JPH0794702B2 - Method for manufacturing copper alloy spring material - Google Patents

Method for manufacturing copper alloy spring material

Info

Publication number
JPH0794702B2
JPH0794702B2 JP4150122A JP15012292A JPH0794702B2 JP H0794702 B2 JPH0794702 B2 JP H0794702B2 JP 4150122 A JP4150122 A JP 4150122A JP 15012292 A JP15012292 A JP 15012292A JP H0794702 B2 JPH0794702 B2 JP H0794702B2
Authority
JP
Japan
Prior art keywords
copper alloy
heating
less
working
spring material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4150122A
Other languages
Japanese (ja)
Other versions
JPH0610106A (en
Inventor
剛三 永安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIRUBENIA KK
Original Assignee
SHIRUBENIA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIRUBENIA KK filed Critical SHIRUBENIA KK
Priority to JP4150122A priority Critical patent/JPH0794702B2/en
Publication of JPH0610106A publication Critical patent/JPH0610106A/en
Publication of JPH0794702B2 publication Critical patent/JPH0794702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は板、条、又は線の薄材の
銅合金ばね材料の製造方法、殊に中間加工工程で加工率
50%以上の冷間加工を施し充分に加工硬化した上記材
料を更により高度な物理特性を発揮させるための冷間加
工に適するように結晶粒度を調質した銅合金ばね材料の
製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a thin copper alloy spring material of a plate, a strip or a wire, and in particular, it is cold worked at a working rate of 50% or more in an intermediate working step and sufficiently worked and hardened. The present invention relates to a method for producing a copper alloy spring material, the grain size of which is adjusted so as to be suitable for cold working for exhibiting higher physical properties.

【0002】[0002]

【従来の技術】電子技術関係で大量に使用されている
板、条、若しくは線材等の銅合金ばね材料には、ばね用
黄銅、ばね用リン青銅、ばね用洋白、ベリリウム銅合
金、チタン銅合金が用いられている。これ等のばね材料
は黄銅、リン青銅、洋白等については目的とする板の厚
さ、物理特性値等を考慮し冷間加工により硬加した材料
を軟化焼鈍をし、さらに加工硬化による所要の特性を発
揮させるために最終の冷間加工により作られる。この時
の軟化焼鈍は黄銅では500℃で1時間、リン銅では5
50℃で1時間、洋白では650℃で1時間を要する。
又連続読式焼鈍に於てはそれぞれの値に応じた温度を加
熱部での所望の滞留時間内に与え再結晶をさせ最終の冷
間加工により所要の特性値を発揮させ使用されている。
又リン青銅にNi等の金属元素を配合し結晶粒を均一化
し微細化させ特性値の向上を図り利用されている場面も
ある。
2. Description of the Related Art Copper alloy spring materials such as plates, strips or wires used in large quantities in electronic technology include brass for springs, phosphor bronze for springs, nickel silver for springs, beryllium copper alloy, titanium copper. Alloys are used. For these spring materials, brass, phosphor bronze, nickel silver, etc. are required to be softened and annealed by the material that has been hardened by cold working in consideration of the target plate thickness, physical property values, etc. Made by final cold working to bring out the characteristics of. At this time, the softening annealing is performed at 500 ° C. for 1 hour for brass and 5 for phosphorous copper.
It takes 1 hour at 50 ° C and 1 hour at 650 ° C for nickel silver.
Further, in the continuous reading type annealing, a temperature corresponding to each value is given within a desired residence time in the heating portion to recrystallize and the final cold working is performed so that a desired characteristic value is exhibited.
There is also a scene where phosphor bronze is blended with a metal element such as Ni to make the crystal grains uniform and fine so as to improve the characteristic value and used.

