JPH079522A - Designing method of mold - Google Patents

Designing method of mold

Info

Publication number
JPH079522A
JPH079522A JP15216693A JP15216693A JPH079522A JP H079522 A JPH079522 A JP H079522A JP 15216693 A JP15216693 A JP 15216693A JP 15216693 A JP15216693 A JP 15216693A JP H079522 A JPH079522 A JP H079522A
Authority
JP
Japan
Prior art keywords
mold
product
mold release
molded product
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15216693A
Other languages
Japanese (ja)
Inventor
Yoshio Okada
佳男 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP15216693A priority Critical patent/JPH079522A/en
Publication of JPH079522A publication Critical patent/JPH079522A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM

Abstract

PURPOSE:To obtain a designing method of a mold which can prevent defective mold release, by a method wherein mold release resistance up to a mold releasing time is forecast through a frictional coefficient between a product and a mold and a position and a number of pieces of ejector pins are decided through a distribution of the mold release resistance. CONSTITUTION:In the third step 3, mold release resistance RA at a part A, mold elease resistance RB at a part B, mold release resistance RC at apart C are obtained respectively through the product of a frictional coefficient f (2, 0), force FA by which the part A obtained by the second step 2 is pressed against a mold, force FB by which the part B is pressed against the mold and force FC by which the part C is pressed against the mold and in the fourth step 4, a number of pieces of elector pins EA to be allotted to the part A, a number of pieces of the elector pins EB to be allotted to the part B and a number of the elector pins EC to be allotted to the part C are obtained respectively through the product of a ratio to the whole mold release resistance to each part mold release resistance RA (RB, RC) and the total number of piesces E of the input ejector pins.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、射出成形品の成形不良
を防止することができる金型の設計方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold design method capable of preventing defective molding of an injection molded product.

【0002】[0002]

【従来の技術】近年、従来考慮されていなかった金型内
での変形挙動、変形開始後の金型内での温度挙動を考慮
することにより、実際の成形現象により近い変形不良の
予測及び離型性の評価を可能とした射出成形プロセスシ
ミュレーション方法を用いることにより、適性な金型の
設計が行われるようになっている。
2. Description of the Related Art In recent years, by taking into consideration the deformation behavior in a mold and the temperature behavior in the mold after the start of deformation, which have not been taken into consideration in the past, it is possible to predict a deformation defect closer to an actual molding phenomenon and to separate it. By using the injection molding process simulation method that enables the evaluation of moldability, an appropriate mold is designed.

【0003】この射出成形プロセスシミュレーション方
法として、本出願人が先に、充填解析、保圧流動解析、
冷却解析を順次行って、射出成形プロセス中の成形材料
の温度変化、圧力、比容積変化を計算し、この計算結果
に基づいて成形品の各部が変形を開始する時点の樹脂の
状態量を算出し、この樹脂の状態量に基づいて変形開始
時から離型時までの熱歪みシミュレーションを行うこと
により、金型内での成形品の寸法、温度変化挙動を算出
し、その算出結果に基づいて離型時から成形品が温度、
寸法的に安定するまでの熱歪みシミュレーションを行う
ことにより、金型外での成形品の寸法、温度変化挙動を
算出し、その算出結果に基づいて、最終製品の反り、ひ
け、肉厚変動等の形状変形量を算出する射出成形プロセ
スシミュレーション方法を提案(特願平4−28274
7号参照)している。
As this injection molding process simulation method, the present applicant has first described a filling analysis, a holding pressure flow analysis,
Cooling analysis is sequentially performed to calculate the temperature change, pressure, and specific volume change of the molding material during the injection molding process, and based on these calculation results, the state quantity of the resin at the time when each part of the molded product begins to deform is calculated. Then, by performing a thermal strain simulation from the start of deformation to the time of mold release based on the state quantity of this resin, the dimensions and temperature change behavior of the molded product in the mold are calculated, and based on the calculation results The temperature of the molded product from the time of mold release,
By performing thermal strain simulation until it becomes dimensionally stable, the dimensions and temperature change behavior of the molded product outside the mold are calculated, and based on the calculation results, warpage, sink marks, wall thickness fluctuations, etc. of the final product Proposal of an injection molding process simulation method for calculating the amount of shape deformation of a mold (Japanese Patent Application No. 4-28274)
No. 7).

【0004】[0004]

【発明が解決しようとする課題】上記射出成形プロセス
シミュレーション方法は、実際の成形現象により近い変
形不良(射出成形品の成形時に発生する反り、肉厚む
ら、ひけ等の変形不良)の予測及び離型性の評価が行え
るため、金型作成前に材料、成形条件、製品、金型構造
の良否の検討が可能となり、従来に比べて製品開発時の
金型構造、製品形状、成形条件の変更に伴う時間的ロ
ス、コスト的ロスが削減できるといった効果を備えてい
る。
The above-mentioned injection molding process simulation method predicts and separates a deformation defect (a deformation defect such as a warp, uneven thickness, or a sink mark that occurs during molding of an injection-molded product) closer to the actual molding phenomenon. Since the moldability can be evaluated, it is possible to examine the quality of materials, molding conditions, products, and mold structure before making the mold, and change the mold structure, product shape, and molding conditions during product development compared to the past. It has the effect of reducing the time loss and cost loss associated with.

