JPH079524B2 - Optical demultiplexer - Google Patents

Optical demultiplexer

Info

Publication number
JPH079524B2
JPH079524B2 JP61294694A JP29469486A JPH079524B2 JP H079524 B2 JPH079524 B2 JP H079524B2 JP 61294694 A JP61294694 A JP 61294694A JP 29469486 A JP29469486 A JP 29469486A JP H079524 B2 JPH079524 B2 JP H079524B2
Authority
JP
Japan
Prior art keywords
optical
output
input
branching
coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61294694A
Other languages
Japanese (ja)
Other versions
JPS63148207A (en
Inventor
宏 本望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61294694A priority Critical patent/JPH079524B2/en
Publication of JPS63148207A publication Critical patent/JPS63148207A/en
Publication of JPH079524B2 publication Critical patent/JPH079524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光多重分波素子に関し、特に光ファイバ波
長多重分波伝送系に用いられる光多重分波素子に関する
ものである。
TECHNICAL FIELD The present invention relates to an optical multiplex demultiplexer, and more particularly to an optical multiplex demultiplexer used in an optical fiber wavelength multiplex demultiplexing transmission system.

〔従来の技術〕[Conventional technology]

光ファイバ波長多重分波伝送は、伝送容量が飛躍的に増
大することから、その研究開発が最近活発に行われてい
る。特に、異なる波長の光信号を多重,分波する光多重
分波素子は、光ファイバ波長多重分波伝送を実現するた
めの重要なデバイスの1つである。
Since the transmission capacity of the optical fiber wavelength division multiplexing / demultiplexing transmission has dramatically increased, research and development have recently been actively conducted. In particular, an optical multiplexing / demultiplexing device that multiplexes and demultiplexes optical signals of different wavelengths is one of important devices for realizing optical fiber wavelength multiplexing / demultiplexing transmission.

従来、この種の光多重分波素子としては、誘電体多層膜
や回折格子を用いて光信号を多重,分波するものがあ
る。その詳細については、1981年12月に初版発行された
株式会社電気通信技術ニュース社の光ファイバ通信(副
島俊雄等)第300頁から第303頁に、あるいは、ハンドブ
ック「光通信要覧」1984年8月初版発行,株式会社科学
新聞社編の第573頁から第583頁に記載されている。
Conventionally, as this type of optical multiplexing / demultiplexing element, there is one that multiplexes and demultiplexes an optical signal by using a dielectric multilayer film or a diffraction grating. For details, refer to Optical Fiber Communication (Toshio Soejima et al.), Pages 300 to 303, published by the first edition of December 1981, Telecommunications Technology News Co., Ltd., or Handbook, "Optical Communication Manual," August 1984. The first edition of the month, published from Kagaku Shimbun Co., Ltd., pp. 573 to 583.

このタイプの光多重分波素子は、多重,分波する光信号
の波長間隔を狭くすることが困難であるため、伝送でき
る波長数が少なく(10波程度)、結局、大容量の伝送が
困難であるという欠点がある。
This type of optical multiplexing / demultiplexing device has a small number of wavelengths that can be transmitted (about 10 waves) because it is difficult to narrow the wavelength interval of the optical signals that are multiplexed and demultiplexed, which makes it difficult to transmit a large capacity. There is a drawback that

そのために、最近、光の干渉を利用することにより、波
長間隔の狭い光信号を多重,分波することができ、波長
数にして100波程度以上の多重,分波が可能なマッハツ
ェンダ干渉型の光多重分波素子が考えられている。この
光多重分波素子は、1対1の分岐比をもつ2入力・2出
力の入力光カプラの入力端に異なる波長の光信号を入力
して、2つの光導波路へ分岐し、これら光導波路の光路
長の違いにより、分岐した光信号間に位相差を与え、次
に1対1の分岐比をもつ2入力・2出力の出力光カプラ
で再び合波して干渉させる。このことにより、光多重分
波素子を光多重素子として使用した場合には、その出力
光カプラの1つの出力端に多重された異なる波長の光信
号が、また光分波素子として使用した場合には、出力光
カプラの2つの出力端に各々に分波された波長の異なる
光信号が出力される。
Therefore, recently, by utilizing optical interference, it is possible to multiplex and demultiplex optical signals with a narrow wavelength interval, and a Mach-Zehnder interferometer type of Mach-Zehnder interference type capable of multiplexing and demultiplexing about 100 wavelengths or more. Optical multiplex demultiplexers have been considered. This optical multiplexing / demultiplexing device inputs optical signals of different wavelengths to input terminals of a 2-input / 2-output input optical coupler having a branching ratio of 1: 1 and branches them into two optical waveguides. A phase difference is given between the branched optical signals due to the difference in the optical path lengths, and the two input / output two output optical couplers having a branching ratio of 1: 1 combine again to cause interference. As a result, when the optical demultiplexing element is used as the optical multiplexing element, when the optical signals of different wavelengths multiplexed at one output end of the output optical coupler are also used as the optical demultiplexing element. Output optical signals of different wavelengths, which are respectively demultiplexed, to the two output ends of the output optical coupler.