【0003】析出硬化型ばね材料については標準の析出
材として冷間加工により加工硬化させた該材料を溶体化
処理の軟化焼鈍を施した後、プレス、ホーミング等の成
形加工を施し後に析出硬化処理を施し、ばね材として使
用されている。さらに高度なばね性を得るために溶体化
処理後冷間加工を施しある程度加工硬化をさせた材料を
プレス、ホーミング等の成形加工を施し、後に析出硬化
処理をして高いばね性を発揮させて利用されている。又
溶体化処理後適度に冷間加工をし、適度に連続的に析出
硬化処理を施し、後にプレス、ホーミング等の成形加工
を施し使用するミルハードン材があるがこの場合のばね
性はばね用リン青銅や洋白より勝るが、上記標準析出材
よりは劣っている。
For precipitation-hardening type spring materials, the material which has been work-hardened by cold working as a standard precipitation material is subjected to softening annealing for solution treatment, and then subjected to forming processing such as pressing and homing, and then precipitation hardening treatment. Is used as a spring material. In order to obtain a higher degree of springiness, the material that has been cold worked after solution heat treatment and work-hardened to some extent is subjected to molding such as pressing and homing, and then precipitation hardening treatment is performed to exhibit high springiness. It's being used. There is also a mill-hardened material that is used after being subjected to solution treatment, followed by appropriate cold working, followed by an appropriate continuous precipitation hardening treatment, and subsequent forming such as pressing and homing. Although superior to bronze and nickel silver, it is inferior to the above standard precipitation materials.

【0004】[0004]

【発明が解決しようとする課題】これ等のばね材料は電
子技術の発展、進歩に即応し、各種部品が使用されてい
るが、部品の小形化に対しばね材料の小形化、高性能化
に伴いばね材料の加工性、信頼性の更なる向上が望まれ
ている。その一環として金属材料を構成している結晶粒
子の均一化、微細化について種々研究し発表されている
が、その中に多くの問題を抱えている。
These spring materials are used in various parts in response to the development and progress of electronic technology, and in order to miniaturize the parts, the spring materials are made smaller and have higher performance. Accordingly, further improvement in workability and reliability of spring materials is desired. As part of this, various studies have been made and announced regarding the homogenization and miniaturization of the crystal grains that make up the metal material, but there are many problems among them.

【0005】この種のばね材料は圧延、線引き等の冷間
加工によって所要の特性を作り出しており、弾性強度、
降伏点、引張強さ、硬さ等の値を示す物理特性値と、伸
び、エリクセン値、曲げ性等で表される成形加工性との
バランスを考慮して設計され製作されている。
This kind of spring material produces the required characteristics by cold working such as rolling and wire drawing, and the elastic strength,
It is designed and manufactured in consideration of the balance between physical property values showing values such as yield point, tensile strength and hardness, and moldability represented by elongation, Erichsen value, bendability and the like.

【0006】上記の物理特性値を高めればそれだけ成形
加工性を低下させ、成形加工性を重視すれば物理特性を
下げなければならない。又最終工程の圧延、線引き加工
は大旨冷間加工であるので、加工方向と垂直方向とは物
理特性値や成形加工性が異る。即ち加工に対する特性値
に大きな異方性を生じ、昨今の精密で微細な更に高性能
を要求される成形加工に於ては、一方向へは曲げ可能で
あってもそれに対し直角方向へは折れてしまう等のいろ
いろな好ましくない問題が生じている。
If the above-mentioned physical property value is increased, the molding workability is lowered accordingly, and if the molding workability is emphasized, the physical property must be lowered. Further, since the rolling and wire drawing in the final step are essentially cold working, the physical property value and the formability are different between the working direction and the vertical direction. That is, a large anisotropy occurs in the characteristic value for processing, and in the recent molding processing that requires high precision and fine performance, even if it can be bent in one direction, it can be bent in the direction perpendicular to it. There are various unfavorable problems such as accidents.

