還元状態で中和処
理を行なうとpHが低下して(3)の反応が左側へ進行す
るためCl2 ガスが再発生することになってしまう。従
って解毒循環系での処理はCl2 ガス再発生を防ぐため
にアルカリ状態で実施する必要がある。具体的には解毒
循環系を流れる液体のpHを測定して処理中に生じる塩
化水素酸及び硫酸が直ちに中和されるよう、つまり液の
pHが7以下に下がらないようにNaOHの添加を制御
する。また亜硫酸ナトリウムの添加は、解毒循環系を流
れる液体の酸化還元電位を連続的に測定し、この測定値
により遊離の塩素イオンが存在しなくなるまで行なう。
還元処理終了後、pH調整等処理系に送られ排水として
規定されるpHに調整された後、排水される。
2. Description of the Related Art Conventionally, exhaust gas containing chlorine gas after dust removal
As a processing method of, for example, Japanese Examined Patent Publication No. 3-62442
There is a method described in the report. The outline is as an absorbent
By using an alkaline aqueous solution such as NaOH aqueous solution,
As shown in (1) of chemical formula 1 below, chlorine gas does not react with the absorbing liquid.
To the bottom of the reaction vessel as NaCl and NaOCl.
The absorption liquid contaminated with NaCl and NaOCl
And SiO in exhaust gas 2And GeO2Is deposited in the absorbent
To keep the pH of the absorption liquid high so that it does not come out
In addition, while measuring the pH with a pH measuring device, alkaline water
Add the solution. The polluted absorption liquid extracted is the detoxification circulation system.
And added sodium bisulfite as a reducing agent
Then change NaOCl to NaCl as shown in (2) of the following chemical formula 1.
Give back. ClO in liquid-Ions are shown in (3) of Chemical formula 1 below.
Due to the reversible reaction shown, the existence ratio changes and the pH is high.
The reaction proceeds to the right. Therefore, the neutralization process in the unreduced state
If you do, the pH will decrease and the reaction of (3) will proceed to the left.
For Cl2Gas will be regenerated. Servant
Therefore, the treatment in the detoxification circulation system is Cl2To prevent gas re-generation
It is necessary to carry out in an alkaline state. Specifically, detoxification
Salt generated during processing by measuring pH of liquid flowing in the circulation system
Make sure that hydrofluoric acid and sulfuric acid are immediately neutralized, that is,
Control the addition of NaOH so that the pH does not drop below 7
To do. Also, the addition of sodium sulfite flows through the detoxification circulation system.
Continuously measured the redox potential of the liquid to be measured.
Until the free chlorine ion does not exist.
After the reduction process is completed, it is sent to a treatment system such as pH adjustment and is used as wastewater.
After being adjusted to a specified pH, it is drained.

【化1】 [Chemical 1]

【0003】[0003]

