JPH0794679A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0794679A
JPH0794679A JP5233951A JP23395193A JPH0794679A JP H0794679 A JPH0794679 A JP H0794679A JP 5233951 A JP5233951 A JP 5233951A JP 23395193 A JP23395193 A JP 23395193A JP H0794679 A JPH0794679 A JP H0794679A
Authority
JP
Japan
Prior art keywords
semiconductor
pair
soi
semiconductor device
semiconductor regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5233951A
Other languages
Japanese (ja)
Other versions
JP3195474B2 (en
Inventor
Noriaki Sato
典章 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23395193A priority Critical patent/JP3195474B2/en
Priority to KR1019940023089A priority patent/KR0134418B1/en
Priority to FR9411169A priority patent/FR2710454B1/en
Publication of JPH0794679A publication Critical patent/JPH0794679A/en
Priority to US08/915,140 priority patent/US5828106A/en
Application granted granted Critical
Publication of JP3195474B2 publication Critical patent/JP3195474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Abstract

PURPOSE:To provide an SOI(Semiconductor On Insulator) type semiconductor device having enhanced ESD(ElectroStatic Discharge) resistance. CONSTITUTION:The SOT type semiconductor device having a semiconductor surface layer on an insulating substrate comprises a pair of feeder lines 5, 6 formed on the semiconductor surface layer, a pair of low resistivity semiconductor regions 2a, 2b disposed in the surface layer while being connected with the pair of feeder lines, and a dielectric region 1a disposed between the pair of low resistivity semiconductor regions, wherein the pair of low resistivity semiconductor regions provide a capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に
静電荷放電(ESD)耐性を向上したSOI(絶縁体上
の半導体)型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to an SOI (semiconductor on insulator) type semiconductor device having improved electrostatic discharge (ESD) resistance.

【0002】[0002]

【従来の技術】半導体集積回路において、静電気がピン
等を介して外部から侵入し、回路内で放電すると、半導
体集積回路はその機能を損ねることが多い。以下CMO
S半導体集積回路を例に取って説明する。
2. Description of the Related Art In a semiconductor integrated circuit, when static electricity enters from the outside through a pin or the like and is discharged in the circuit, the function of the semiconductor integrated circuit is often impaired. Below CMO
The S semiconductor integrated circuit will be described as an example.

【0003】図3(A)〜(C)に、従来の技術による
ESDノイズ保護対策の例を示す。図3(A)は、入力
信号を受けるパッド50に対するESDノイズの対策回
路を示す。
3 (A) to 3 (C) show examples of ESD noise protection measures according to conventional techniques. FIG. 3A shows an ESD noise countermeasure circuit for the pad 50 receiving the input signal.

【0004】パッド50は、内部回路に接続する前にp
チャネルMOSトランジスタpMOSと、nチャネルM
OSトランジスタnMOSの直列回路に接続されてい
る。電源電圧VDDとパッド50に接続された信号線との
間にpチャネルMOSトランジスタpMOSが接続さ
れ、パッド50に接続された信号線と電源電圧VSSとの
間にnチャネルMOSトランジスタnMOSが接続され
ている。
The pad 50 is set to p before connecting to the internal circuit.
Channel MOS transistor pMOS and n channel M
It is connected to a series circuit of OS transistors nMOS. A p-channel MOS transistor pMOS is connected between the power supply voltage V DD and the signal line connected to the pad 50, and an n-channel MOS transistor nMOS is connected between the signal line connected to the pad 50 and the power supply voltage V SS. Has been done.

【0005】pMOSのゲート電極は電源電圧VDD
(ソースSと呼ぶ)に接続され、nMOSのゲート電極
は電源電圧VSS(ソースS)に接続されている。このよ
うな回路においては、パッド50に入力する信号がVSS
とVDDの間にある間は、pMOSとnMOSは共にオフ
されている。
The gate electrode of the pMOS is connected to the power supply voltage V DD side (referred to as the source S), and the gate electrode of the nMOS is connected to the power supply voltage V SS (source S). In such a circuit, the signal input to the pad 50 is V SS
During the period between V DD and V DD , both pMOS and nMOS are turned off.

【0006】パッド50に正電荷が侵入し、その電位が
DDよりも高くなると、pMOSのソースSとドレイン
Dの関係は逆転する。pMOSのドレインD側からソー
スS側に正電荷が流れ、電源VDDに吸収される。
When a positive charge enters the pad 50 and its potential becomes higher than V DD , the relationship between the source S and the drain D of the pMOS is reversed. Positive charges flow from the drain D side of the pMOS to the source S side and are absorbed by the power supply V DD .

【0007】パッド50に負電荷が侵入し、パッド50
の電位が電源電圧VSS以下になると、nMOSのソース
SとドレインDの関係が逆転し、負電荷はドレインDか
らソースSに流れ、電源配線VSSに吸収される。
Negative charges enter the pad 50,
When the potential of the source voltage V SS becomes equal to or lower than the power supply voltage V SS , the relationship between the source S and the drain D of the nMOS is reversed, and the negative charge flows from the drain D to the source S and is absorbed by the power supply wiring V SS .