【0007】[0007]

【課題を解決するための手段】本発明者は上記の最終軟
化焼鈍した材料について研究調査したところ、従来行な
われている方法でリン青銅、洋白等の合金を再結晶温度
に加熱し急冷した結果、結晶粒子の平均粒度は0.01
mm以上と大きく、又粗大化した粒子と微細な粒子の混
合した混粒状態であることを知った。又ベリリウム銅合
金に代表される析出硬化型金属でも溶体化処理をした材
料においても同じ現象が認められ、この混粒状態を解消
もしくは軽減すべく研究を行った。
Means for Solving the Problems The present inventor conducted research and investigation on the above-mentioned final softened and annealed material and found that an alloy such as phosphor bronze or nickel silver was heated to a recrystallization temperature and rapidly cooled by a conventional method. As a result, the average particle size of the crystal particles is 0.01
It was found that the particle size was as large as mm or more, and the mixed particles were composed of coarse particles and fine particles. Further, the same phenomenon was observed in the precipitation-hardened metal typified by beryllium-copper alloy as well as in the solution-treated material, and a study was conducted to eliminate or reduce this mixed grain state.

【0008】この種の比較的硬い合金の板、条、若しく
は線材を再結晶させ軟化させるため、又は溶体化処理を
施するための加熱炉は長尺物を連続操作する従来例の場
合を例示すると図2に示すように炉芯管1を取囲むよう
に発熱体2を配しその周囲に耐熱部3、更にその周囲に
保温部4、外箱5等の部材を取囲んで構成された加熱炉
が用いられている。
A heating furnace for recrystallizing and softening a plate, strip or wire of a relatively hard alloy of this kind, or for carrying out a solution treatment, is a conventional example in which a long product is continuously operated. Then, as shown in FIG. 2, the heating element 2 is arranged so as to surround the furnace core tube 1, the heat-resistant portion 3 is surrounded by the heat-generating portion 2, and the heat-retaining portion 4, the outer casing 5, etc. are surrounded by the heat-generating portion 3. A heating furnace is used.

【0009】合金板等で表わされる金属条6は還元性又
は不活性ガス雰囲気となっている炉芯管によって加熱さ
れる。この加熱は金属条が炉芯管に直接接して加熱され
るのでないので、管壁から対流及び輻射で受熱されるか
ら熱効率が悪く、一般に材料を均一に加熱し軟化させる
には加熱部での滞留時間は数分から数十分の時間を要し
ている。加熱時間が長いとその時間の経過に伴い結晶粒
の成長が進み成長度合が不揃いとなり粗大化した結晶粒
の周りに微細な粒子が残り、いわゆる粗粒子又は混粒と
云われる状態が発生し、ばね特性値を低下させ同時に成
形加工性を減退させている。
The metal strip 6 represented by an alloy plate or the like is heated by the furnace core tube in a reducing or inert gas atmosphere. In this heating, since the metal strip is not heated by directly contacting the furnace core tube, the heat efficiency is poor because it is received by convection and radiation from the tube wall. Generally, in order to uniformly heat and soften the material, the heating section The residence time is several minutes to several tens of minutes. When the heating time is long, the growth of crystal grains progresses with the lapse of time and fine particles remain around the coarsened crystal grains due to uneven growth degree, and a state called so-called coarse particles or mixed grains occurs, The spring characteristic value is reduced and at the same time the moldability is reduced.

【0010】本出願人は従来の加熱炉の欠点を解消する
ため特願平3−339584号「熱処理金属条の加熱方
法及びぞの加熱炉」の出願をした。この加熱炉の加熱部
は電熱を熱源とする発熱本から直接加熱を受けた一対の
加熱された窒化硼素板を収容するハウジングで囲まれて
いて、還元性又は不活性ガス雰囲気で充されている。金
属条は一対の窒化硼素板に挟圧されつつ伝導熱により直
接受熱して炉を連続通過する。この際金属条は電気ヒー
ターの発熱体から直接受熱された窒化硼素板に直接接し
て熱伝導によつて受熱するので加熱速度は極めて速く
均一である。本発明者はこの加熱炉を用いて諸実験を
行つたところ、この種の金属条を6乃至10秒と云う極
めて短かい時間に所望の再結晶温度ならびに溶体化処理
温度に均一に、然も連続的に上昇させうることが解つ
た。
The present applicant has filed an application for Japanese Patent Application No. 3-339584 "Heat treatment method for metal strips and heating furnace for heating" in order to solve the drawbacks of the conventional heating furnace. The heating section of this heating furnace is surrounded by a housing that accommodates a pair of heated boron nitride plates that are directly heated by a heat-generating book whose source is electric heat, and is filled with a reducing or inert gas atmosphere. . The metal strip is directly pressed by conduction heat while being sandwiched between a pair of boron nitride plates and continuously passes through the furnace. Is this case the metal strip is heated speed since due connexion heat thermal conductivity in direct contact with the boron nitride plate which is directly RECEIVING heat from the heating element of the electric heater is extremely fast
Is uniform. The present inventor has conducted various experiments using this heating furnace and found that a metal strip of this kind is uniformly kept at a desired recrystallization temperature and solution treatment temperature in an extremely short time of 6 to 10 seconds. It was found that it can be continuously increased.