【発明が解決しようとする課題】従来の技術によれば、
吸収液の解毒循環系において、上記のようにpH及び還
元剤の酸化還元電位を測定しこの測定値に対応して還元
剤としての亜硫酸水素ナトリウムを添加している。酸化
還元電位の測定は液中の塩濃度やpHの影響を受け、液
中の亜塩素酸塩濃度との相関が変化するため、非常に複
雑な制御が必要であると共に、pH及び酸化還元電位の
測定精度を維持するための日常の保守作業が非常に重要
であった。また、上記のように解毒循環系での処理はC
2 ガス再発生を防ぐためにアルカリ状態で実施する
が、還元剤の亜硫酸ナトリウムはpHが高い状態では酸
化されにくい。従って、過剰投入された場合残存してし
まい、pH調整等処理系で使用する化学薬品、例えば液
中の固形分を固液分離槽にて分離・除去のために添加す
るFe(OH)3 等を還元してしまい、後工程の処理装
置の処理性能を阻害する。また投入量が不足した場合は
液中に次亜塩素酸塩が残留し、中和処理時に塩素ガスと
して再発生するため、適正な処理状態を維持することが
非常に難しかった。このように従来の液質測定による管
理では安定した還元解毒処理状態を保つことが困難であ
り、手間もかかった。
According to the prior art,
In the detoxification circulation system of the absorbing solution, the pH and the redox potential of the reducing agent are measured as described above, and sodium bisulfite as a reducing agent is added corresponding to the measured values. The measurement of the redox potential is affected by the salt concentration and pH in the liquid, and the correlation with the chlorite concentration in the liquid changes, so very complicated control is required, and the pH and redox potential are also required. The daily maintenance work to maintain the measurement accuracy of was very important. Further, as described above, the treatment in the detoxification circulation system is C
Although it is carried out in an alkaline state in order to prevent the re-generation of l 2 gas, sodium sulfite as a reducing agent is not easily oxidized in a state where the pH is high. Therefore, when it is added excessively, it remains and chemicals used in the treatment system such as pH adjustment, for example, Fe (OH) 3 added for separation / removal of the solid content in the liquid in the solid-liquid separation tank. Is reduced, which hinders the processing performance of the subsequent processing device. Further, when the input amount is insufficient, hypochlorite remains in the liquid and is regenerated as chlorine gas during the neutralization process, so it was very difficult to maintain a proper treatment state. As described above, it has been difficult and time-consuming to maintain a stable reduction detoxification treatment state by the conventional management by liquid quality measurement.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明は塩素ガスを含む汚染物質を含有
する排ガスをアルカリ水溶液からなる吸収液の循環系を
通過させて、該吸収液と上記排ガスとの化学反応により
生成される塩を含有する吸収液の一部を引き抜き、該引
き抜いた液を解毒系において還元剤による化学的解毒処
理に付し、次に化学的解毒処理後の液をpH調整等処理
系に導入して処理済排水とし、一方上記吸収液の循環系
において上記引き抜きにより減少する吸収液に相当する
量を未汚染の吸収液で補充することにより上記排ガスを
精製する処理方法において、上記還元剤としてチオ硫酸
ナトリウムを使用することを特徴とする。本発明におい
ては、上記チオ硫酸ナトリウムは塩素ガスとアルカリ水
溶液の反応により発生しうる次亜塩素酸塩の最大量を還
元するに足りる量以上を定量供給し、且つ化学的解毒処
理後の液はpH調整等処理系に導入する前に余剰のチオ
硫酸ナトリウムを酸化させることによりpH調整等処理
系で使用する化学薬品の還元を防止することが特に望ま
しい。また、本発明の処理装置は塩素ガスを含む汚染
物質を含有する排ガスをアルカリ水溶液からなる吸収液
と接触させる吸収塔を有する吸収処理系、該吸収塔下
部から汚染吸収液の一部を引き抜き還元解毒槽に移送す
るための管に連通し且つチオ硫酸ナトリウム供給,混合
手段を有する還元解毒槽、該還元解毒槽の後流に設け
られた還元解毒処理済液中の残存チオ硫酸ナトリウムを
酸化させる酸化処理槽、該酸化処理槽に連通したpH
調整等処理系、及び引き抜き液量に対応した未汚染の
吸収液を吸収処理系に補充する手段、からなる。本発明
装置において、上記汚染吸収液の引き抜き及び未汚染吸
収液の補充は定量供給ポンプによるものが特に好ましい
実施態様である。
As means for solving the above-mentioned problems, the present invention is to pass exhaust gas containing a pollutant containing chlorine gas through a circulation system of an absorption solution consisting of an alkaline aqueous solution to obtain the absorption solution. And a part of the absorption liquid containing the salt generated by the chemical reaction with the exhaust gas, and the extracted liquid is subjected to a chemical detoxification treatment with a reducing agent in the detoxification system, and then after the chemical detoxification treatment. Purify the exhaust gas by introducing the liquid into a treatment system such as pH adjustment to obtain treated wastewater, while replenishing the amount of the absorbing liquid which is reduced by the withdrawal with the unpolluted absorbing liquid in the circulating system of the absorbing liquid. In the treatment method described above, sodium thiosulfate is used as the reducing agent. In the present invention, the sodium thiosulfate is supplied in an amount equal to or more than the amount sufficient to reduce the maximum amount of hypochlorite that can be generated by the reaction of chlorine gas and an alkaline aqueous solution, and the liquid after chemical detoxification treatment is It is particularly desirable to prevent the reduction of the chemicals used in the pH adjusting treatment system by oxidizing excess sodium thiosulfate before introducing it into the pH adjusting treatment system. Further, the treatment apparatus of the present invention is an absorption treatment system having an absorption tower in which an exhaust gas containing a pollutant containing chlorine gas is brought into contact with an absorption liquid composed of an alkaline aqueous solution, and a part of the contaminated absorption liquid is drawn out from the lower part of the absorption tower and reduced. A reduction detoxification tank connected to a pipe for transferring to the detoxification tank and having a supply and mixing means of sodium thiosulfate, and oxidizing residual sodium thiosulfate in the reduction detoxification-treated liquid provided in the downstream of the reduction detoxification tank. Oxidation treatment tank, pH communicating with the oxidation treatment tank
It comprises a processing system for adjustment and the like, and a means for replenishing the absorption processing system with an uncontaminated absorption liquid corresponding to the amount of extraction liquid. In the apparatus of the present invention, the withdrawal of the contaminated absorbent and the replenishment of the uncontaminated absorbent with a metering supply pump are particularly preferred embodiments.