【0005】しかしながら、上記方法では、製品部にか
かる応力を予測できるが、離型不良を完全に防止するこ
とができなかった。本発明は係る実情に鑑みてなされた
もので、その目的は、離型不良を防止できる金型の設計
方法を提供することにある。
However, although the above-mentioned method can predict the stress applied to the product portion, it cannot completely prevent the mold release failure. The present invention has been made in view of such circumstances, and an object thereof is to provide a method for designing a mold that can prevent mold release defects.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明にかか金型の設計方法方法は、射出成形プロ
セスにおける充填解析、保圧流動解析、冷却解析を順次
行って、射出成形プロセス中の成形材料の温度変化、圧
力、比容積変化を計算し、この計算結果に基づいて成形
品の各部が変形を開始する時点の樹脂の状態量を算出
し、この算出結果に基づいて離型時から成形品が温度、
寸法的に安定するまでの熱歪みシミュレーションを行う
ことにより、金型外での成形品の寸法、温度変化挙動を
算出し、その算出結果に基づいて、最終製品の反り、ひ
け、肉厚変動等の形状変形量を算出する射出成形プロセ
スシミュレーション方法を用いて、製品部にかかる応力
分布を求め、この応力分布と、製品が金型に接触してい
る部分の面積と、製品と金型の間の摩擦係数から、型開
き時までの離型抵抗を予測し、離型抵抗の分布から突出
しピンの位置および本数を決定するようにした。
In order to achieve the above object, the method of designing a heel mold according to the present invention is such that a filling analysis, a holding pressure flow analysis, and a cooling analysis in an injection molding process are sequentially performed to perform injection molding. Calculate the temperature change, pressure, and specific volume change of the molding material during the process, calculate the state quantity of the resin at the time when each part of the molded product starts to deform based on this calculation result, and based on this calculation result The temperature of the molded product is
By performing thermal strain simulation until it becomes dimensionally stable, the dimensions and temperature change behavior of the molded product outside the mold are calculated, and based on the calculation results, warpage, sink marks, wall thickness fluctuations, etc. of the final product Using the injection molding process simulation method that calculates the amount of shape deformation of the product, find the stress distribution applied to the product part, the stress distribution, the area of the part where the product is in contact with the mold, and the space between the product and the mold. The mold release resistance until the mold was opened was predicted from the friction coefficient of No. 1, and the position and the number of protruding pins were determined from the distribution of mold release resistance.

【0007】[0007]

【作用】圧力・温度・比容積算出部において、成形品形
状データ、成形条件データ(射出条件、保圧条件、冷却
条件等の各データ)、樹脂特性を表すデータ(粘度、P
vTデータ、機械特性等)等の解析に必要な各種条件デ
ータを入力として、充填解析、保圧流動解析、冷却解析
を順次行うことにより、射出成形プロセス中の成形材料
の温度変化、圧力、比容積変化を計算し、この計算結果
に基づいて成形品の各部が変形を開始する時点(すなわ
ち、圧力が零となる時点)の樹脂の状態量を算出する。
[Function] In the pressure / temperature / specific volume calculation unit, molded product shape data, molding condition data (injection condition, pressure holding condition, cooling condition, etc. data), resin characteristic data (viscosity, P
(vT data, mechanical properties, etc.), etc., input various condition data necessary for analysis, and perform filling analysis, holding pressure flow analysis, and cooling analysis in sequence to change the temperature, pressure, and ratio of the molding material during the injection molding process. The volume change is calculated, and the state quantity of the resin at the time when each part of the molded product starts to deform (that is, when the pressure becomes zero) is calculated based on this calculation result.

【0008】つぎに、金型内熱歪み算出部において、こ
の圧力・温度・比容積算出部で算出した樹脂の状態量に
基づいて、変形開始時から離型時までの熱歪みシミュレ
ーションを行うことにより、金型内での成形品の寸法、
温度変化挙動を算出する。そして、この金型内熱歪み算
出部での算出結果に基づいて、離型時から成形品が温度
・寸法的に安定するまでの熱歪みシミュレーションを行
うことにより、金型外での成形品の寸法、温度変化挙動
を算出し、その算出結果に基づいて、製品の応力分布を
求める。
Next, in the thermal strain calculation unit in the mold, based on the state quantity of the resin calculated by the pressure / temperature / specific volume calculation unit, a thermal strain simulation from the deformation start time to the mold release time is performed. Due to the dimensions of the molded product in the mold,
Calculate temperature change behavior. Then, based on the calculation result of the in-mold thermal strain calculation unit, a thermal strain simulation from the time of mold release to the time when the molded product is stable in terms of temperature and dimensions is performed, so that the molded product outside the mold The size and temperature change behavior are calculated, and the stress distribution of the product is obtained based on the calculation result.

