JPS635306A - Optical demultiplex element - Google Patents

Optical demultiplex element

Info

Publication number
JPS635306A
JPS635306A JP15005586A JP15005586A JPS635306A JP S635306 A JPS635306 A JP S635306A JP 15005586 A JP15005586 A JP 15005586A JP 15005586 A JP15005586 A JP 15005586A JP S635306 A JPS635306 A JP S635306A
Authority
JP
Japan
Prior art keywords
optical
waveguide
waveguides
lambda2
lambda1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15005586A
Other languages
Japanese (ja)
Inventor
Hiroshi Honmo
本望 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15005586A priority Critical patent/JPS635306A/en
Publication of JPS635306A publication Critical patent/JPS635306A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Abstract

PURPOSE:To divide optical signals having narrow wavelength intervals with a small extinction ratio, by installing a means which gives an optical loss to at least one of two optical waveguides. CONSTITUTION:When multiplexed optical signals lambda1 and lambda2, whose wavelengths are about 1.55mum and wavelength intervals are about 0.1nm, are inputted, the optical signal lambda1 and lambda2 are branched at a ratio of about 1:1 by means of an optical coupler 3 and propagated to two optical waveguides 2a and 2b having different optical paths. Since the optical waveguides 2a and 2b have different optical paths, radii of curvature, etc., their propagation losses are different from each other and, as the waveguide 2b has a longer optical path and smaller radius of curvature as compared with the other waveguide 2a, the propagation loss of the wavelength 2b is larger than that of the other waveguide 2a by about 1dB. Therefore, the optical signals lambda1 and lambda2 propagated through the optical waveguide 2b become smaller in power than those propagated through the other waveguide 2 by about 1dB. Accordingly, a voltage of about 10V is impressed across electrodes 4 and sothat the specific refractive index of the optical waveguide 2a' can be made smaller and the radiation mode can be made larger. Thus the powers of the optical signals lambda1 and lambda2 propagated through the optical waveguides 2a are made smaller by about 0.5dB so as to make the difference in propagation loss between the two optical waveguides 2a and 2b smaller by about 0.5dB.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光フアイバ波長多重分波伝送系に用いられ
る光分波素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical demultiplexing element used in an optical fiber wavelength multiplexing/demultiplexing transmission system.

(従来の技術) 光フアイバ波長多重分波伝送は、伝送容量が飛躍的に増
大することから、その研究開発が最近活発である。特に
、多重した光信号を分波する光分波素子は、光フアイバ
波長多重分波伝送を実現するための重要なデバイスの1
つである。従来、光分波素子としては、誘電体多層膜や
回折格子を用いて光信号を分波するものがある。
(Prior Art) Optical fiber wavelength division multiplexing and demultiplexing transmission has recently been actively researched and developed because the transmission capacity increases dramatically. In particular, an optical demultiplexer that demultiplexes multiplexed optical signals is one of the important devices for realizing optical fiber wavelength division multiplexing and demultiplexing transmission.
It is one. Conventionally, as an optical demultiplexing element, there is one that demultiplexes an optical signal using a dielectric multilayer film or a diffraction grating.