【0005】[0005]

【作用】本発明者等は、解毒処理系においてチオ硫酸ナ
トリウムを添加すれば引き抜いた液そのままの高いpH
状態で次亜塩素酸塩の中和処理が可能となること、及び
余剰に供給されたチオ硫酸ナトリウムをpH調整系に導
入する前にバブリング等により酸化処理することを考え
つき、本発明に到達した。本発明の方法で処理を行う場
合、還元剤は製造工程での使用原料量から理論的に発生
しうる次亜塩素酸塩の最大量を処理できる量以上を定量
供給することにより、投入量の不足という事態は防止さ
れる。しかも引き抜き液のpHは高いままでよいから従
来の亜硫酸水素ナトリウムの場合のようなpH測定や酸
化還元電位の測定は不要である。従って、複雑な制御系
及び日常の保守作業の必要なpH、酸化還元電位の測定
装置が不要となるため、装置を殆ど保守することなく安
定な除外処理状態を維持することができる。またチオ硫
酸ナトリウムはpHが高い状態でも酸化させることがで
きるので余剰分をバブリング等で酸化処理すれば、pH
調整処理系で使用する化学薬品が還元されてその性能が
阻害されるのを防止できる。
The present inventors have found that if sodium thiosulfate is added in the detoxification treatment system, the pH of the extracted liquid is high.
In view of the fact that it becomes possible to neutralize the hypochlorite in the state and that the excessively supplied sodium thiosulfate is subjected to an oxidation treatment by bubbling before being introduced into the pH adjusting system, the present invention has been reached. . When the treatment is carried out by the method of the present invention, the reducing agent is quantitatively supplied in an amount not less than the amount capable of treating the maximum amount of hypochlorite which can theoretically be generated from the amount of raw materials used in the manufacturing process. The situation of shortage is prevented. Moreover, since the pH of the drawing liquid may remain high, it is not necessary to measure the pH and the oxidation-reduction potential as in the case of conventional sodium bisulfite. Therefore, a complicated control system and a pH / oxidation-reduction potential measuring device that requires daily maintenance work are not required, and a stable exclusion processing state can be maintained with little maintenance of the device. Also, sodium thiosulfate can be oxidized even in a high pH state, so if the excess is oxidized by bubbling, etc.
It is possible to prevent the chemicals used in the conditioning system from being reduced and impairing its performance.

【0006】[0006]

【実施例】以下、実施例により本発明を具体的に説明す
るが本発明はこれに限定されるものではない。 〔実施例〕本発明の一具体例を示す図1により本発明を
詳細に説明する。塩素ガス含有の排ガスを吸収塔1へ導
入し、また吸収液循環ポンプ2及びアルカリ水溶液供給
定量ポンプ3により吸収液を吸収塔1に供給する。ここ
で、上記排ガス内の塩素ガス塔の汚染物質の除害処理の
ために、pH値が少なくとも10〜12の水酸化ナトリ
ウム(NaOH)水溶液を吸収液として使用する。吸収
塔1内のスプレーノズル15によりスプレーされた吸収
液、及び吸収液により湿った吸収塔充填物16との接触
により、精製される排ガスを吸収塔1内で吸収液と良く
混合する。これにより、化2に示す式(1) の化学的吸収
反応が生じる。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. EXAMPLE The present invention will be described in detail with reference to FIG. 1 showing one specific example of the present invention. The exhaust gas containing chlorine gas is introduced into the absorption tower 1, and the absorption liquid is supplied to the absorption tower 1 by the absorption liquid circulation pump 2 and the alkaline aqueous solution supply metering pump 3. Here, an aqueous solution of sodium hydroxide (NaOH) having a pH value of at least 10 to 12 is used as an absorbing liquid for the treatment of removing the pollutants of the chlorine gas tower in the exhaust gas. The exhaust gas to be purified is well mixed with the absorption liquid in the absorption tower 1 by contact with the absorption liquid sprayed by the spray nozzle 15 in the absorption tower 1 and the absorption tower packing 16 moistened with the absorption liquid. As a result, the chemical absorption reaction of the formula (1) shown in Chemical formula 2 occurs.