【0008】図3(B)は、図3(A)に示すようなE
SD保護回路の構成例を示す断面図である。n型Si等
の基板51の内に、p型ウェル52が形成され、このp
ウェル52の内にnチャネルMOSトランジスタが形成
される。すなわち、pウェル52の内にn+ 型領域5
3、54が形成され、その間に画定されるチャネル領域
上に絶縁ゲート電極55が形成される。
FIG. 3B shows E as shown in FIG.
It is sectional drawing which shows the structural example of SD protection circuit. A p-type well 52 is formed in a substrate 51 such as n-type Si.
An n-channel MOS transistor is formed in well 52. That is, the n + type region 5 is formed in the p well 52.
3, 54 are formed, and the insulated gate electrode 55 is formed on the channel region defined between them.

【0009】また、pウェル52の内にp+ 型領域56
が形成される。p+ 型領域56とn + 型領域53はゲー
ト電極55と共に電源電圧VSSに接続される。一方他の
+型領域54はパッド50に接続される。この構成に
おいては、n+ 型領域53が図3(A)に示すソースS
となり、n+ 型領域54がドレインDとなる。
In addition, in the p well 52, p+Mold area 56
Is formed. p+Mold regions 56 and n +The mold region 53 is a game
Power supply voltage V together with the electrode 55SSConnected to. While the other
n+The mold region 54 is connected to the pad 50. In this configuration
In addition, n+The mold region 53 is the source S shown in FIG.
And n+The mold region 54 becomes the drain D.

【0010】なお、この構成によればpウェル52内に
nチャネルMOSトランジスタが形成されるが、同時に
+ 型領域54、pウェル52、n型基板51の間にバ
イポーラトランジスタ構造も形成される。
According to this structure, an n channel MOS transistor is formed in the p well 52, but at the same time, a bipolar transistor structure is also formed between the n + type region 54, the p well 52 and the n type substrate 51. .

【0011】上述のように、パッド50の電位がVSS
下になった時は、ソースSとドレインDの役割が反転
し、ドレイン54からソース53に負電荷が流れる。一
方、pウェル52のn+ 型領域54と基板51に挟まれ
る領域の間の厚さおよび不純物濃度を調整することによ
り、n+ 型領域54からn型基板51にパンチスルー電
流が流れるようにすることができる。
As described above, when the potential of the pad 50 becomes lower than V SS , the roles of the source S and the drain D are reversed, and negative charges flow from the drain 54 to the source 53. On the other hand, by adjusting the thickness and the impurity concentration between the n + type region 54 of the p well 52 and the region sandwiched by the substrate 51, a punch-through current flows from the n + type region 54 to the n type substrate 51. can do.

【0012】すなわち、パッド50に負電荷が侵入する
と、パッド50の負電位の増大に伴い、n+ 領域54か
ら基板51にパンチスルー電流が流れると共に、nMO
Sがオンするとn+ 型領域54からn+ 型領域53を通
ってVSSにも負電荷が流れる。
That is, when a negative charge invades the pad 50, a punch-through current flows from the n + region 54 to the substrate 51 as the negative potential of the pad 50 increases, and at the same time, nMO increases.
When S turns on, negative charges also flow from the n + type region 54 through the n + type region 53 to V SS .

【0013】なお、nウェル領域内にpMOSトランジ
スタを形成した場合も同様のESD電流が流れる。ただ
し、極性は反転する。さらに、この他、ドレイン拡散層
54とpウェル52との作るpn接合を介して、逆方向
ダイオード電流としてウェル52へ流れる経路もある。
この場合、ESDノイズが負電荷ならば、nMOSのド
レイン部接合を介してVSSまたは基板へ流れるか、pM
OSのソース部接合を介してVDDまたは基板へと流れ
る。正電荷のノイズのときは、ドレイン/ソースが入れ
替わるだけで同様である。
A similar ESD current flows when a pMOS transistor is formed in the n well region. However, the polarity is reversed. In addition to this, there is also a path that flows as a reverse diode current to the well 52 via the pn junction formed by the drain diffusion layer 54 and the p well 52.
In this case, if the ESD noise is negative charge, it flows to V SS or the substrate via the drain junction of the nMOS, or pM
Flows to V DD or the substrate through the source junction of the OS. In the case of positively charged noise, it is the same except that the drain / source is switched.

【0014】図3(C)は、超薄膜SOI−CMOS集
積回路装置において、同様の構成を形成した場合を示
す。Si基板等の支持基板59の上にSiO2 等の絶縁
領域58が形成され、この絶縁領域の上にnMOSトラ
ンジスタが構成されている。
FIG. 3C shows a case where a similar structure is formed in the ultrathin film SOI-CMOS integrated circuit device. An insulating region 58 such as SiO 2 is formed on a supporting substrate 59 such as a Si substrate, and an nMOS transistor is formed on this insulating region.