この光多重分波素子の詳細については、論文「昭和60年
度電子通信学会総合全国大会講演予稿集」(講演番号26
46)の第10〜359頁に記載されている。
For details of this optical demultiplexing device, refer to the paper “Proceedings of the 1985 IEICE General Conference” (Lecture No. 26).
46), pp. 10-359.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

一般に、マッハツェンダ干渉型の光多重分波素子は、前
述したように、1対1に分岐した位相の違う光信号を、
再び合波させ、その際の干渉効果により、多重または分
波するものである。そのため、その位相差を与える2つ
の光導波路のそれぞれの伝搬損失が一致している必要が
ある。ここで、伝搬損失に差があると、光多重素子とし
て使用した場合には、多重された異なる波長の光信号
が、本来出力されるべき出力端ではないもう一方の出力
端へ伝搬損失差の分だけ出力されてしまい、その分、本
来の出力端での多重された光信号の損失増加となる。ま
た、光分波素子として使用した場合には、分波された光
信号に波長の異なる光信号が混入し、分波された光信号
へのクロストークが大きくなり、SN比が劣化する。
In general, the Mach-Zehnder interference type optical demultiplexing device, as described above, outputs an optical signal branched in a phase of 1: 1 and
The waves are recombined, and due to the interference effect at that time, they are multiplexed or demultiplexed. Therefore, it is necessary that the propagation losses of the two optical waveguides that give the phase difference be the same. Here, if there is a difference in the propagation loss, when used as an optical multiplexing element, the multiplexed optical signals of different wavelengths cause a difference in the propagation loss to the other output end that is not the output end to be originally output. As much as that is output, the loss of the multiplexed optical signal at the original output end increases. When used as an optical demultiplexing element, optical signals having different wavelengths are mixed in the demultiplexed optical signal, crosstalk to the demultiplexed optical signal increases, and the SN ratio deteriorates.

このように光導波路の伝搬損失に差があると、光多重分
波素子を光多重素子あるいは光多重分波素子として使用
する場合ともに、大きな問題を生じる。しかし伝搬損失
差の無い2つの光導波路を製作するのは必ずしも容易で
はなく、結局、上述したように光信号の損失やクロスト
ークの改善が困難となる大きな欠点があった。
If there is a difference in the propagation loss of the optical waveguide as described above, a great problem occurs when the optical multiplex demultiplexing element is used as the optical multiplex element or the optical multiplex demultiplexing element. However, it is not always easy to fabricate two optical waveguides having no difference in propagation loss, and as a result, there is a major drawback that it is difficult to improve optical signal loss and crosstalk as described above.

本発明の目的は、上記のような欠点を除去せしめて、光
多重素子として使用される場合は、最も少ない損失で光
信号を多重でき、また光分波素子として使用される場合
は、最も小さなクロストークで光信号を分波できる光多
重分分波素子を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, when used as an optical multiplexing element, it is possible to multiplex an optical signal with the least loss, and when used as an optical demultiplexing element, it is the smallest. An object of the present invention is to provide an optical multiplex demultiplexer capable of demultiplexing an optical signal by crosstalk.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、異なる波長の光信号を入力する入力分岐部
と、この入力分岐部の各出力光信号をそれぞれ伝搬し、
これら出力光信号間に位相差を与える光導波路と、この
光導波路の各出力光信号を入力し、前記異なる波長の光
信号を出力する出力分岐部とを有するマッハツェンダ干
渉型の光多重分波素子において、前記2つの分岐部のう
ち少なくとも一方の分岐部に、この分岐部の分岐比を変
える分岐比調整部を設けたことを特徴とする。
The present invention, an input branching unit for inputting optical signals of different wavelengths, propagates each output optical signal of this input branching unit,
A Mach-Zehnder interference type optical demultiplexing device having an optical waveguide for giving a phase difference between these output optical signals and an output branching unit for inputting each output optical signal of this optical waveguide and outputting the optical signals of different wavelengths. In at least one of the two branching parts, a branching ratio adjusting part for changing the branching ratio of the branching part is provided.

〔作用〕[Action]

本発明の光多重分波素子を光多重素子として使用される
場合と光分波素子として使用される場合とに分けて説明
する。
The optical multiplexing and demultiplexing device of the present invention will be described separately for the case where it is used as an optical multiplexing device and the case where it is used as an optical demultiplexing device.