【化2】 Cl2 + NaOH → NaCl + NaOCl + H2O ・・(1) 上記(1) の吸収反応の結果として、NaCl(普通の
塩)及びNaClO(次亜塩素酸ナトリウム)で汚染さ
れた吸収液を、吸収塔1の低部より汚染吸収液移送ポン
プ3により常時定量引き抜き、他方で移送配管内の還元
剤供給定量ポンプ5より常時定量混合するチオ硫酸ナト
リウム(Na2 2 3 )とともに還元解毒槽6に送
る。槽6内で還元解毒槽撹拌機により汚染吸収液とチオ
硫酸ナトリウムを良く混合し、化3に示す式(4) の化学
反応による解毒処理を行う。
[Chemical formula 2] Cl 2 + NaOH → NaCl + NaOCl + H 2 O ··· (1) As a result of the absorption reaction of (1) above, it is contaminated with NaCl (ordinary salt) and NaClO (sodium hypochlorite). Sodium thiosulfate (Na 2 S 2 O 3) is used to constantly quantitatively extract the absorbed liquid from the lower part of the absorption tower 1 by the contaminated absorbing liquid transfer pump 3 and constantly quantitatively mix it with the reducing agent supply constant amount pump 5 in the transfer pipe. ) Together with the reduction detoxification tank 6. In the tank 6, a contaminated absorption solution and sodium thiosulfate are thoroughly mixed by a reduction detoxification tank stirrer, and detoxification treatment is performed by the chemical reaction of the formula (4) shown in Chemical formula 3.

【化3】 4NaClO + Na2S2O3 + 2NaOH → 2Na2SO4 + 4NaCl + H2O ・・(4) 上記(3) の化学反応から明らかなように、Cl2 (塩素
ガス)1モルに対してそれより発生する1モルのNaC
lOは1/4モルのNa2 2 3 にて還元されるた
め、吸収塔1に負荷されうる最大塩素ガス量の1/4モ
ル以上のチオ硫酸ナトリウムを常時定量供給することに
より、発生する亜塩素酸ナトリウムは残存することなく
全て解毒処理される。また、Cl2 発生量、使用量が少
ない場合に、余剰となるチオ硫酸ナトリウムを、酸化処
理槽8において空気供給ポンプ9より供給する空気によ
るバブリングによって化4に示される式(5)の化学反応
による酸化処理を行う。
Embedded image 4NaClO + Na 2 S 2 O 3 + 2NaOH → 2Na 2 SO 4 + 4NaCl + H 2 O ··· (4) As is clear from the chemical reaction of (3) above, Cl 2 (chlorine gas) 1 1 mol of NaC generated from that per mol
Since 10 is reduced with 1/4 mol of Na 2 S 2 O 3, it is generated by constantly supplying a fixed amount of 1/4 mol or more of sodium thiosulfate, which is the maximum chlorine gas amount that can be loaded in the absorption tower 1. Sodium chlorite is completely detoxified without remaining. Further, when the amount of Cl 2 generated and the amount used are small, the excess sodium thiosulfate is bubbled with air supplied from the air supply pump 9 in the oxidation treatment tank 8 to carry out the chemical reaction of the formula (5) shown in Chemical formula 4. Oxidation treatment by.

【化4】 Na2S2O3 + 2O2 + 2NaOH → 2Na2SO4 + H2O ・・・(5) ここで解毒処理済汚染吸収液はpHの高いアルカリ性の
状態にあるが、チオ硫酸ナトリウムは従来使用されてい
た亜硫酸水素ナトリウムとは異なり、アルカリ性の状態
においても上記酸化反応を行うことが可能である。以上
の解毒処理及び余剰還元剤の酸化処理が完了した後に酸
化処理槽水位計10による水位制御により運転される解
毒済吸収液引き抜きポンプ11によりpH調整等処理系
に移送される。
[Chemical formula 4] Na 2 S 2 O 3 + 2O 2 + 2NaOH → 2Na 2 SO 4 + H 2 O (5) Here, the detoxification-treated contaminated absorbent is in a high pH alkaline state, but Unlike sodium bisulfite that has been conventionally used, sodium sulfate can carry out the above-mentioned oxidation reaction even in an alkaline state. After the above-mentioned detoxification treatment and oxidation treatment of the excess reducing agent are completed, the detoxified absorption liquid drawing pump 11 operated by the water level control by the oxidation treatment tank water level gauge 10 is transferred to a treatment system such as pH adjustment.