【0009】この応力分布から製品の各部分が型に押し
付けられる力を算出し、この力と製品と型との摩擦係数
を掛けることによって製品の各部分の離型抵抗を求め
る。次に、突出ピンによる各部に対する突出し力がこの
離型抵抗より大きくなる突出しピンの本数を求め、この
突出しピンを均等に分布させる。
The force with which each part of the product is pressed against the mold is calculated from this stress distribution, and the release resistance of each part of the product is obtained by multiplying this force by the coefficient of friction between the product and the mold. Next, the number of projecting pins by which the projecting force by the projecting pin with respect to each part is larger than this mold release resistance is obtained, and the projecting pins are evenly distributed.

【0010】[0010]

【実施例】以下に、本発明をその実施例をあらわす図面
を参照しつつ詳しく説明する。以下の表1
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings showing the embodiments thereof. Table 1 below

【0011】[0011]

【表1】 に示す成形条件で図1に示す成形製品Pを製造する場合
の成形金型を本発明の方法で設計した。なお、表中Fm
axは、使用した成形機の最大突出し力である。
[Table 1] A molding die for manufacturing the molded product P shown in FIG. 1 under the molding conditions shown in FIG. 1 was designed by the method of the present invention. In addition, Fm in the table
ax is the maximum ejection force of the molding machine used.

【0012】すなわち、まず、射出成形プロセスシミュ
レーションによって、図2に示すA,B,C部分の各要
素の応力を求めた結果、A部分の要素数NAに対して応
力がσa1〜σaNA、B部分の要素数NBに対して応
力がσb1〜σbNB、C部分の要素数NCに対して応
力がσc1〜σcNCとなった。また、それぞれの要素
の面積はSa1〜SaNA、Sb1〜SbNB、Sc1
〜ScNCであった。
That is, first, as a result of obtaining the stress of each element of the portions A, B, and C shown in FIG. 2 by an injection molding process simulation, the stress is σa1 to σaNA, and the portion of B is relative to the number of elements NA of the portion A. The stress was σb1 to σbNB with respect to the number of elements NB, and the stress was σc1 to σcNC with respect to the number of elements NC in the C portion. Moreover, the area of each element is Sa1-SaNA, Sb1-SbNB, Sc1.
Was ScNC.

【0013】そして、この結果から図3に示す突出しピ
ン配置算出フローに示す方法で金型の突出しピンの本数
および位置を求めた。すなわち、このフローを用いて算
出方法を詳しく説明すると、まず、第1ステップ1で突
出しピン総本数Eを仮に入力する。第2ステップ2で、
A部分が型に押し付けられる力FA,B部分が型に押し
付けられる力FB,C部分が型に押し付けられる力FC
を各部分にかかる総応力と各部の総面積との積から求め
る。
From this result, the number and position of the protruding pins of the mold were determined by the method shown in the protruding pin arrangement calculation flow shown in FIG. That is, the calculation method will be described in detail using this flow. First, in the first step 1, the total number E of protruding pins is provisionally input. In the second step 2,
The force FA for pressing the A portion against the mold, the force FB for pressing the B portion against the mold, and the force FC for pressing the C portion against the mold.
Is calculated from the product of the total stress applied to each part and the total area of each part.

【0014】第3ステップ3で摩擦係数f(0.2)と
第2ステップ2で求めたA部分が型に押し付けられる力
FA,B部分が型に押し付けられる力FB,C部分が型
に押し付けられる力FCとの積からA部分での離型抵抗
RA,B部分での離型抵抗RB,C部分での離型抵抗R
Cをそれぞれ求める。第4ステップ4で各部の離型抵抗
RA(RB,RC)の総離型抵抗に対する割合と入力し
た突出しピン総本数Eとの積からA部に割当られる突出
しピン本数EA,B部に割当られる突出しピン本数E
B,C部に割当られる突出しピン本数ECをそれぞれ求
める。
The friction coefficient f (0.2) in the third step 3 and the force FA, which is obtained in the second step 2, for pressing the portion A against the mold, the force FB, which is pressed for the mold FB, the portion C against the mold. Based on the product of the force FC, the mold release resistance RA at the A part, the mold release resistance RB at the B part, and the mold release resistance R at the C part.
Find C respectively. In the fourth step 4, the product of the ratio of the release resistance RA (RB, RC) of each part to the total release resistance and the input total number E of protruding pins is assigned to the A portion. The protruding pin numbers EA and B are assigned. Number of protruding pins E
The protruding pin numbers EC assigned to the B and C parts are obtained.