まず、異なる波長の光信号を入力する2入力・2出力の
入力分岐部の光強度の透過係数をT1とし、また異なる波
長の光信号を出力する2入力・2出力の出力分岐部の光
強度の透過係数をT2とし、入力分岐部の透過方向の光導
波路の損失係数をα、反射方向の光導波路の損失係数
をαとする。
First, let T 1 be the transmission coefficient of the optical intensity of the 2-input / 2-output input branch section that inputs the optical signals of different wavelengths, and the 2-input / 2-output output branch section that outputs the optical signals of different wavelengths. Let T 2 be the transmission coefficient of intensity, α 1 be the loss coefficient of the optical waveguide in the transmission direction of the input branch portion, and α 2 be the loss coefficient of the optical waveguide in the reflection direction.

光多重素子として使用される場合には、その出力分岐部
の1つの出力端での多重された各波長の光信号パワー
P1,P2 となる。ここでP0は入力光信号のパワーである。この光
信号パワーP1,P2が最大となる時の出力分岐部の透過係
数T2を満足する。
When used as an optical multiplexing device, the multiplexed optical signal power of each wavelength at one output end of the output branch section
P 1 and P 2 are Becomes Here, P 0 is the power of the input optical signal. The transmission coefficient T 2 of the output branch when the optical signal powers P 1 and P 2 are maximum is To be satisfied.

したがって、この最大光信号パワーが得られる時の最適
な出力分岐部の透過係数T2は光信号パワーP1について
は、 T1α1/{α+T1(α−α)}となり、また光信号
パワーP2については、 (1−T1)α1/{α+T1(α−α)}となる。こ
れらの透過係数は入力分岐部の透過係数T1が0.5(分岐
比にして1対1)の時に等しくなり、したがって最大光
信号パワーが得られる出力分岐部の最適透過係数T2となる。これから、2つの光導波路の損失係数α1
が異なる場合、すなわち光導波路間に伝搬損失差がある
場合には、出力分岐部の透過係数T2、すなわち出力分岐
部の分岐比を光導波路の損失係数に応じて変えることに
より最大パワーの多重された光信号が得られることがわ
かる。
Therefore, when the maximum optical signal power is obtained, the optimum transmission coefficient T 2 of the output branch section is T 1 α 1 / {α 2 + T 11 −α 2 )} for the optical signal power P 1 . Also, the optical signal power P 2 is (1-T 1 ) α 1 / {α 1 + T 12 −α 1 )}. These transmission coefficients are equal when the transmission coefficient T 1 of the input branch section is 0.5 (branch ratio is 1: 1), and therefore the optimum transmission coefficient T 2 of the output branch section where the maximum optical signal power is obtained is Becomes From this, the loss factors α 1 and α 2 of the two optical waveguides
Is different, that is, when there is a propagation loss difference between the optical waveguides, the transmission coefficient T 2 of the output branching section, that is, the branching ratio of the output branching section is changed according to the loss coefficient of the optical waveguide to obtain the maximum power multiplexing. It can be seen that the obtained optical signal is obtained.

次に、光分波素子の場合について述べる。出力分岐部の
2つの出力端の各々に分波されたそれぞれの波長の光信
号へのクロストークをk1,k2とすると となる。なお、各記号の表す意味は光多重素子の場合と
同じである。ここで、分波された光信号へのストローク
が零となるには、式,のそれぞれの分子が零となれ
ば良く、すなわち、k1=0の時、入力分岐部の透過係数
T1が (1−T2)α2/{T2α+T1(1−T2)α}となり、
また、k2=0の時、T1が T2α2/{T2α+(1−T2)α}となれば良い。これ
らの透過係数は、出力分岐部の透過係数T2が0.5(分岐
比にして1対1)の時に等しくなり、したがってクロス
トークが零となる入力分岐部の透過係数T1となる。これから、光多重素子の場合と同様に、2つの
光導波路の損失係数α1が異なる場合、すなわち光
導波路間に伝搬損失差がある場合には、入力分岐部の透
過係数T1、すなわち入力分岐部の分岐比を光導波路の損
失係数に応じて変えることにより、クロストーク零の分
波された光信号が得られることがわかる。
Next, the case of the optical demultiplexer will be described. Let k 1 and k 2 be the crosstalks to the optical signals of the respective wavelengths demultiplexed at the two output ends of the output branching section. Becomes The meaning of each symbol is the same as in the case of the optical multiplex element. Here, in order to make the stroke to the demultiplexed optical signal zero, it is only necessary that each numerator of the equation, becomes zero, that is, when k 1 = 0, the transmission coefficient of the input branching portion.
T 1 becomes (1-T 2 ) α 2 / {T 2 α 1 + T 1 (1-T 2 ) α 2 },
Further, when k 2 = 0, T 1 may be T 2 α 2 / {T 2 α 2 + (1-T 2 ) α 1 }. These transmission coefficients are equal when the transmission coefficient T 2 of the output branch section is 0.5 (branch ratio of 1: 1), and therefore the transmission coefficient T 1 of the input branch section where the crosstalk becomes zero is Becomes From this, as in the case of the optical multiplex element, when the loss coefficients α 1 and α 2 of the two optical waveguides are different, that is, when there is a propagation loss difference between the optical waveguides, the transmission coefficient T 1 of the input branch portion, That is, it can be seen that a branched optical signal with zero crosstalk can be obtained by changing the branching ratio of the input branching section according to the loss coefficient of the optical waveguide.