【0007】具体的な例として、最大供給能力が22.4リ
ットル/min の塩素ガス供給装置を有する排ガス発生源
からの排ガスを処理する場合を説明する。塩素ガスは1
モル/min である為、その処理に必要なNaOHは下記
化学式(1)
As a concrete example, a case will be described in which the exhaust gas from an exhaust gas source having a chlorine gas supply device with a maximum supply capacity of 22.4 liters / min is treated. Chlorine gas is 1
Since it is mol / min, the NaOH required for the treatment has the following chemical formula (1)

【化5】 Cl2 + NaOH → NaCl + NaOCl + H2O ・・・(1) より2モル/min である。従って、図1の吸収液供給定
量ポンプ4にて5%のNaOHを供給するとき必要な吸
収液量は、 2モル/min ×40(NaOH 質量数)/0.05/1.06(5%NaOH
の比重)=約1.5 リットル/min である。また、このとき発生する塩は前記化学式(1)よ
り1モルのNaClであり、吸収液中の塩濃度は、 1モル/min ×58.5(NaCl 質量数)/1.5 リットル/min
(液量)=約39 g/リットル となる。NaClの溶解度は 35.7g(0℃)/100g H2O
であるから、吸収液の供給量以上の量を汚染吸収液とし
て引き抜くことにより、汚染吸収液中には析出しない。
本例では1.6 リットル/min の割合で汚染吸収液を汚染
吸収液移送ポンプ3にて連続的に引き抜くことにより汚
染吸収液中に塩が析出することはなく、またこの引き抜
きにより減少する吸収液量 0.1リットル/min を吸収液
補給ポンプ17で補給する。これにより吸収塔1に供給
される吸収液の総量は全塩素ガスの処理に必要な量以上
となるため、常にpHの高いアルカリ状態を維持するこ
とができる。還元解毒槽6に移送される汚染吸収液中の
NaOClはNaClと同じく1モル/min であるか
ら、これを還元するために必要なNa2 2 3 の量は
下記化学式(4)
[Formula 5] Cl 2 + NaOH → NaCl + NaOCl + H 2 O (2) / min from (1). Therefore, when 5% NaOH is supplied by the absorption liquid supply metering pump 4 in FIG. 1, the amount of absorption liquid required is 2 mol / min × 40 (NaOH mass number) /0.05/1.06 (5% NaOH
Specific gravity) = about 1.5 liters / min. Further, the salt generated at this time is 1 mol of NaCl according to the chemical formula (1), and the salt concentration in the absorbing solution is 1 mol / min × 58.5 (NaCl mass number) /1.5 liter / min.
(Liquid volume) = approx. 39 g / liter. Solubility of NaCl is 35.7g (0 ℃) / 100g H 2 O
Therefore, by drawing out an amount equal to or more than the supply amount of the absorbing liquid as the contaminated absorbing liquid, it is not deposited in the contaminated absorbing liquid.
In this example, when the contaminated absorbent is continuously withdrawn by the contaminated absorbent transfer pump 3 at a rate of 1.6 liters / min, no salt is deposited in the contaminated absorbent, and the amount of absorbed solution decreased by this withdrawal. The absorbent replenishing pump 17 is used to replenish 0.1 liter / min. As a result, the total amount of the absorption liquid supplied to the absorption tower 1 is equal to or more than the amount required for the treatment of all chlorine gas, so that it is possible to always maintain an alkaline state having a high pH. Since NaOCl in the contaminated absorption liquid transferred to the reduction / detoxification tank 6 is 1 mol / min like NaCl, the amount of Na 2 S 2 O 3 necessary for reducing this is represented by the following chemical formula (4).

【化6】 4NaClO + Na2S2O3 + 2NaOH → 2Na2SO4 + 4NaCl + H2O ・・(4) により、 1/4 モル/min × 113(Na2S2O3質量数)=約28.3 g/mi
n となる。また、供給するNa2 2 3 の全量が余剰と
なった場合を考慮して、酸化処理槽8で酸化処理するた
めに必要な酸素量は、下記化学式(5)
[Chemical Formula 6] 4NaClO + Na 2 S 2 O 3 + 2NaOH → 2Na 2 SO 4 + 4NaCl + H 2 O ・ ・ (4) gives 1/4 mol / min × 113 (Na 2 S 2 O 3 mass number) = About 28.3 g / mi
n. Further, in consideration of the case where the total amount of Na 2 S 2 O 3 to be supplied becomes excessive, the oxygen amount required for the oxidation treatment in the oxidation treatment tank 8 is represented by the following chemical formula (5)