【0015】第5ステップ5で各部に割当られる突出し
ピン本数EA(EB,EC)の突出しピン総本数Eに対
する割合と使用した成形機の最大突出し力Fmax(2
000kgf)との積からA部の突出し力EFA,B部の突
出し力EFB,C部の突出し力EFCを求める。第6ス
テップ6で各部の突出し力EFA(EFB,EFC)
と、各部の離型抵抗RA(RB,RC)をそれぞれ比較
し、各部の突出し力EFA(EFB,EFC)が各部の
離型抵抗RA(RB,RC)より大きくなれば、第7ス
テップ7に進み、一か所でも突出し力より離型抵抗が大
きい場合は、第1ステップ1に戻って突出しピン総本数
Eを前の入力より1本増やして再び第2〜第6ステップ
の演算を行う。
In the fifth step 5, the ratio of the number of protruding pins EA (EB, EC) assigned to each part to the total number E of protruding pins and the maximum ejecting force Fmax (2 of the molding machine used.
000 kgf), the protrusion force EFA of the portion A, the protrusion force EFB of the portion B, and the protrusion force EFC of the portion C are obtained. Ejection force of each part EFA (EFB, EFC) in 6th step 6
And the release resistances RA (RB, RC) of the respective parts are compared, and if the protruding force EFA (EFB, EFC) of the respective parts becomes larger than the release resistance RA (RB, RC) of the respective parts, the seventh step 7 is carried out. If the mold release resistance is larger than the protruding force even at one place, the process returns to the first step 1 to increase the total number E of the protruding pins by one from the previous input, and the calculations of the second to sixth steps are performed again.

【0016】一方、第7ステップ7では、図2に示す各
部分の長さLA(LB,LC)を第4ステップ4で求め
た各部の突出しピン本数EA(EB,EC)で割ること
よってA部分の突出しピンピッチPA,B部分の突出し
ピンピッチPB,C部分の突出しピンピッチPCをそれ
ぞれ求める。以上のようにして、求めた結果、EAが2
本、EBが3本、ECが3本、PAが15mm、PBが1
0mm、PCが10mmであった。
On the other hand, in the seventh step 7, the length LA (LB, LC) of each part shown in FIG. 2 is divided by the number of protruding pins EA (EB, EC) of each part obtained in the fourth step 4 to obtain A. The protruding pin pitch PA of the portion, the protruding pin pitch PB of the portion B, and the protruding pin pitch PC of the portion C are obtained, respectively. As a result of the above determination, EA is 2
Book, 3 EBs, 3 ECs, 15mm PA, 1PB
It was 0 mm and PC was 10 mm.

【0017】そして、この結果を踏まえて図4に示す金
型Kを作成し、図1に示すような成形品を製造したとこ
ろ、離型不良を起こすことなく、設計どおりの製品Pが
得られた。なお、本発明に使用する射出成形プロセスシ
ミュレーション方法を、適用した装置の電気的構成を示
す図5を参照して説明すると以下のようになる。
Based on this result, a mold K shown in FIG. 4 was prepared and a molded product as shown in FIG. 1 was manufactured. As a result, a product P as designed could be obtained without causing mold release defects. It was The injection molding process simulation method used in the present invention will be described below with reference to FIG. 5 showing the electrical configuration of the applied apparatus.

【0018】同図において、解析に必要な各種条件デー
タの入力を行うデータ入力部11の出力は、充填解析、
保圧流動解析、冷却解析等を行う圧力・温度・比容積算
出部12に導かれており、圧力・温度・比容積算出部1
2の出力は、ここで算出された樹脂の状態量のデータを
格納する記憶部13に導かれている。また、記憶部13
の出力は、金型内熱歪み算出部14に導かれており、金
型内熱歪み算出部14の出力は、金型外熱歪み算出部1
5に導かれた構成となっている。
In the figure, the output of the data input section 11 for inputting various condition data necessary for analysis is the filling analysis,
It is guided to the pressure / temperature / specific volume calculation unit 12 that performs the pressure-holding flow analysis, the cooling analysis, etc., and the pressure / temperature / specific volume calculation unit 1
The output of No. 2 is guided to the storage unit 13 that stores the data of the state quantity of the resin calculated here. In addition, the storage unit 13
Is guided to the in-mold thermal strain calculation unit 14, and the output of the in-mold thermal strain calculation unit 14 is the external mold heat strain calculation unit 1.
It has a structure guided by 5.