この詳細については、1984年8月に初版発行きれた
株式会社科学新聞社の光通信要覧(平田編集委員長等)
の第573頁から第583頁に記載されている。このタ
イプのものは、分波する光信号の波長間隔をせまくする
ことが困難であるから、伝送できる波長数が少なく(1
0波程度)、結局大容量の伝送が困難であるという欠点
がある。そのために、最近光の干渉を利用することによ
り、波長間隔のせまい光信号を分波することができ、波
長数にして100波程度以上の分波が可能なマツハツエ
ンダ干渉型光分波素子が考えられている。これは多重き
れた異なる波長の信号を一旦2つの光導波路に分岐し、
その光路長の違いによりその分岐した光信号間に位相差
を与え、次に1対1の分岐比をもつ2×2の光カブラで
、再び合波して干渉きせることにより、その光カブラの
2つの出力端の各々に各波長の光信号を分波するもので
ある。この光分波素子e詳細については、昭和60年度
電子通信学会総合全国大会の講演予稿集の第10−35
9頁に記載されている井上氏らの論文(講演番号264
6 )に記述されている。
For details, please refer to the Optical Communication Handbook of Kagaku Shinbunsha Co., Ltd., first published in August 1984 (edited by Editor-in-Chief Hirata, etc.)
It is described on pages 573 to 583 of . With this type, it is difficult to narrow the wavelength interval of the optical signals to be demultiplexed, so the number of wavelengths that can be transmitted is small (1
(approximately 0 waves), which has the disadvantage that large-capacity transmission is difficult. To this end, the Matsuhatsu Enda Interferometric Optical Demultiplexing Element, which can demultiplex optical signals with narrow wavelength intervals by using optical interference, has recently been developed, and is capable of demultiplexing approximately 100 or more wavelengths. It is being This splits the multiplexed signals of different wavelengths into two optical waveguides,
The difference in optical path length gives a phase difference between the branched optical signals, and then they are combined again in a 2x2 optical coupler with a 1:1 splitting ratio to cause interference. It separates optical signals of each wavelength to each of two output ends. For details of this optical demultiplexing element e, please refer to No. 10-35 of the lecture proceedings of the 1985 IEICE General Conference.
The paper by Mr. Inoue et al. (lecture number 264) listed on page 9
6).

(発明が解決しようとす、る問題点) −般にマツハツエンダ干渉型光分波素子は、前にも述べ
たように位相の違う光信号を干渉させ、その明暗により
分波するものであるから、その位相差を与える2つの光
導波路のそれぞれ伝搬損失が一致している必要がある。
(Problem that the invention seeks to solve) - Generally, the Matsuhatsu Enda interferometric optical demultiplexing element interferes with optical signals of different phases and separates them depending on the brightness and darkness of the optical signals, as mentioned above. , it is necessary that the propagation losses of the two optical waveguides giving the phase difference are the same.

ここで伝搬損失に差がある場合には、分波された任意の
波長の光信号に異なる波長の光信号が混入し、分波され
た光信号への消光比が大きくなり、SN比の劣化となる
。しかし、伝搬損失差の無い2つの光導波路を製作する
のは必ずしも容易ではなく、結局分波された光信号の消
光比の改善が困難となる大きな欠点があった。
If there is a difference in propagation loss, an optical signal of a different wavelength will mix into the demultiplexed optical signal of any wavelength, and the extinction ratio of the demultiplexed optical signal will increase, resulting in a deterioration of the S/N ratio. becomes. However, it is not necessarily easy to fabricate two optical waveguides with no difference in propagation loss, and there is a major drawback in that it is difficult to improve the extinction ratio of the split optical signal.

本発明は、上記のような欠点を除去せしめて、波長間隔
のせまい光信号を小さな消光比で分波できる光分波素子
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above drawbacks and provide an optical demultiplexing element that can demultiplex optical signals with narrow wavelength intervals with a small extinction ratio.

(問題点を解決するための手段) 本発明は異なる波長の入力光信号に位相差を与える2つ
の光導波路を有するマツハツエンダ干渉型光分波素子で
あって、前記2つの光導波路の少なくとも一方に前記入
力信号に伝搬損失を与える手段を備えたことを特徴とす
る。
(Means for Solving the Problems) The present invention provides a Matsuhatsu Interferometric optical demultiplexing element having two optical waveguides that give a phase difference to input optical signals of different wavelengths, wherein at least one of the two optical waveguides is The apparatus is characterized by comprising means for imparting a propagation loss to the input signal.