以上、説明したように、光多重素子,光分波素子のどち
らの場合においても、分岐部の分岐比を変えることによ
りそれぞれの欠点を除去できる。
As described above, in both cases of the optical multiplexing element and the optical demultiplexing element, each defect can be eliminated by changing the branching ratio of the branching section.

〔実施例〕〔Example〕

以下、この発明の実施例について図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の第1の実施例である光多重分波素
子の構成を示す平面図である。
FIG. 1 is a plan view showing the structure of the optical multiplexing and demultiplexing device according to the first embodiment of the present invention.

LiNbO3の基板1の表面には、Ti拡散した幅約8μm,比屈
折率約0.3%の入力光導波路2および出力光導波路3が
それぞれ2本ずつ形成されている。入力光導波路2およ
び出力光導波路3をそれぞれ近接して形成することによ
り、波長1.55μmの光で分岐比が約1対1の方向性結合
器型の入力カプラ(入力分岐部)4および出力カプラ
(出力分岐部)5が構成されている。また光信号間に位
相差を与えるために、入力カプラ4と出力カプラ5との
間に光路長の違う2つの光導波路6a,6bが形成されてい
る。なお、その光路差は光信号の波長間隔が約0.1nmと
なるように約5mmにしてある。そして、出力光カプラ5
を構成している近接した2本の出力光導波路3の表面に
分岐比調整部として電極7をそれぞれ形成してある。こ
の分岐比調整部では、電極7に電圧を印加した場合、Li
NbO3の電気光学効果でその近接した2本の出力光導波路
3の屈折率が変化し、これら光導波路間の伝搬定数差が
変化する。これにより、出力光カプラ5において、光信
号が出力端10,11へそれぞれ分岐されるパワー量を変化
させることができ、したがって出力光カプラの分岐比を
変えることができる。
Two input optical waveguides 2 and two output optical waveguides 3 each having a width of about 8 μm and a relative refractive index of about 0.3% diffused with Ti are formed on the surface of the substrate 1 of LiNbO 3 . By forming the input optical waveguide 2 and the output optical waveguide 3 in close proximity to each other, a directional coupler type input coupler (input branch portion) 4 and an output coupler having a branching ratio of about 1: 1 for light with a wavelength of 1.55 μm An (output branch section) 5 is configured. Two optical waveguides 6a and 6b having different optical path lengths are formed between the input coupler 4 and the output coupler 5 in order to give a phase difference between the optical signals. The optical path difference is about 5 mm so that the wavelength interval of the optical signal is about 0.1 nm. And the output optical coupler 5
Electrodes 7 are formed as branching ratio adjusting portions on the surfaces of the two adjacent output optical waveguides 3 constituting the above. In this branching ratio adjusting section, when voltage is applied to the electrode 7, Li
Due to the electro-optic effect of NbO 3 , the refractive index of the two adjacent output optical waveguides 3 changes, and the propagation constant difference between these optical waveguides changes. As a result, in the output optical coupler 5, it is possible to change the amount of power at which the optical signal is branched to the output terminals 10 and 11, and thus it is possible to change the branching ratio of the output optical coupler.

次に、この実施例の動作について説明する。まず、上記
構成で電極7に電圧を印加しないで、波長が約1.55μ
m、波長間隔が約0.1nmである2つの光信号λ1
入力光カプラ4の入力端8,9へそれぞれ入力する。入力
光カプラ4で光信号λ1はそれぞれ約1対1に分岐
され、光路長の違う2つの光導波路6a,6bへ伝搬され
る。ここで、2つの光導波路6a,6bは光路長,曲率半径
等が違うため、それぞれの伝搬損失が異なる。この実施
例では第1図からわかるように、光導波路6bの方が光導
波路6aよりも光路長は長く曲率半径は小さいため、伝搬
損失は5dB程度、光導波路6aより大きく、したがって、
光導波路6bを伝搬する光信号λ1の方が、パワーは
5dB程度小さい。
Next, the operation of this embodiment will be described. First, in the above configuration, without applying voltage to the electrode 7, the wavelength is about 1.55μ.
Two optical signals λ 1 and λ 2 having a wavelength m of about 0.1 nm are input to the input ends 8 and 9 of the input optical coupler 4, respectively. The optical signals λ 1 and λ 2 are branched into about 1: 1 by the input optical coupler 4 and propagated to the two optical waveguides 6a and 6b having different optical path lengths. Here, since the two optical waveguides 6a and 6b have different optical path lengths, curvature radii, etc., their propagation losses are different. In this embodiment, as can be seen from FIG. 1, since the optical waveguide 6b has a longer optical path length and a smaller radius of curvature than the optical waveguide 6a, the propagation loss is about 5 dB, which is larger than that of the optical waveguide 6a.
The power of the optical signals λ 1 and λ 2 propagating through the optical waveguide 6b is higher.
It is about 5 dB smaller.