【化7】 Na2S2O3 + 2O2 + 2NaOH → 2Na2SO4 + H2O ・・・(5) からNa2 2 3 の2倍のモル量であるから、 28.3 g/min /113 ×2 ×22.4リットル/モル=11.2リ
ットル/min となる。ここで空気中の酸素濃度は約20%であるから、
バブリングに使用する空気供給ポンプ9にて供給する空
気の必要量は、 11.2リットル/min /0.2 =56リットル/min となる。従って、還元解毒槽6に28.3 g/min のNa2
2 3 を還元剤供給定量ポンプ5にて定量供給し、酸
化処理槽8に56リットル/min 以上の空気を空気供給ポ
ンプ9にて供給することにより、ClOは全て還元処理
され、また余剰な還元剤も全て酸化できる。
Embedded image Since Na 2 S 2 O 3 + 2O 2 + 2NaOH → 2Na 2 SO 4 + H 2 O (5) is twice the molar amount of Na 2 S 2 O 3 , 28.3 g / min / 113 × 2 × 22.4 liter / mol = 11.2 liter / min. Since the oxygen concentration in the air is about 20%,
The required amount of air supplied by the air supply pump 9 used for bubbling is 11.2 liters / min / 0.2 = 56 liters / min. Therefore, 28.3 g / min of Na 2 was added to the reduction detoxification tank 6.
By supplying a constant amount of S 2 O 3 with the reducing agent supply constant amount pump 5 and supplying air of 56 liters / min or more to the oxidation treatment tank 8 with the air supply pump 9, all of ClO is reduced, and the surplus is increased. All reducing agents can be oxidized.

【発明の効果】以上説明したように、本発明の方法,装
置にて処理を行う場合、還元剤は発生しうる次亜塩素酸
塩の最大量を処理しうる量以上を定量供給することによ
り、投入量の不足という事態を十分防止することがで
き、且つチオ硫酸ナトリウムはpHが高い状態でも酸化
させることが可能であるため、バブリング等の酸化処理
により余剰量を全て酸化させることができ、pH調整等
処理系で使用する化学薬品が還元されその除害性能を阻
害される事態を十分に防止できる。また、同時に、複雑
な制御系及び日常の保守作業の必要なpH、酸化還元電
位の測定装置を使用する必要がなく、装置を運転するこ
とが可能となるため、装置を殆ど保守することなく、安
定な除害処理状態を維持することができる。
As described above, when the treatment is carried out by the method and apparatus of the present invention, the reducing agent is supplied by quantitatively supplying the maximum amount of hypochlorite which can be generated or more. , It is possible to sufficiently prevent the situation of insufficient input, and since sodium thiosulfate can be oxidized even in a high pH state, it is possible to oxidize all the excess amount by an oxidation treatment such as bubbling, It is possible to sufficiently prevent the chemicals used in the treatment system such as pH adjustment from being reduced and impairing the detoxification performance. Further, at the same time, since it is possible to operate the device without using a complicated control system and a measurement device for pH and redox potential that require daily maintenance work, the device can be operated with almost no maintenance, It is possible to maintain a stable detoxification treatment state.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を説明する概略説明図であ
る。
FIG. 1 is a schematic explanatory diagram illustrating an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 吸収塔、 2 吸収塔循環ポンプ、 3 汚染
吸収液移送ポンプ、4 吸収液供給定量ポンプ、 5
還元剤供給定量ポンプ、 6 還元解毒槽、 7
還元解毒槽撹拌機、 8 酸化処理槽、 9 空
気供給ポンプ、 10 酸化処理槽水位計、 11
解毒済吸収液引き抜きポンプ、12 吸収塔排風機、
13 NaOH貯槽、 15 Na2 2 3
槽、 16 吸収塔充填物、 17 吸収液補給ポ
ンプ、 18 吸収塔循環槽水位計。
1 absorption tower, 2 absorption tower circulation pump, 3 contaminated absorption liquid transfer pump, 4 absorption liquid supply metering pump, 5
Reductant supply metering pump, 6 reduction detoxification tank, 7
Reduction detoxification tank agitator, 8 oxidation treatment tank, 9 air supply pump, 10 oxidation treatment tank water level meter, 11
Detoxified absorption liquid extraction pump, 12 absorption tower blower,
13 NaOH storage tank, 15 Na 2 S 2 O 3 storage tank, 16 absorption tower packing, 17 absorption liquid supply pump, 18 absorption tower circulation tank water level meter.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G02B 6/00 356 A 7036−2K ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // G02B 6/00 356 A 7036-2K