(作用) 2つの光導波路の伝搬損失の差があると、それぞれに伝
搬する光信号の強度が2つの光導波路間で異なる。これ
により、1対1の分岐比をもつ2×2の光カブラで、強
度が違う波長の光信号を合波させると、その光カブラの
2つの出力端の内の一方には、干渉により強め合った光
信号が得られる。また、他方の出力端では、本来もう一
方の出力端へ分波した波長の光信号強度は零となるべき
であるのに、光信号のパワーの大きさが異なるから、完
全に零とはならず、光信号が出力きれることとなる。し
たがって異なる波長の光信号を分波すると、光カブラの
2つの出力端に分波されたそれぞれの波長の光信号に異
なる波長の光信号が混入するとことになる。これに対し
、2つの光導波路における伝搬損失差を零にした場合に
は、光信号のパワーの大きさが同じであるから、異なる
波長の光信号を完全に分波でき、小さな消光比の光信号
が得られる。本発明では、2つの光導波路の少なくとも
一方に入力信号伝搬損失を与える手段を備えることによ
り、上述の伝搬損失差の縮少を可能にした。
(Function) If there is a difference in propagation loss between the two optical waveguides, the intensities of the optical signals propagating in each will differ between the two optical waveguides. As a result, when optical signals of wavelengths with different intensities are combined using a 2 x 2 optical coupler with a 1:1 branching ratio, one of the two output ends of the optical coupler receives a signal with a higher intensity due to interference. A matching optical signal can be obtained. Also, at the other output end, the optical signal strength of the wavelength branched to the other output end should be zero, but since the power of the optical signal is different, it may not be completely zero. First, the optical signal can no longer be output. Therefore, when optical signals of different wavelengths are demultiplexed, the optical signals of different wavelengths will be mixed into the optical signals of the respective wavelengths demultiplexed to the two output ends of the optical coupler. On the other hand, if the difference in propagation loss in the two optical waveguides is made zero, the power of the optical signals is the same, so optical signals with different wavelengths can be completely demultiplexed, and optical signals with a small extinction ratio can be separated. I get a signal. In the present invention, the above-mentioned difference in propagation loss can be reduced by providing means for imparting an input signal propagation loss to at least one of the two optical waveguides.

(実施例) 以下、本発明の実施例について、図面を参照して説明す
る。第1図は本発明の一実施例の構成を示す平面図であ
る。LiNbO5の基板1の表面にTi拡散した幅8−
程度、比屈折率0.3%程度の光導波路2を形成した。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing the configuration of an embodiment of the present invention. Width 8- with Ti diffused on the surface of LiNbO5 substrate 1
An optical waveguide 2 having a relative refractive index of about 0.3% was formed.

2本の光導波路2を互いに近接して形成することにより
、波長1.55P@の光で分岐比が約1対1の第1及び
第2の方向性統合器型光カブラ3,3′を構成し、また
光信号間に位相差を与えるために、光カブラ3と3゛の
間に光路長の違う2つの光導波路2a 、 2bを形成
した。なお、その光路差は光信号の波長間隔が約0.1
nmとなるように約5mmにしである。そして光路長の
短い光導波路2aの方には比屈折率0.2%と若干小さ
い光導波路2a’を挿入してあり、その両側に電極4を
形成しである。このような構成にすると、電極4−電圧
を印加した場合LiNb0.の電気光学効果で光導波路
2a’の比屈折率がさらに小さくなりそれによ・りここ
を伝搬する光信号の放射モードが大きくなり、したがっ
て、光信号の損失を大きくすることができる。
By forming the two optical waveguides 2 close to each other, the first and second directional integrator type optical couplers 3, 3' with a branching ratio of about 1:1 for light with a wavelength of 1.55P@ are formed. In order to provide a phase difference between optical signals, two optical waveguides 2a and 2b having different optical path lengths are formed between optical couplers 3 and 3'. Note that the optical path difference is approximately 0.1 wavelength interval of the optical signal.
The width is about 5 mm so that it is 5 nm. An optical waveguide 2a' having a relatively small refractive index of 0.2% is inserted into the optical waveguide 2a having a short optical path length, and electrodes 4 are formed on both sides of the optical waveguide 2a'. With such a configuration, when a voltage is applied to the electrode 4, LiNb0. Due to the electro-optic effect, the relative refractive index of the optical waveguide 2a' further decreases, thereby increasing the radiation mode of the optical signal propagating there, and thus increasing the loss of the optical signal.