次に、この光導波路6aを伝搬した光信号λ1とそれ
よりもパワーが5dB程度小さい光導波路6bを伝搬した光
信号λ1は、出力光カプラ5で合波され、干渉して
出力端10へ多重された光信号λ1として出力され
る。しかし、ここで出力光カプラ5の分岐比が約1対1
であるため、出力端10には最大パワーの光信号λ1
は出力されない。
Then, the optical signal lambda 1 propagated through the optical waveguide 6a, lambda 2 and the optical signal lambda 1 power than it has propagated through 5dB about small light waveguides 6b, lambda 2 are multiplexed by the optical coupler 5, The light signals λ 1 and λ 2 which interfere with each other and are multiplexed are output to the output terminal 10. However, here, the branching ratio of the output optical coupler 5 is about 1: 1.
Therefore, the optical signal λ 1 , λ 2 of maximum power is output to the output terminal 10.
Is not output.

そこで電極7に電圧を印加し、出力光カプラ5での伝搬
定数差を変えることにより、出力光カプラ5の分岐比を
変え、出力端10において光信号の強度が最大となるよう
にする。すなわち、電極7に電圧を20V程度印加し、光
導波路6aから出力端10へ出力される光信号λ1のパ
ワーを光導波路6bから出力端10へ出力される光信号λ1,
λのパワーに対して、70%程度高くなるように出力光
カプラ5の分岐比を約1対0.3に変えて、光導波路6a,6b
から出力端10へそれぞれ出力される光信号λ1のパ
ワーをほぼ最大にする。これにより多重された光信号λ
1の損失が分岐比約1対1の場合、約2.2dBであっ
たのが約0.4dB改善され、約1.8dBとなった。
Therefore, by applying a voltage to the electrode 7 and changing the propagation constant difference in the output optical coupler 5, the branching ratio of the output optical coupler 5 is changed and the intensity of the optical signal is maximized at the output end 10. That is, a voltage is applied about 20V to the electrodes 7, the optical signal lambda 1 outputted from the optical waveguide 6a to the output 10, the optical signal lambda 1 of the lambda 2 of the power output from the optical waveguide 6b to the output 10,
The branching ratio of the output optical coupler 5 is changed to about 1: 0.3 so as to be about 70% higher than the power of λ 2 , and the optical waveguides 6a and 6b are
To approximately the maximum power of the optical signals λ 1 and λ 2 output to the output terminal 10. The optical signal λ multiplexed by this
The loss of 1 and λ 2 was about 2.2 dB when the branching ratio was about 1 to 1, but improved by about 0.4 dB to about 1.8 dB.

第1の実施例では、出力光カプラ5にのみ分岐比を変え
る電極を設けたが、製作上等の問題で、入力光カプラ4
の分岐比を1対1程度にすることが困難な場合には、入
力光カプラ4にも分岐比を変える電極を設けても良い。
第2図に、両方の光カプラに電極を設けた場合を、第2
の実施例として示す。入力光カプラ4を構成している近
接した2本の入力光導波路2の表面に電極12が形成され
ている。その他の構成は、第1図の光多重分波素子と同
様であるので、同一の要素には同一の番号を付して示
す。本実施例によれば、電極12に電圧を印加し入力光カ
プラ4の分岐比を1対1程度に調整することができるの
で、前述の製作上等の問題が解決され、出力端10からの
光信号λ1のパワーがほぼ最大となる。
In the first embodiment, only the output optical coupler 5 is provided with an electrode for changing the branching ratio. However, due to manufacturing problems, the input optical coupler 4 is
If it is difficult to make the branching ratio of 1 to about 1: 1, the input optical coupler 4 may be provided with an electrode for changing the branching ratio.
Fig. 2 shows the case where electrodes are provided on both optical couplers.
Will be shown as an example. Electrodes 12 are formed on the surfaces of two adjacent input optical waveguides 2 that form the input optical coupler 4. Since other configurations are similar to those of the optical multiplex demultiplexer of FIG. 1, the same elements are denoted by the same reference numerals. According to this embodiment, the voltage can be applied to the electrode 12 and the branching ratio of the input optical coupler 4 can be adjusted to about 1: 1. The powers of the optical signals λ 1 and λ 2 are almost maximum.