【0019】データ入力部11は、成形品形状データ、
成形条件データ(射出条件、保圧条件、冷却条件等の各
データ)、樹脂特性を表すデータ(粘度、PvTデー
タ、機械特性等)等の解析に必要な各種条件データの入
力を行う。圧力・温度・比容積算出部12は、充填解
析、保圧流動解析、冷却解析を順次行うことにより、射
出成形プロセス中の成形材料の温度変化、圧力、比容積
変化を計算し、この計算結果に基づいて成形品の各部が
変形を開始する時点(すなわち、圧力が零となる時点)
の樹脂の状態量を算出するもので、図示は省略している
が、充填解析装置と、保圧流動解析装置と、金型の内外
での冷却解析を行う冷却解析装置とにより構成されてい
る。また、ここでの各解析は、従来より行われている解
析方法と基本的に同じものである。
The data input section 11 is for molding product shape data,
Various condition data necessary for analysis such as molding condition data (each data such as injection condition, pressure holding condition, cooling condition, etc.), data representing resin properties (viscosity, PvT data, mechanical properties, etc.) are input. The pressure / temperature / specific volume calculation unit 12 calculates the temperature change, pressure, and specific volume change of the molding material during the injection molding process by sequentially performing the filling analysis, the holding pressure flow analysis, and the cooling analysis. When each part of the molded product starts to deform based on (that is, when the pressure becomes zero)
Although it is not shown in the figure, it is composed of a filling analysis device, a pressure-holding flow analysis device, and a cooling analysis device for performing cooling analysis inside and outside the mold. . In addition, each analysis here is basically the same as the analysis method conventionally performed.

【0020】金型内熱歪み算出部14は、圧力・温度・
比容積算出部12で算出した樹脂の状態量に基づいて、
変形開始時から離型時までの熱歪みシミュレーションを
行うことにより、金型内での成形品の寸法、温度変化挙
動を算出するブロックである。金型外熱歪み算出部15
は、金型内熱歪み算出部14での算出結果に基づいて、
離型時から成形品が温度、寸法的に安定するまでの熱歪
みシミュレーションを行うことにより、金型外での成形
品の寸法、温度変化挙動を算出し、その算出結果に基づ
いて、最終製品の反り、ひけ、肉厚変動等の形状変形量
を算出するブロックである。
The in-mold thermal strain calculation unit 14 calculates the pressure / temperature /
Based on the state quantity of the resin calculated by the specific volume calculation unit 12,
This is a block for calculating the dimension and temperature change behavior of the molded product in the mold by performing thermal strain simulation from the start of deformation to the release. Outer mold thermal strain calculation unit 15
Is based on the calculation result of the thermal strain calculation unit 14 in the mold,
By performing thermal strain simulation from the time of mold release until the molded product is stable in temperature and dimension, the dimension and temperature change behavior of the molded product outside the mold are calculated, and based on the calculation results, the final product This is a block for calculating the amount of shape deformation such as warp, sink mark, and thickness variation.

【0021】次に、上記構成の射出成形プロセスシミュ
レーション装置の動作を、図6及び図7に示すフローチ
ャートを参照して説明する。オペレータは、まずデータ
入力部11より、成形品形状データ、成形条件データ
(射出条件、保圧条件、冷却条件等の各データ)、樹脂
特性を表すデータ(粘度、PvTデータ、機械特性等)
等の解析に必要な各種条件データの入力を行う(ステッ
プS1)。
Next, the operation of the injection molding process simulation apparatus having the above configuration will be described with reference to the flow charts shown in FIGS. First, the operator uses the data input unit 11 to obtain molded product shape data, molding condition data (injection conditions, pressure holding conditions, cooling conditions, and other data) and resin characteristic data (viscosity, PvT data, mechanical properties, etc.).
Various condition data necessary for analysis such as the above is input (step S1).

【0022】圧力・温度・比容積算出部12では、これ
らの入力データを基に、まず充填解析を行い(ステップ
S2)、高温、高圧で樹脂を充填する過程の樹脂の圧
力、温度等の変化挙動を算出する。次に、金型内への樹
脂の充填を完了すると、充填解析によって算出された充
填完了時の樹脂の状態量に基づいて、保圧流動解析を実
行する(ステップS3)。保圧流動解析は、充填完了か
ら補償流動停止時(ゲートシール)までの補償流動冷却
過程における樹脂の圧力、温度、比容積の変化挙動を算
出する。
The pressure / temperature / specific volume calculation unit 12 first performs a filling analysis based on these input data (step S2), and changes in the pressure and temperature of the resin during the process of filling the resin at high temperature and high pressure. Calculate the behavior. Next, when the filling of the resin into the mold is completed, the pressure-holding flow analysis is executed based on the amount of state of the resin at the time of completion of the filling calculated by the filling analysis (step S3). The holding pressure flow analysis calculates the change behavior of the resin pressure, temperature, and specific volume during the compensating flow cooling process from the completion of filling to the compensating flow stop (gate seal).