さて、上述のような構成で、波長が約155pで波長間
隔が約0.1nmである多重された光信号λ1゜入、を
入力する。そうすると光カブラ3で光信号^1.λ、は
約1対1に分岐され、光路長の違う2つの光導波路2a
 、 2bへ伝搬される。ここで2つの光導波路2a、
2bは光路長、曲率半径等が違うため、それぞれの伝搬
損失が異なる。本実施例では、図かられかるように、光
導波路2bは、光導波路2aに比べて、光路長が長く曲
率半径が小さいから、伝搬損失が1dB程度大きい。し
たがって、光導波路2bを伝搬する光信号λ1.λ、の
方がパワーは1dB程度小きい。そこで電極4に電圧を
10v程度印加し光導波路2a’比屈折率を小きくする
ことにより、放射モードを大きくし光導波路2aを伝搬
する光信号λ3.入、のパワーを0.5dB程度小さく
し、2つの光導波路2a、2bの伝搬損失の差を0.5
dB程度と小さくした。このようにすることにより光カ
ブラ3′において再び合波され、干渉して、光出力端に
それぞれ分波きれた光信号λ1.λ、の消光比は一20
dBから一30dBに改善できた。なお、光導波路2a
’の伝搬損失を増したことによる分波素子の損失増加は
0.25dBと小さい。
Now, with the above-described configuration, a multiplexed optical signal λ1° having a wavelength of about 155p and a wavelength interval of about 0.1 nm is input. Then, the optical coupler 3 generates an optical signal ^1. λ is split approximately 1:1 into two optical waveguides 2a with different optical path lengths.
, 2b. Here, two optical waveguides 2a,
2b have different optical path lengths, radii of curvature, etc., and therefore have different propagation losses. In this embodiment, as can be seen from the figure, the optical waveguide 2b has a longer optical path length and a smaller radius of curvature than the optical waveguide 2a, so the propagation loss is about 1 dB larger. Therefore, the optical signal λ1 . The power of λ is about 1 dB smaller. Therefore, by applying a voltage of about 10 V to the electrode 4 and decreasing the relative refractive index of the optical waveguide 2a', the radiation mode is increased and the optical signal λ3. The input power is reduced by about 0.5 dB, and the difference in propagation loss between the two optical waveguides 2a and 2b is reduced to 0.5 dB.
It was reduced to about dB. By doing this, the optical signals λ1, . The extinction ratio of λ is -20
I was able to improve it from dB to -30dB. Note that the optical waveguide 2a
The increase in the loss of the demultiplexing element due to the increase in the propagation loss of ' is as small as 0.25 dB.

上記実施例では、材料としてLiNbQ、を用いたがこ
れに限定されず、半導体材料(たとえばGaAs、In
P等)、石英ガラス等を用いても良い。
In the above embodiment, LiNbQ was used as the material, but the material is not limited to this, and semiconductor materials (e.g. GaAs, In
P, etc.), quartz glass, etc. may be used.

また前記実施例では伝搬損失を増加させる手段として電
気光学効果を用いたがこれに限定されずたとえば半導体
材料を用いたのであれば、キャリア注入による光吸収効
果、プラズマ効果等でも良く、また石英ファイバを用い
たのであれば、曲げによる損失増加効果でも良い。
Furthermore, in the above embodiments, the electro-optic effect was used as a means to increase the propagation loss, but the invention is not limited to this. For example, if a semiconductor material is used, a light absorption effect by carrier injection, a plasma effect, etc. may be used, or a quartz fiber If it is used, the effect of increasing loss due to bending may be used.