【0011】本発明は上記加熱炉による実験結果に基ず
いてなるもので、中間加工工程で加工率50%以上の冷
間加工を施し充分加工硬化した銅合金の厚み又は直径
0.5mm以下の板、条、若しくは線材を再結晶温度以
上で20秒以内の時間で加熱し、次いで200℃/秒以
上の冷却速度で急冷することにより結晶粒度を0.01
mm以下に均一に微細化させてなる銅合金ばね材料の製
造方法である。
The present invention is based on the results of experiments using the above heating furnace. The thickness or diameter of the copper alloy is 0.5 mm or less, which has been sufficiently work hardened by cold working at a working rate of 50% or more in the intermediate working step. A plate, a strip, or a wire is heated at a recrystallization temperature or higher for 20 seconds or less, and then rapidly cooled at a cooling rate of 200 ° C./second or more to obtain a crystal grain size of 0.01.
It is a method for producing a copper alloy spring material which is uniformly miniaturized to less than or equal to mm.

【0012】又ベリリウム銅合金やチタン銅合金の場合
においても同じく中間加工工程で加工率50%以上の冷
間加工を施し充分に加工硬化した厚み又は直径0.5m
m以下の板、条、若しくは線材の析出硬化型銅合金を溶
体化温度以上で20秒以内の時間で加熱し、次いで20
0℃/秒以上の冷却速度で急冷することにより結晶粒度
を0.01mm以下に均一に微細化させてなる銅合金ば
ね材料の製造方法でもある。
In the case of a beryllium copper alloy or a titanium copper alloy, the thickness or diameter of 0.5 m is also obtained by cold working with a working rate of 50% or more in the intermediate working step and sufficient work hardening.
A plate-shaped or strip-shaped or wire-precipitation-hardened copper alloy of m or less is heated at a temperature not lower than the solutionizing temperature for 20 seconds or less, and then 20
It is also a method for producing a copper alloy spring material in which the crystal grain size is uniformly refined to 0.01 mm or less by quenching at a cooling rate of 0 ° C./second or more.

【0013】ここに冷間加工を受け加工硬化した金属材
料を適度な温度で加熱焼鈍すると新しく結晶が発生し成
長することにより加工歪による加工硬化は減少する。こ
の新しく結晶が発生することを再結晶といい、その時の
温度を再結晶温度という。さらに再結晶した結晶粒は加
熱時間経過とともに成長し、更には粗大化した粒子と微
細な粒子が入り混つた粗粒子又は混粒の状態となる。そ
の際直接加熱体から受熱することにより極力均一に再結
晶を促がし結晶粒の成長に伴つて発生する粗粒子又は混
粒状態に入らんとするその入口で加熱を中止することに
より均一でしかも微細な結晶粒(板厚0.2mmで0.
005mm以下)で満される。尚加熱後の急冷は公知の
方法で前記の加熱時間に対応した短時間で行なわれる。
[0013] processing hardening by working strain by new crystals are generated grow by heating annealing the work hardened metal material undergoing cold working here at moderate temperatures is reduced. The generation of this new crystal is called recrystallization, and the temperature at that time is called the recrystallization temperature. Further, the recrystallized crystal grains grow with the elapse of heating time, and become coarse particles or mixed particles in which coarse particles and fine particles are mixed. At that time, the heat is directly received from the heating body to promote recrystallization as uniformly as possible, and coarse particles generated with the growth of the crystal grains or to enter the mixed grain state. Moreover, fine crystal grains (0.
005 mm or less). The rapid cooling after heating is performed by a known method in a short time corresponding to the above heating time.