第3図は、この発明の第3の実施例である光分波素子の
構成を示す平面図である。第1図の光多重分波素子の構
成と異なる点は、分岐比調整部としての電極を出力光カ
プラ5ではなく、入力光カプラ4に形成した、すなわち
入力光カプラ4を構成している近接した2本の入力光導
波路2の表面に電極13をそれぞれ形成したことである。
したがって、第1図の光多重分波素子の要素と同一の要
素には同一の番号を付して示す。このような構成にする
と、電極13に電圧を印加した場合、LiNbO3の電気光学効
果でその近接した2本の入力光導波路2の屈折率が変化
し、これら光導波路間の伝搬定数差が変化する。これに
より入力光カプラ4において、入力光信号が光導波路6b
へ移行するパワー量を変化させることができ、したがっ
て入力光カプラ4の分岐比を変えることができる。
FIG. 3 is a plan view showing the configuration of an optical demultiplexing element that is the third embodiment of the present invention. The difference from the configuration of the optical multiplexing / demultiplexing device in FIG. 1 is that the electrodes as the branching ratio adjusting units are formed not on the output optical coupler 5 but on the input optical coupler 4, that is, the proximity optical fibers forming the input optical coupler 4. That is, the electrodes 13 are formed on the surfaces of the two input optical waveguides 2.
Therefore, the same elements as those of the optical multiplex demultiplexer of FIG. 1 are designated by the same reference numerals. With such a configuration, when a voltage is applied to the electrode 13, the refractive index of the two adjacent input optical waveguides 2 changes due to the electro-optic effect of LiNbO 3 , and the difference in the propagation constant between these optical waveguides changes. To do. Thereby, in the input optical coupler 4, the input optical signal is transmitted to the optical waveguide 6b.
The amount of power that shifts to can be changed, and thus the branching ratio of the input optical coupler 4 can be changed.

次に、この実施例の動作について説明する。まず、上記
構成で電極13に電圧を印加しないで、波長が約1.55μ
m、波長間隔が約0.1nmである多重された光信号λ1
を入力光カプラ4の入力端8へ入力する。入力光カプ
ラ4で光信号λ1は約1対1に分岐され、光路長の
違う2つの光導波路6a,6bへ伝搬される。ここで、第1
の実施例と同様に2つの光導波路6a,6bは光路長,曲率
半径等が違うため、それぞれの伝搬損失が異なり、光導
波路6bを伝搬する光信号λ1の方が、パワーは5dB
程度小さい。そこで、電極13に電圧を印加し、入力光カ
プラ4での伝搬定数差を変えることにより、入力光カプ
ラ4の分岐比を変え光導波路6a,6bを伝搬する光信号の
強度差約5dBを打ち消すようにする。すなわち、電極13
に電圧を−20V程度印加し、光導波路6aへ伝搬させるパ
ワーを光導波路6bへの伝搬パワーに対して70%程度低く
なるように入力光カプラ4の分岐比を約1対3に変え
た。このようにすることにより、光導波路6a,6bを伝搬
する光信号の強度をほぼ等しくすることができた。そし
て、出力光カプラ5において再び合波され干渉して、出
力端10および11にそれぞれ分波された光信号λ1
クロストークは、−10dBから−30dBに改善できた。
Next, the operation of this embodiment will be described. First, in the above configuration, without applying voltage to the electrode 13, the wavelength is about 1.55μ.
m, the multiplexed optical signals λ 1 , λ with a wavelength interval of about 0.1 nm
2 is input to the input end 8 of the input optical coupler 4. The input optical coupler 4 splits the optical signals λ 1 and λ 2 into about 1: 1 and propagates to the two optical waveguides 6a and 6b having different optical path lengths. Where the first
Since the two optical waveguides 6a and 6b have different optical path lengths, radii of curvature, etc., as in the above embodiment, their respective propagation losses are different, and the optical signals λ 1 and λ 2 propagating through the optical waveguide 6b have a power 5 dB
Small. Therefore, by applying a voltage to the electrode 13 and changing the propagation constant difference in the input optical coupler 4, the branching ratio of the input optical coupler 4 is changed to cancel the intensity difference of about 5 dB between the optical signals propagating in the optical waveguides 6a and 6b. To do so. That is, the electrode 13
A voltage of about -20 V is applied to the input optical coupler 4 and the branching ratio of the input optical coupler 4 is changed to about 1: 3 so that the power propagated to the optical waveguide 6a is about 70% lower than the propagation power to the optical waveguide 6b. By doing so, the intensities of the optical signals propagating through the optical waveguides 6a and 6b could be made substantially equal. Then, the crosstalk of the optical signals λ 1 and λ 2 demultiplexed at the output ends 10 and 11 by being multiplexed and interfered again in the output optical coupler 5 could be improved from −10 dB to −30 dB.