また前記実施例では、2つの光導波路2a 、 2bの
一方のみに損失を与える構成を設けたが、両方の光導波
路にそれぞれ設けても良いのは当然である。
Further, in the embodiment described above, a configuration is provided in which loss is provided only to one of the two optical waveguides 2a and 2b, but it is of course possible to provide the loss to both optical waveguides.

また前記実施例では、2つの波長が多重きれた光信号を
用いたがこれに限定されず3つ以上の波長が多重された
光信号であっても良い。
Further, in the above embodiment, an optical signal multiplexed with two wavelengths is used, but the present invention is not limited to this, and an optical signal multiplexed with three or more wavelengths may be used.

(発明の効果) 以上述べた通り、光路長を与える2つの光導波路の少な
くとも一方に光損失を与える手段を備えることにより、
波長間隔のせまい光信号を小さな消光比で分波できる光
分波素子が得られる。
(Effects of the Invention) As described above, by providing means for imparting optical loss to at least one of the two optical waveguides providing optical path length,
An optical demultiplexing element capable of demultiplexing optical signals with narrow wavelength intervals with a small extinction ratio can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す平面図である。 1 ・・・LiNb0.基板、2 、2a 、 2a’
 、 2b・−・光導波路、3.3′・・・光カブラ、
4・・・電極。
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention. 1...LiNb0. Substrate, 2, 2a, 2a'
, 2b... optical waveguide, 3.3'... optical coupler,
4... Electrode.

Claims (1)

【特許請求の範囲】[Claims] 異なる波長の入力光信号に位相差を与える2つの光導波
路を有するマッハツェンダ干渉型光分波素子において、
前記2つの導波路の少なくとも一方に前記入力光信号に
伝搬損失を与える手段を備えたことを特徴とする光分波
素子。
In a Mach-Zehnder interferometric optical demultiplexing element that has two optical waveguides that give a phase difference to input optical signals of different wavelengths,
An optical demultiplexing element characterized in that at least one of the two waveguides is provided with means for imparting a propagation loss to the input optical signal.
JP15005586A 1986-06-25 1986-06-25 Optical demultiplex element Pending JPS635306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15005586A JPS635306A (en) 1986-06-25 1986-06-25 Optical demultiplex element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15005586A JPS635306A (en) 1986-06-25 1986-06-25 Optical demultiplex element

Publications (1)

Publication Number Publication Date
JPS635306A true JPS635306A (en) 1988-01-11

Family

ID=15488521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15005586A Pending JPS635306A (en) 1986-06-25 1986-06-25 Optical demultiplex element

Country Status (1)

Country Link
JP (1) JPS635306A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157711A (en) * 1988-12-09 1990-06-18 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing and demultiplexing device
JP2006039037A (en) * 2004-07-23 2006-02-09 Mitsubishi Electric Corp Semiconductor optical delay interferometer
WO2007026759A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Optical amplitude modulating system capable of removing high-order component
WO2007026757A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Dsb-sc modulation system capable of erasing carrier and secondary component
WO2007034766A1 (en) * 2005-09-20 2007-03-29 National Institute Of Information And Communications Technology Phase-controlled light fsk modulator
JP2011027773A (en) * 2009-07-21 2011-02-10 Nec Corp Optical mixer
US7936996B2 (en) 2005-08-24 2011-05-03 National Institute Of Information And Communications Technology Automatic adjusting system of frequency shift keying modulator
JP2012112886A (en) * 2010-11-26 2012-06-14 Ntt Electornics Corp Electric field sensor and method for measuring rf signal