【0014】[0014]

【実施例】図1は本発明銅合金ばね材料のための加熱炉
の縦断面図、図2は従来例の加熱炉の横断面図である。
図1において7はハウジングで、この中に加熱要部が収
容され還元性又は不活性ガスで充された雰囲気のケース
である。8は加熱される金属条13の搬入口14の壁に
形成された冷却室、9は通過する金属条13の厚み方向
対称に設けた一対の断熱材、11は断熱材の内側に夫々
設けた電熱ヒーターのような一対の発熱体で、この発熱
体に内接して一対の窒化硼素板12が直接設けられる。
金属条13はハウジングの前記搬入口14より窒化硼素
板の間を通して搬出口15から図示せざる冷却部に移動
する。上記一対の窒化硼素板は図示せざる手段によって
通過中の金属条を挟圧するようになっている。従って加
熱炉を通過する薄材の金属条13は予め所定温度に加熱
された窒化硼素板に挟圧されて直ちに熱伝導により受熱
するから20秒以内と云う極めて短時間で再結晶温度又
は溶体化処理温度以上の温度に加熱される。
1 is a vertical sectional view of a heating furnace for a copper alloy spring material of the present invention, and FIG. 2 is a transverse sectional view of a conventional heating furnace.
In FIG. 1, reference numeral 7 denotes a housing, which is a case of an atmosphere in which a heating main part is housed and filled with a reducing gas or an inert gas. 8 is a cooling chamber formed in the wall of the inlet 14 of the metal strip 13 to be heated, 9 is a pair of heat insulating materials symmetrically provided in the thickness direction of the metal strip 13 passing through, and 11 is provided inside the heat insulating material. A pair of heating elements such as an electric heater is provided, and the pair of boron nitride plates 12 are directly provided inside the heating elements.
The metal strip 13 moves from the carry-in port 14 of the housing to a cooling unit (not shown) through the space between the boron nitride plates and the carry-out port 15. The pair of boron nitride plates presses the passing metal strip by means not shown. Therefore, the thin metal strip 13 that passes through the heating furnace is pinched by the boron nitride plate that has been heated to a predetermined temperature and receives heat immediately by heat conduction, so that the recrystallization temperature or solution treatment occurs within a very short time of 20 seconds or less. It is heated to a temperature higher than the processing temperature.

【0015】ばね用リン青銅、ばね用洋白、一般リン青
銅及びベリリウム銅合金について板厚0.2mmで本発
明例と従来例とに従って最終軟化焼鈍したものを表1に
示す。表に示したように従来例では軟化焼鈍に1時間を
要しその際の結晶粒度は0.01mm〜0.015mm
であった。併し本願発明方法によったものは軟化焼鈍完
了まで僅かに6秒であり、結晶粒度も僅かに0.003
〜0.005mmに過ぎなかった。
Table 1 shows phosphor bronze for springs, nickel silver for springs, general phosphor bronze, and beryllium copper alloys having a thickness of 0.2 mm and finally softened and annealed according to the examples of the present invention and the conventional examples. As shown in the table, in the conventional example, the softening annealing requires 1 hour, and the grain size at that time is 0.01 mm to 0.015 mm.
Met. However, according to the method of the present invention, it takes only 6 seconds to complete the softening annealing, and the grain size is only 0.003.
It was only ~ 0.005 mm.

【表1】 [Table 1]

【0016】上記の銅合金材の加工度は本発明方法のも
のは20%、従来例によるものは30%で圧延した結果
は表2に示す。これによると引張り強度、伸び、曲げ、
ばね限界値において加工方向と直角方向の不釣合がいず
れも改善されている。
Table 2 shows the results of rolling the above copper alloy material with a workability of 20% according to the method of the present invention and 30% according to the conventional example. According to this, tensile strength, elongation, bending,
In the spring limit value , the imbalance in the direction perpendicular to the machining direction is improved.