第3の実施例では、入力光カプラ4にのみ分岐比を変え
る電極を設けたが、製作上等の問題で、出力光カプラ5
の分岐比を1対1程度にすることが困難な場合には、出
力の光カプラ5にも、分岐比を変える電極を設けても良
い。第4図に、両方の光カプラに電極を設けた場合を、
第4の実施例として示す。出力光カプラ5を構成してい
る近接した2つの出力光導波路3の表面に電極14が形成
されている。その他の構成は、第3図の光多重分波素子
と同様であるので、同一の要素には同一の番号を付して
示す。本実施例によれば、電極14に電圧を印加し出力光
カプラ5の分岐比を1対1程度に調整することができる
ので、前述の製作上等の問題が解決される。
In the third embodiment, only the input optical coupler 4 is provided with an electrode for changing the branching ratio. However, due to manufacturing problems, the output optical coupler 5
If it is difficult to make the branching ratio of 1 to about 1: 1, the output optical coupler 5 may be provided with an electrode for changing the branching ratio. Fig. 4 shows the case where electrodes are provided on both optical couplers.
This will be shown as a fourth embodiment. Electrodes 14 are formed on the surfaces of two adjacent output optical waveguides 3 which constitute the output optical coupler 5. Since other configurations are the same as those of the optical multiplex demultiplexer of FIG. 3, the same elements are denoted by the same reference numerals. According to this embodiment, the voltage can be applied to the electrode 14 to adjust the branching ratio of the output optical coupler 5 to about 1: 1, so that the above-mentioned problems in manufacturing and the like can be solved.

以上、4つの実施例では、材料としてLiNbO3を用いたが
これに限定されず、半導体材料(たとえばGaAs,InP
等),石英ガラス等を用いても良い。
In the above four examples, LiNbO 3 was used as the material, but the material is not limited to this, and semiconductor materials (for example, GaAs, InP) are used.
Etc.), quartz glass, etc. may be used.

また、分岐比調整部における分岐比を変える手段とし
て、電気光学効果を用いたが、これに限らず、例えば半
導体材料を用いたのであれば、キャリア注入に伴うバン
ド間遷移の効果,プラズマ効果等でも良く、また石英ガ
ラスを用いたのであれば、光弾性効果を利用してもよ
い。
Further, although the electro-optical effect is used as the means for changing the branching ratio in the branching ratio adjusting unit, the present invention is not limited to this. For example, if a semiconductor material is used, the effect of inter-band transition accompanying carrier injection, the plasma effect, etc. However, if quartz glass is used, the photoelastic effect may be used.

また、以上の実施例では2つの異なる波長の光信号を用
いたがこれに限定されず、3つ以上の異なる波長の光信
号であっても、基本的には以上の実施例の光多重分波素
子を組合わせることにより、多重あるいは分波すること
ができる。
Further, although the optical signals of two different wavelengths are used in the above embodiments, the present invention is not limited to this, and basically, even if the optical signals of three or more different wavelengths are used, the optical multiplex components of the above embodiments are basically used. Multiplexing or demultiplexing can be performed by combining wave elements.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、入力分岐部及び出力分岐
部のうちの少なくとも一方の分岐部に分岐比を変える分
岐比調整部を設けることにより、光多重素子として使用
する場合は最も少ない損失で光信号を多重でき、また光
分波素子として使用する場合は最も小さなクロストーク
で光信号を分波できる効果がある。
As described above, according to the present invention, by providing a branching ratio adjusting unit that changes the branching ratio in at least one of the input branching unit and the output branching unit, the loss is the smallest when used as an optical multiplexing device. Optical signals can be multiplexed, and when used as an optical demultiplexing element, there is an effect that the optical signals can be demultiplexed with the smallest crosstalk.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す平面図、 第2図は本発明の第2の実施例を示す平面図、 第3図は本発明の第3の実施例を示す平面図、 第4図は本発明の第4の実施例を示す平面図である。 1……LiNbO3基板 2……入力光導波路 3……出力光導波路 4……入力光カプラ 5……出力光カプラ 6a,6b……光導波路 7,12,13,14……電極 8,9……入力端 10,11……出力端1 is a plan view showing a first embodiment of the present invention, FIG. 2 is a plan view showing a second embodiment of the present invention, and FIG. 3 is a plan view showing a third embodiment of the present invention. FIG. 4 is a plan view showing a fourth embodiment of the present invention. 1 …… LiNbO 3 substrate 2 …… input optical waveguide 3 …… output optical waveguide 4 …… input optical coupler 5 …… output optical coupler 6a, 6b …… optical waveguide 7,12,13,14 …… electrodes 8,9 …… Input end 10,11 …… Output end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】異なる波長の光信号を入力する入力分岐部
と、この入力分岐部の各出力光信号をそれぞれ伝搬し、
これら出力光信号間に位相差を与える光導波路と、この
光導波路の各出力光信号を入力し、前記異なる波長の光
信号を出力する出力分岐部とを有するマッハツェンダ干
渉型の光多重分波素子において、前記2つの分岐部のう
ち少なくとも一方の分岐部に、この分岐部の分岐比を変
える分岐比調整部を設けたことを特徴とする光多重分波
素子。
1. An input branch section for inputting optical signals of different wavelengths, and respective output optical signals of the input branch section are propagated,
A Mach-Zehnder interference type optical demultiplexing device having an optical waveguide for giving a phase difference between these output optical signals and an output branching unit for inputting each output optical signal of this optical waveguide and outputting the optical signals of different wavelengths. 2. An optical multiplexing / demultiplexing device according to claim 1, wherein at least one of the two branching sections is provided with a branching ratio adjusting section for changing a branching ratio of the branching section.
JP61294694A 1986-12-12 1986-12-12 Optical demultiplexer Expired - Lifetime JPH079524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294694A JPH079524B2 (en) 1986-12-12 1986-12-12 Optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294694A JPH079524B2 (en) 1986-12-12 1986-12-12 Optical demultiplexer