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157711A (en) * 1988-12-09 1990-06-18 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexing and demultiplexing device
JP2006039037A (en) * 2004-07-23 2006-02-09 Mitsubishi Electric Corp Semiconductor optical delay interferometer
US7936996B2 (en) 2005-08-24 2011-05-03 National Institute Of Information And Communications Technology Automatic adjusting system of frequency shift keying modulator
EP1921485A4 (en) * 2005-08-31 2009-09-23 Nat Inst Inf & Comm Tech Optical amplitude modulating system capable of removing high-order component
JP4547552B2 (en) * 2005-08-31 2010-09-22 独立行政法人情報通信研究機構 DSB-SC modulation system capable of erasing carriers and secondary components
JP2007067876A (en) * 2005-08-31 2007-03-15 National Institute Of Information & Communication Technology Optical amplitude modulation system deleting high order component
US7991298B2 (en) 2005-08-31 2011-08-02 National Institute Of Information And Communications Technology DSB-SC modulation system capable of erasing carrier and secondary component
EP1921485A1 (en) * 2005-08-31 2008-05-14 National Institute of Information and Communicatons Technology Optical amplitude modulating system capable of removing high-order component
WO2007026757A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Dsb-sc modulation system capable of erasing carrier and secondary component
US7711215B2 (en) 2005-08-31 2010-05-04 National Institute Of Information And Communications Technology Optical amplitude modulation system capable of cancelling high order component
JP2007065240A (en) * 2005-08-31 2007-03-15 National Institute Of Information & Communication Technology Dsb-sc modulation system capable of cancelling carrier and secondary component
JP4552032B2 (en) * 2005-08-31 2010-09-29 独立行政法人情報通信研究機構 Optical amplitude modulation system capable of eliminating higher-order components
WO2007026759A1 (en) * 2005-08-31 2007-03-08 National Institute Of Information And Communications Technology Optical amplitude modulating system capable of removing high-order component
US7957653B2 (en) 2005-09-20 2011-06-07 National Institute Of Information And Communications Technology Phase control optical FSK modulator
WO2007034766A1 (en) * 2005-09-20 2007-03-29 National Institute Of Information And Communications Technology Phase-controlled light fsk modulator
JP2011027773A (en) * 2009-07-21 2011-02-10 Nec Corp Optical mixer
JP2012112886A (en) * 2010-11-26 2012-06-14 Ntt Electornics Corp Electric field sensor and method for measuring rf signal

Similar Documents

Publication Publication Date Title
US4690489A (en) Integrated optical wavelength multiplexer and demultiplexer device for monomode transmission systems and its use
JP2005221999A (en) Optical modulator and optical modulator array
CN112817091A (en) Mach-Zehnder interferometer and multichannel coarse wavelength division multiplexer
Tsao et al. A novel 1× 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide
JPS635306A (en) Optical demultiplex element
EP1226675B1 (en) A device and a method for optical multiplexing/demultiplexing
JP2001051244A (en) Optical modulator using photonic band gap structure and optical modulation method
Alam et al. Investigation of polymer-based 1× 2 all-optical switches at C-band wavelength
JPH04259801A (en) Macha-zehnder interferometer
US6600852B1 (en) Wavelength selective device and switch and method thereby
US8606053B2 (en) Optical modulator
US7330658B2 (en) Device and method for optical add/drop multiplexing
JP4197126B2 (en) Optical switch and optical wavelength router
JPH079524B2 (en) Optical demultiplexer
JP7162257B2 (en) mode branch device
US11656405B2 (en) Optical multi/demultiplexing circuit
Khalilzadeh et al. MMI-based all-optical four-channel wavelength division demultiplexer
JP3128974B2 (en) Waveguide type optical multiplexer / demultiplexer
KR20060061795A (en) An electro-optically tunable optical filter
JP3164124B2 (en) Light switch
JP7172271B2 (en) Optical multiplexer and RGB coupler
JP2833255B2 (en) Optical demultiplexer
JP2003167221A (en) Waveguide type optical element
JPH04204524A (en) Light modulator
JP3026302B2 (en) Optical multiplexer / demultiplexer