【表2】[Table 2]

【0017】更に上記ベリリウム銅合金について析出硬
化処理の場合315℃に加熱し析出硬化まで2時間を要
したが、本発明方法によると30〜60分を要するに過
ぎない。かくして処理した本発明方法によるものは引張
り強さ135kg/mm、伸び8%、ばね限界値は9
5kg/mmであつて、従来例の引張り強さ130k
g/mm、伸び2%、ばね限界値90kg/mm
比べて改善されている。
Further, in the case of the precipitation hardening treatment of the above beryllium copper alloy, it took 2 hours to heat it to 315 ° C. until the precipitation hardening, but according to the method of the present invention, it takes only 30 to 60 minutes. According to the method of the present invention thus treated, the tensile strength is 135 kg / mm 2 , the elongation is 8%, and the spring limit value is 9
5 kg / mm 2 and conventional tensile strength 130 k
g / mm 2 , elongation 2%, spring limit value 90 kg / mm 2 compared to the improvement.

【0018】[0018]

【発明の効果】以上記載したように本発明では金属条を
極めて短時間に加熱することが出来るので粗粒子、混粒
の発生が少なく従来約0.03mmから0.005mm
の混粒であったのに対し0.005mm〜0.003m
mとなり結晶粒度が均一化しその結果伸びが4〜1.5
倍に大きく向上し、成形加工性が甚だ良好となった。
As described above, according to the present invention, since the metal strip can be heated in an extremely short time, coarse particles and mixed particles are less likely to occur and the conventional diameter is about 0.03 mm to 0.005 mm.
Although it was a mixed grain of 0.005 mm to 0.003 m
m and the grain size is uniform, resulting in an elongation of 4 to 1.5.
It was greatly improved, and the molding processability was extremely good.

【0019】又結晶粒度の微細化に伴って加工硬化度が
30%以上上昇し、引張り強度、ばね特性、耐疲労性等
の物理特性値が30%以上向上した。析出硬化型金属で
は析出硬化の処理時間が50%以上短縮され、さらに析
出による歪変形が大きく軽減された。更に結晶粒度の均
一化、微細化による冷間加工度を30%以上軽減でき成
形加工工程での不具合である材料特性の異方性が大いに
改良された。
The work hardening degree increased by 30% or more as the crystal grain size was reduced, and the physical property values such as tensile strength, spring characteristics, and fatigue resistance were improved by 30% or more. With the precipitation hardening type metal, the processing time for precipitation hardening was shortened by 50% or more, and the strain deformation due to precipitation was greatly reduced. Further, the degree of cold work due to the homogenization and refinement of the crystal grain size can be reduced by 30% or more, and the anisotropy of material properties, which is a problem in the molding process, is greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる加熱炉の縦断面図。FIG. 1 is a vertical cross-sectional view of a heating furnace used in the present invention.

【図2】従来の加熱炉の横断面図。FIG. 2 is a cross-sectional view of a conventional heating furnace.

【符号の説明】[Explanation of symbols]