【0023】この後、補償流動が停止すると、保圧流動
解析で算出された補償流動停止時の樹脂の状態量に基づ
いて、変形開始までの金型内冷却過程の樹脂の状態量の
変化を算出し、得られた状態量のデータを記憶部13に
格納する(ステップS4)。金型内熱歪み算出部14
は、記憶部13に格納された樹脂の状態量を示すデータ
に基づいて、変形開始時から離型時までの熱歪みシミュ
レーションを行い(ステップS5)、金型内での成形品
の寸法、温度変化挙動を算出する。
After that, when the compensating flow is stopped, the change of the state quantity of the resin during the cooling process in the mold until the start of deformation is based on the state quantity of the resin when the compensating flow is stopped calculated by the holding pressure flow analysis. Data of the calculated and obtained state quantity is stored in the storage unit 13 (step S4). In-mold thermal strain calculation unit 14
On the basis of the data indicating the state quantity of the resin stored in the storage unit 13, performs a thermal strain simulation from the start of deformation to the time of mold release (step S5), and measures the dimensions and temperature of the molded product in the mold. Calculate change behavior.

【0024】すなわち、金型内熱歪み算出部14は、記
憶部13より入力された変形開始時の樹脂の状態量に基
づき、微少時間経過後の金型内での成形品の温度変化を
算出する(ステップS51)。そして、この算出した温
度変化に基づき、金型の拘束条件、成形品のクリープ現
象等を考慮しながら熱歪み解析を行い、成形品の変形量
を得る(ステップS52)。
That is, the in-mold thermal strain calculation unit 14 calculates the temperature change of the molded product in the mold after a lapse of a minute time, based on the state quantity of the resin at the start of deformation inputted from the storage unit 13. Yes (step S51). Then, based on the calculated temperature change, thermal strain analysis is performed while considering the constraint conditions of the mold, creep phenomenon of the molded product, etc., and the deformation amount of the molded product is obtained (step S52).

【0025】この後、金型内熱歪み算出部14は、この
変形量に基づき、金型と成形品との接触状態をチェック
し、接触状態の判定を行う(ステップS53)。ここで
の判定において、成形品のある面が金型面から離脱状態
にあると判定された場合には、その面の温度境界条件
(熱伝達係数)を、金型に接触していない状態での条件
に変更する(ステップS54、S55)。また、ステッ
プS54において成形品の各面が金型面に接触状態であ
ると判定された場合には、温度境界条件を変更すること
なく、ステップS56に進む。
After that, the in-die thermal strain calculation unit 14 checks the contact state between the die and the molded product based on the deformation amount, and determines the contact state (step S53). In this judgment, if it is judged that the surface of the molded product is in the state of being separated from the mold surface, the temperature boundary condition (heat transfer coefficient) of the surface is determined in the condition that the surface is not in contact with the mold. The condition is changed to (steps S54 and S55). When it is determined in step S54 that each surface of the molded product is in contact with the mold surface, the process proceeds to step S56 without changing the temperature boundary condition.

【0026】そして、ステップS56において、離型時
間となったか否かの判定が行われ、離型時間になってい
ない場合には、再びステップS51に戻り、温度境界条
件が変更されている場合には、その変更された温度境界
条件を用いて、次に微少時間経過後の成形品の温度変化
を算出する。このようなステップS51〜S56の計算
が、離型時間になるまで繰り返し行われる。そして、ス
テップS56において離型時間になると、ステップS5
1及びステップS52において最後に計算された成形品
の各部の温度、変形量、応力の各データが、金型外熱歪
み算出部15に与えられる。(ステップS57)。
Then, in step S56, it is determined whether or not the mold release time is reached. If the mold release time is not reached, the process returns to step S51 again, and if the temperature boundary condition is changed. Calculates the temperature change of the molded product after a lapse of a minute time by using the changed temperature boundary condition. The calculations in steps S51 to S56 are repeated until the mold release time is reached. Then, when the mold release time comes in step S56, step S5
The data of the temperature, the amount of deformation, and the stress of each part of the molded product calculated last in 1 and step S52 are given to the external mold thermal strain calculation part 15. (Step S57).

【0027】金型外熱歪み算出部15では、金型内熱歪
み算出部14から与えられた温度、変形量、応力の各デ
ータに基づいて、離型時から成形品が温度、寸法的に安
定するまでの熱歪みシミュレーションを行い、金型外で
の成形品の寸法、温度変化挙動を算出する。そして、そ
の算出結果に基づいて、最終製品の反り、ひけ、肉厚変
動、収縮量(寸法)等の形状変形量を算出する(ステッ
プS6)。
The external mold thermal strain calculation unit 15 determines the temperature and dimension of the molded product from the time of mold release based on the temperature, deformation amount, and stress data provided by the internal mold heat strain calculation unit 14. A thermal strain simulation is performed until it stabilizes, and the dimensions and temperature change behavior of the molded product outside the mold are calculated. Then, based on the calculation result, the amount of shape deformation such as warp, sink mark, wall thickness variation, shrinkage amount (dimension) of the final product is calculated (step S6).