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 塩素ガスを含む汚染物質を含有する排ガ
スをアルカリ水溶液からなる吸収液の循環系を通過させ
て、該吸収液と上記排ガスとの化学反応により生成され
る塩を含有する吸収液の一部を引き抜き、該引き抜いた
液を解毒系に導入して上記塩を還元する化学的解毒処理
に付し、次に化学的解毒処理後の液をpH調整等処理系
に導入して処理済排水とし、一方上記吸収液の循環系に
おいて上記引き抜きにより減少する吸収液に相当する量
を未汚染の吸収液で補充することにより上記排ガスを精
製する処理方法において、上記化学的解毒処理は引き抜
いた液をアルカリ性のままでチオ硫酸ナトリウムと反応
させることにより上記塩を還元することを特徴とする塩
素ガス含有排ガスの処理方法。
1. An absorption liquid containing a salt produced by a chemical reaction between an exhaust gas containing a pollutant containing chlorine gas and an absorption liquid made of an alkaline aqueous solution to cause a chemical reaction between the absorption liquid and the exhaust gas. A part of the solution is introduced into the detoxification system and subjected to a chemical detoxification treatment to reduce the salt, and then the solution after the chemical detoxification treatment is introduced into a treatment system such as pH adjustment for treatment. In the treatment method of purifying the exhaust gas by replenishing the amount of the absorption liquid, which is reduced by the extraction in the circulation system of the absorption liquid, with the uncontaminated absorption liquid, the chemical detoxification process is extracted. A method for treating an exhaust gas containing chlorine gas, which comprises reducing the salt by reacting the obtained solution with sodium thiosulfate in an alkaline state.
【請求項2】 上記チオ硫酸ナトリウムは塩素ガスとア
ルカリ水溶液の反応により発生しうる次亜塩素酸塩の最
大量を還元するに足りる量以上を定量供給し、且つ化学
的解毒処理後の液を大気と接触させることにより液中に
残存するチオ硫酸ナトリウムを酸化させた後にpH調整
等処理系に導入することを特徴とする請求項1記載の塩
素ガス含有排ガスの処理方法。
2. The sodium thiosulfate is supplied in an amount equal to or more than a sufficient amount to reduce the maximum amount of hypochlorite that can be generated by the reaction of chlorine gas and an alkaline aqueous solution, and the liquid after chemical detoxification treatment is used. The method for treating an exhaust gas containing chlorine gas according to claim 1, wherein the sodium thiosulfate remaining in the liquid is oxidized by being brought into contact with the atmosphere and then introduced into a treatment system such as pH adjustment.
【請求項3】 上記塩素ガス含有排ガスが光ファイバ製
造工程からの排ガスであることを特徴とする請求項1又
は請求項2に記載の処理方法。
3. The processing method according to claim 1, wherein the chlorine gas-containing exhaust gas is exhaust gas from an optical fiber manufacturing process.
【請求項4】 塩素ガスを含む汚染物質を含有する排
ガスをアルカリ水溶液からなる吸収液と接触させる吸収
塔を有する吸収処理系、該吸収塔下部から汚染吸収液
の一部を引き抜き還元解毒槽に移送するための管に連通
し且つチオ硫酸ナトリウム供給,混合手段を有する還元
解毒槽、該還元解毒槽の後流に設けられた還元解毒処
理済液中の残存チオ硫酸ナトリウムを酸化させる酸化処
理槽、該酸化処理槽に連通したpH調整等処理系、及
び引き抜き液量に対応した未汚染の吸収液を吸収処理
系に補充する手段、からなる塩素ガス含有排ガスの処理
装置。
4. An absorption treatment system having an absorption tower for contacting an exhaust gas containing a pollutant containing chlorine gas with an absorption solution composed of an alkaline aqueous solution, and extracting a part of the contaminated absorption solution from the lower part of the absorption tower to a reduction detoxification tank. A reduction detoxification tank which is connected to a pipe for transfer and has sodium thiosulfate supply and mixing means, and an oxidation treatment tank which is provided downstream of the reduction detoxification tank and oxidizes the residual sodium thiosulfate in the reduction detoxification-treated liquid An apparatus for treating an exhaust gas containing chlorine gas, comprising: a treatment system communicating with the oxidation treatment tank such as pH adjustment; and a means for replenishing the absorption treatment system with an uncontaminated absorption liquid corresponding to the amount of drawn liquid.
【請求項5】 上記汚染吸収液の引き抜き及び未汚染吸
収液の補充が定量供給ポンプによるものであることを特
徴とする請求項4記載の塩素ガス含有排ガスの処理装
置。
5. The chlorine gas-containing exhaust gas treatment apparatus according to claim 4, wherein the extraction of the contaminated absorption liquid and the replenishment of the uncontaminated absorption liquid are performed by a constant amount supply pump.
JP5239834A 1993-09-27 1993-09-27 Treatment of waste gas containing gaseous chlorine and device therefor Pending JPH0796133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239834A JPH0796133A (en) 1993-09-27 1993-09-27 Treatment of waste gas containing gaseous chlorine and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239834A JPH0796133A (en) 1993-09-27 1993-09-27 Treatment of waste gas containing gaseous chlorine and device therefor