Publications (2)

Publication Number Publication Date
JPS63148207A JPS63148207A (en) 1988-06-21
JPH079524B2 true JPH079524B2 (en) 1995-02-01

Family

ID=17811094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294694A Expired - Lifetime JPH079524B2 (en) 1986-12-12 1986-12-12 Optical demultiplexer

Country Status (1)

Country Link
JP (1) JPH079524B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557966B2 (en) * 1988-12-09 1996-11-27 日本電信電話株式会社 Optical multiplexer / demultiplexer
JP2653883B2 (en) * 1989-02-07 1997-09-17 日本電信電話株式会社 Wide wavelength operating waveguide type optical branching device
JP3309330B2 (en) * 1994-01-12 2002-07-29 日本電信電話株式会社 Control method and design method of optical multiplexing / demultiplexing circuit
JPH08334799A (en) * 1995-06-09 1996-12-17 Mitsubishi Electric Corp Optical waveguide device
US6735358B2 (en) * 2001-02-07 2004-05-11 Nippon Telegraph And Telephone Corporation Optical multiplexer and optical demultiplexer
CN107315224B (en) * 2017-08-14 2018-09-28 河南仕佳光子科技股份有限公司 A kind of adjustable insensitive directional coupler of wide range wavelength

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390236A (en) * 1981-03-19 1983-06-28 Bell Telephone Laboratories, Incorporated Tunable polarization independent wavelength filter
JPS6180109A (en) * 1984-09-26 1986-04-23 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer

Also Published As

Publication number Publication date
JPS63148207A (en) 1988-06-21

Similar Documents

Publication Publication Date Title
WO2005106551A1 (en) An optical device based on a three-arm mach-zehnder interferometer
US5515460A (en) Tunable silicon based optical router
EP1973252A1 (en) Controllable optical add/drop multiplexer
US20020159684A1 (en) Novel optical waveguide switch using cascaded mach-zehnder interferometers
JPH08304664A (en) Wavelength demultiplexing element
Chu et al. Optical coherence multiplexing for interprocessor communications
EP1226675B1 (en) A device and a method for optical multiplexing/demultiplexing
JP2003207668A (en) Polarization control circuit and optical circuit using the same
US6600852B1 (en) Wavelength selective device and switch and method thereby
JPH079524B2 (en) Optical demultiplexer
JP3246710B2 (en) Optical device manufacturing method
US6449411B1 (en) Optical wavelength tunable filter
US8606053B2 (en) Optical modulator
JPS635306A (en) Optical demultiplex element
US6788837B2 (en) Method and apparatus for interleaving and switching an optical beam in a semiconductor substrate
JP7162257B2 (en) mode branch device
JP4197126B2 (en) Optical switch and optical wavelength router
JP3175499B2 (en) Waveguide type optical multiplexer / demultiplexer
JPH11503241A (en) Digital light switch
JPH08234149A (en) Optical filter using electron - optical material
JP5467414B2 (en) Optical functional waveguide
JP3686088B2 (en) Wavelength selective optical device comprising at least one Bragg grating structure
JP2003167221A (en) Waveguide type optical element
JP2002372639A (en) Optical multiplexer/demultiplexer
JP3026302B2 (en) Optical multiplexer / demultiplexer