7 ハウジング 8 冷却室 9 断熱材 11 発熱体 12 窒化硼素板 13 金属条 14 搬入口 15 排出口 7 Housing 8 Cooling Chamber 9 Heat Insulating Material 11 Heating Element 12 Boron Nitride Plate 13 Metal Strip 14 Carry In Port 15 Discharge Port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】中間加工工程で加工率50%以上の冷間加
工を施し充分に加工硬化させた銅合金の厚み又は直径
0.5mm以下の板、条、若しくは線材を再結晶温度以
上で20秒以内の時間で加熱し次いで200℃/秒以上
の冷却速度で急冷することにより結晶粒度を0.01m
m以下に均一に微細化させることを特徴とする銅合金ば
ね材料の製造方法。
1. A plate, strip or wire having a thickness or a diameter of 0.5 mm or less of a copper alloy which has been cold worked at a working rate of 50% or more in an intermediate working step and is sufficiently work hardened at a recrystallization temperature of 20 or more. The grain size is 0.01 m by heating within a second and then quenching at a cooling rate of 200 ° C./sec or more.
A method for producing a copper alloy spring material, which comprises uniformly refining to m or less.
【請求項2】中間加工工程で加工率50%以上の冷間加
工を施し充分に加工硬化した厚み又は直径0.5mm以
下の板、条,若しくは線材の析出硬化型銅合金を溶体化
温度以上で20秒以内の時間で加熱し次いで200℃/
秒以上の冷却速度で急冷することにより結晶粒度を0.
01mm以下に均一に微細化させることを特徴とする銅
合金ばね材料の製造方法。
2. A precipitation hardening type copper alloy having a thickness or a diameter of 0.5 mm or less, which has been sufficiently work hardened by cold working at a working rate of 50% or more in an intermediate working step, to a solutionizing temperature or more. Heating in 20 seconds at 200 ° C /
The crystal grain size is reduced to 0.
A method for producing a copper alloy spring material, which comprises uniformly miniaturizing the alloy to a size of 01 mm or less.
JP4150122A 1992-05-19 1992-05-19 Method for manufacturing copper alloy spring material Expired - Lifetime JPH0794702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150122A JPH0794702B2 (en) 1992-05-19 1992-05-19 Method for manufacturing copper alloy spring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150122A JPH0794702B2 (en) 1992-05-19 1992-05-19 Method for manufacturing copper alloy spring material

Publications (2)

Publication Number Publication Date
JPH0610106A JPH0610106A (en) 1994-01-18
JPH0794702B2 true JPH0794702B2 (en) 1995-10-11

Family

ID=15489967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150122A Expired - Lifetime JPH0794702B2 (en) 1992-05-19 1992-05-19 Method for manufacturing copper alloy spring material

Country Status (1)

Country Link
JP (1) JPH0794702B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843080B1 (en) * 1996-11-19 2002-10-16 Toyota Jidosha Kabushiki Kaisha Variable valve performance apparatus for engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143566A (en) * 1984-12-13 1986-07-01 Nippon Mining Co Ltd Manufacture of high strength and highly conductive copper base alloy

Also Published As

Publication number Publication date
JPH0610106A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
EP0908526B1 (en) Copper alloy and process for obtaining same
JP2572042B2 (en) Copper based alloy for electrical connectors with improved combination ultimate tensile strength, electrical conductivity and stress relaxation resistance
CN111733372B (en) Elastic copper-titanium alloy and preparation method thereof
JP4001491B2 (en) High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same
KR880001524B1 (en) A method of heat freeting a copper-nickel-silicon-chromium alloy
US20050133126A1 (en) Copper-beryllium alloy strip
JPS6358908B2 (en)
JPH0542501B2 (en)
JP2013047360A (en) Cu-Ni-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
TW583321B (en) Copper alloy having improved stress relaxation resistance
GB2117402A (en) Processing copper beryllium alloys
US4566915A (en) Process for producing an age-hardening copper titanium alloy strip
CN108642318B (en) Conductive elastic Cu-Ti-Ni-Ag alloy and preparation method thereof
US4594116A (en) Method for manufacturing high strength copper alloy wire
JPH0794702B2 (en) Method for manufacturing copper alloy spring material
JP3740474B2 (en) Titanium copper excellent in conductivity and method for producing the same
TWI656227B (en) Copper alloy strip with improved dimensional accuracy after stamping
JP2008123964A (en) High-strength/high-conductivity clad material and method for manufacturing the same
US3287180A (en) Method of fabricating copper base alloy
JPH0453936B2 (en)
JPH03140444A (en) Manufacture of beryllium copper alloy member
WO2020044699A1 (en) Titanium copper plate, pressed product, and pressed-product manufacturing method
KR20210059699A (en) Copper-nickel-silicon alloy with high strength and high electrical conductivity
JP2001003131A (en) Aluminum alloy material excellent in low temperature creep characteristics, its manufacture, and aluminum alloy product
JP2016176105A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980721