Publications (1)

Publication Number Publication Date
JPH0796133A true JPH0796133A (en) 1995-04-11

Family

ID=17050556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239834A Pending JPH0796133A (en) 1993-09-27 1993-09-27 Treatment of waste gas containing gaseous chlorine and device therefor

Country Status (1)

Country Link
JP (1) JPH0796133A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025689A1 (en) * 1996-12-09 1998-06-18 Imperial Chemical Industries Plc Process for removing chlorine from gas stream
FR2762234A1 (en) * 1997-04-17 1998-10-23 Cifec Apparatus for automatic neutralisation of a leak of chlorine
WO2006027889A1 (en) * 2004-09-08 2006-03-16 Shin-Etsu Chemical Co., Ltd. Detoxication method and equipment for use in carrying out said method
CN103599692A (en) * 2013-10-17 2014-02-26 中国石油化工股份有限公司 Chlorine arresting method
RU2710197C1 (en) * 2019-06-11 2019-12-24 Геворк Вазгенович Арутюнян Method for neutralization of emergency emissions of gaseous chlorine and installation for its implementation
CN113491938A (en) * 2021-08-03 2021-10-12 安徽康菲尔检测科技有限公司 Treatment device for chlorine-containing organic waste gas and using method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025689A1 (en) * 1996-12-09 1998-06-18 Imperial Chemical Industries Plc Process for removing chlorine from gas stream
FR2762234A1 (en) * 1997-04-17 1998-10-23 Cifec Apparatus for automatic neutralisation of a leak of chlorine
WO2006027889A1 (en) * 2004-09-08 2006-03-16 Shin-Etsu Chemical Co., Ltd. Detoxication method and equipment for use in carrying out said method
CN103599692A (en) * 2013-10-17 2014-02-26 中国石油化工股份有限公司 Chlorine arresting method
RU2710197C1 (en) * 2019-06-11 2019-12-24 Геворк Вазгенович Арутюнян Method for neutralization of emergency emissions of gaseous chlorine and installation for its implementation
CN113491938A (en) * 2021-08-03 2021-10-12 安徽康菲尔检测科技有限公司 Treatment device for chlorine-containing organic waste gas and using method thereof

Similar Documents

Publication Publication Date Title
KR100325571B1 (en) REMOVAL OF NOx AND SOx EMISSIONS FROM PICKLING LINES FOR METAL TREATMENT
EP1106237B1 (en) Method of treating waste waters from a flue gas desulphuriser
US8562828B2 (en) Wastewater treatment apparatus
CN105050687B (en) For the method for removing pollutant from waste gas
US7455820B2 (en) Process for removing sulfur dioxide and nitrogen oxides from flue gas using chlorine dioxide
JPS586288A (en) Treatment of waste water with hydrogen peroxide
KR20080082639A (en) Emission control system utilizing chlorine dioxide and hydrogen peroxide
JPH0796133A (en) Treatment of waste gas containing gaseous chlorine and device therefor
US5637282A (en) Nitrogen oxide scrubbing with alkaline peroxide solution
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
GB2116066A (en) Removal of germanium from the effluent of processes for the production of optical components
KR102573273B1 (en) Water treatment apparatus and water treatment method
CN112169573B (en) Flue gas desulfurization and denitrification process
JP5085574B2 (en) Detoxification device and detoxification method for fluorine-containing waste liquid
US4162299A (en) Process for the removal of sulfur oxides
JPS5913889B2 (en) cleaning equipment
US5120451A (en) Process for reducing the cyanide content of a solution
JP4199394B2 (en) Control method of absorbent concentration in thiosulfate denitration method
JPH0356123A (en) Removal of mercury and nox in gas
JP2001232161A (en) Method for cleaning membrane module
CN108211754A (en) A kind of flue gas pollutant absorbent and its application
JP3649426B2 (en) How to clean harmful gases
JP3704181B2 (en) Exhaust gas desulfurization method
JPS6388024A (en) Removal of mercury in exhaust gas
KR100471977B1 (en) Chemical oxygen demand control method of the scrubbing water