【0028】[0028]

【発明の効果】本発明にかかる金型設計方法は、以上の
ように構成されているので、適切な突出しピンの数およ
び位置を容易に設定できて、金型を修正することなく離
型不良を防止することができる。したがって、無駄がな
く金型コストを下げることができる。
Since the mold designing method according to the present invention is configured as described above, it is possible to easily set an appropriate number and position of the projecting pins, and to perform mold release failure without modifying the mold. Can be prevented. Therefore, the die cost can be reduced without waste.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる金型設計方法で製造される製品
の1例をあらわす斜視図である。
FIG. 1 is a perspective view showing an example of a product manufactured by a mold designing method according to the present invention.

【図2】上記成形品の要素モデルである。FIG. 2 is an element model of the molded product.

【図3】本発明にかかる金型設計方法の突出しピン配置
算出のフローチャートである。
FIG. 3 is a flowchart of a protruding pin arrangement calculation of the mold designing method according to the present invention.

【図4】金型の断面図である。FIG. 4 is a cross-sectional view of a mold.

【図5】本発明の金型設計方法に使用した射出成形プロ
セスシミュレーション方法を適用した装置の電気的構成
を示すブロック図である。
FIG. 5 is a block diagram showing an electrical configuration of an apparatus to which the injection molding process simulation method used in the mold designing method of the present invention is applied.

【図6】動作を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining the operation.

【図7】動作を説明するためのフローチャートである。FIG. 7 is a flowchart for explaining the operation.

【符号の説明】[Explanation of symbols]

A 部分 B 部分 C 部分 K 金型 P 製品 Part A Part B Part C Part K Mold P Product

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 射出成形プロセスにおける充填解析、保
圧流動解析、冷却解析を順次行って、射出成形プロセス
中の成形材料の温度変化、圧力、比容積変化を計算し、
この計算結果に基づいて成形品の各部が変形を開始する
時点の樹脂の状態量を算出し、この算出結果に基づいて
離型時から成形品が温度、寸法的に安定するまでの熱歪
みシミュレーションを行うことにより、金型外での成形
品の寸法、温度変化挙動を算出し、その算出結果に基づ
いて、最終製品の反り、ひけ、肉厚変動等の形状変形量
を算出する射出成形プロセスシミュレーション方法を用
いて、製品の各部にかかる応力分布を求め、この応力分
布と、製品が金型に接触している部分の面積と、製品と
金型との間の摩擦係数から、型開き時までの離型抵抗を
予測し、離型抵抗の分布から突出しピンの位置および本
数を決定することを特徴とする金型設計方法。
1. A filling analysis, a pressure-holding flow analysis, and a cooling analysis in an injection molding process are sequentially performed to calculate a temperature change, a pressure, and a specific volume change of a molding material during the injection molding process,
Based on this calculation result, the state quantity of resin at the time when each part of the molded product starts to deform is calculated, and based on this calculation result, a thermal strain simulation from the time of mold release until the molded product is stable in temperature and dimension The injection molding process that calculates the dimension and temperature change behavior of the molded product outside the mold by performing the above, and calculates the amount of shape deformation such as warpage, sink mark, wall thickness fluctuation of the final product based on the calculation result. Using the simulation method, find the stress distribution on each part of the product, and from this stress distribution, the area of the part where the product is in contact with the mold, and the coefficient of friction between the product and the mold, The mold designing method is characterized by predicting the mold release resistance up to and determining the position and the number of protruding pins from the distribution of the mold release resistance.
JP15216693A 1993-06-23 1993-06-23 Designing method of mold Pending JPH079522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15216693A JPH079522A (en) 1993-06-23 1993-06-23 Designing method of mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15216693A JPH079522A (en) 1993-06-23 1993-06-23 Designing method of mold

Publications (1)

Publication Number Publication Date
JPH079522A true JPH079522A (en) 1995-01-13

Family

ID=15534476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15216693A Pending JPH079522A (en) 1993-06-23 1993-06-23 Designing method of mold

Country Status (1)

Country Link
JP (1) JPH079522A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037823A1 (en) * 1996-04-11 1997-10-16 Kao Corporation Mold designing method and apparatus
JP2007260985A (en) * 2006-03-27 2007-10-11 Fujitsu Ltd Mold design method, mold design device, and mold design program
JP2010134335A (en) * 2008-12-08 2010-06-17 Canon Inc Optical element manufacturing method
WO2012074152A1 (en) * 2010-12-02 2012-06-07 Faurecia Trim Korea Method for designing a mould for producing a trim panel
JP2012520193A (en) * 2009-05-07 2012-09-06 マグマ ギエッセレイテクノロジ ゲーエムベーハー Simulation of protrusion after filling molding
JP2014213525A (en) * 2013-04-25 2014-11-17 マツダ株式会社 Method of designing injection molding mold, mold designing system, mold designing program and computer-readable memory medium storing mold designing program
KR101486908B1 (en) * 2013-10-04 2015-01-29 한일이화 주식회사 Design method of door trim speaker grill using flow pattern analysis
WO2015106042A1 (en) * 2014-01-10 2015-07-16 Western Digital Technologies, Inc. Injection molding part with "zero draft" design and manufacturing methodologies
EP3354374A1 (en) 2017-01-27 2018-08-01 Toyota Jidosha Kabushiki Kaisha Analysis method for analyzing deformation of casting in die casting process
CN110375915A (en) * 2019-07-29 2019-10-25 中车青岛四方机车车辆股份有限公司 Gauge-changeable bogie locking pin stress test method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304794B1 (en) 1996-04-11 2001-10-16 Naohide Nishimine Method for designing a metal mold
CN1084661C (en) * 1996-04-11 2002-05-15 花王株式会社 Mold designing method and apparatus
WO1997037823A1 (en) * 1996-04-11 1997-10-16 Kao Corporation Mold designing method and apparatus
JP2007260985A (en) * 2006-03-27 2007-10-11 Fujitsu Ltd Mold design method, mold design device, and mold design program
KR100886058B1 (en) * 2006-03-27 2009-02-26 후지쯔 가부시끼가이샤 Mold design method, mold design apparatus and mold design program
JP2010134335A (en) * 2008-12-08 2010-06-17 Canon Inc Optical element manufacturing method
US9138929B2 (en) 2009-05-07 2015-09-22 Magma Giessereitechnologie Gmbh Simulation of ejection after mold filling
JP2012520193A (en) * 2009-05-07 2012-09-06 マグマ ギエッセレイテクノロジ ゲーエムベーハー Simulation of protrusion after filling molding
WO2012074152A1 (en) * 2010-12-02 2012-06-07 Faurecia Trim Korea Method for designing a mould for producing a trim panel
JP2014213525A (en) * 2013-04-25 2014-11-17 マツダ株式会社 Method of designing injection molding mold, mold designing system, mold designing program and computer-readable memory medium storing mold designing program
KR101486908B1 (en) * 2013-10-04 2015-01-29 한일이화 주식회사 Design method of door trim speaker grill using flow pattern analysis
WO2015106042A1 (en) * 2014-01-10 2015-07-16 Western Digital Technologies, Inc. Injection molding part with "zero draft" design and manufacturing methodologies
US9573306B2 (en) 2014-01-10 2017-02-21 Western Digital Technologies, Inc. Injection molding part with “zero draft” design and manufacturing methodologies
EP3354374A1 (en) 2017-01-27 2018-08-01 Toyota Jidosha Kabushiki Kaisha Analysis method for analyzing deformation of casting in die casting process
CN110375915A (en) * 2019-07-29 2019-10-25 中车青岛四方机车车辆股份有限公司 Gauge-changeable bogie locking pin stress test method
CN110375915B (en) * 2019-07-29 2021-02-09 中车青岛四方机车车辆股份有限公司 Stress testing method for variable-gauge bogie locking pin

Similar Documents

Publication Publication Date Title
JP3018957B2 (en) Optimal molding condition setting system for injection molding machines
US5756017A (en) Method of simulating resin behavior in press molding
JPH079522A (en) Designing method of mold
JPH07186228A (en) Method and device for predicting deformation quantity of injected molding
Lyashenko et al. Defects of Casting Plastic Products: Causes, Recurrence, Synthesis and Ways of Elimination
JPH0622840B2 (en) Molding process simulation system
JP4378011B2 (en) Mold design equipment and mold shape design method
CN113001920B (en) Method for setting optimal mold clamping force of hydraulic mold clamping mechanism
JPH0785128A (en) Method for designing injection molding resin molding
JPH0655597A (en) Injection-molding process simulation method and device thereof
JPH079523A (en) Designing method of injection molding method and injection mold
JPH06126799A (en) Method and device for simulating injection molding process
JP3949010B2 (en) Injection molding simulation method
JP2009298035A (en) Method for designing mold
JP2540233B2 (en) Integrated mold analysis system
US20180214938A1 (en) Analysis method for analyzing deformation of casting in die casting process
JPH07137108A (en) Method and device for setting compressing time in injection compression molding
JP3107622B2 (en) Molding process simulation method and apparatus
Carvalho et al. Thermomechanical Evaluation of Thermoplastics Injection Cycle Effects in Aluminium Moulds Using the Finite Element Method
JP3201847B2 (en) Evaluation method for appearance defects of injection molded products
JPH07271848A (en) Manufacture of die
Xu et al. A stiffness criterion for cooling time estimation
JPH11138610A (en) Method and apparatus for forecasting shape of finished molding
Kariminejad et al. Optimization of a Commercial Injection-Moulded component by Using DOE and Simulation
JP2024035197A (en) Warp deformation prediction method, warp deformation prediction device, warp deformation prediction program, and recording medium for resin injection molded products