【0015】すなわち、n+ 型領域53、54が対向配
置され、その間にpチャネル57が配置されている。p
チャネル57の上には絶縁ゲート電極55が形成され
る。n + 型領域53と絶縁ゲート電極55は電源VSS
接続され、n+ 型領域54はパッド50に接続される。
That is, n+The mold regions 53 and 54 face each other
And the p-channel 57 is arranged between them. p
An insulated gate electrode 55 is formed on the channel 57.
It n +The mold region 53 and the insulated gate electrode 55 have a power source VSSTo
Connected, n+The mold region 54 is connected to the pad 50.

【0016】この構成においては、SOI構造のためn
MOSから基板59には電流が流れない。従って、nM
OSは存在するが、図3(B)の場合に付随して存在す
るパイポーラトランジスタは存在しない。
In this structure, because of the SOI structure, n
No current flows from the MOS to the substrate 59. Therefore, nM
Although the OS exists, the bipolar transistor that exists accompanying the case of FIG. 3B does not exist.

【0017】さらに、ウェルがないので、ドレイン拡散
層下にpnダイオードも存在しない。
Further, since there is no well, there is no pn diode below the drain diffusion layer.

【0018】ESD試験を行う時、VDDまたはVSSライ
ンをフローティング状態にしてコンデンサから電荷を入
力パッドに加えることがある。また、実際の使用条件の
なかでESDノイズが加わってVDDラインまたはVSS
インまで電荷が逃げた時、両ラインともフローティング
状態にあり、吸収されないままになることがある。この
ような場合、超薄膜SOI−CMOS回路においては電
荷が逃げることができず、ESD不良が生じ易い。
When performing an ESD test, the V DD or V SS line may be left floating and charge may be applied to the input pad from the capacitor. In addition, when ESD noise is added under actual use conditions and charges escape to the V DD line or V SS line, both lines may be in a floating state and may not be absorbed. In such a case, charges cannot escape in the ultra-thin film SOI-CMOS circuit, and an ESD defect is likely to occur.

【0019】このようなESD対策として、埋め込み酸
化膜の一部に開口部を設ける方法や、SOI構造の一部
を非SOI構造(すなわちバルクと同様のCMOS構
造)にする方法が提案されている。これらの方法によれ
ば、電荷を支持基板に逃がすことが可能となる。
As measures against such ESD, a method of providing an opening in a part of the buried oxide film and a method of making a part of the SOI structure into a non-SOI structure (that is, a CMOS structure similar to the bulk) have been proposed. . According to these methods, it is possible to let the charges escape to the supporting substrate.

【0020】しかし、埋め込み酸化膜の一部に開口部を
設けるためにはプロセスが増加し、余分な面積が必要と
なる。また、SOI構造を非SOI構造とするとSOI
構造の利点が減少し、プロセスが増加し、段差部での配
線の断線の可能性が生じる等の問題がある。
However, in order to provide an opening in a part of the buried oxide film, the number of processes is increased and an extra area is required. Further, if the SOI structure is a non-SOI structure, the SOI is
There are problems that the advantages of the structure are reduced, the number of processes is increased, and there is a possibility of disconnection of the wiring at the step portion.

【0021】[0021]

【発明が解決しようとする課題】SOI型半導体装置に
おいては、ESD対策に解決すべき課題が残っている。
本発明の目的は、ESD耐性を向上したSOI型半導体
装置を提供することである。
In the SOI type semiconductor device, there remains a problem to be solved as an ESD countermeasure.
An object of the present invention is to provide an SOI type semiconductor device having improved ESD resistance.

【0022】[0022]

【課題を解決するための手段】本発明のSOI型半導体
装置は、絶縁性支持基板上に半導体表面層を有するSO
I型半導体装置であって、半導体表面層上に形成された
1対の電源供給線(5、6)と、前記1対の電源供給線
に接続され、表面層中に配置された1対の低抵抗率半導
体領域(2a、2b)と、前記1対の低抵抗率半導体領
域間に配置された誘電体領域(1a)とを有し、前記1
対の低抵抗半導体領域が容量を形成する。
The SOI type semiconductor device of the present invention is an SO having a semiconductor surface layer on an insulating support substrate.
An I-type semiconductor device comprising: a pair of power supply lines (5, 6) formed on a semiconductor surface layer; and a pair of power supply lines connected to the pair of power supply lines and arranged in the surface layer. A low resistivity semiconductor region (2a, 2b) and a dielectric region (1a) disposed between the pair of low resistivity semiconductor regions;
The pair of low resistance semiconductor regions form a capacitance.

【0023】[0023]

【作用】1対の電源供給線の間に容量が接続されるた
め、パッドにESDノイズが入射してもESD不良は生
じ難い。
Since the capacitance is connected between the pair of power supply lines, the ESD failure is unlikely to occur even if the ESD noise enters the pad.

【0024】[0024]

【実施例】図1に本発明の基本実施例によるSOI型半
導体装置の構成を示す。図1(A)はSOI型半導体装
置の概略部分断面図、図1(B)はSOI半導体装置の
一部回路図である。
1 shows the structure of an SOI type semiconductor device according to a basic embodiment of the present invention. 1A is a schematic partial cross-sectional view of an SOI semiconductor device, and FIG. 1B is a partial circuit diagram of the SOI semiconductor device.

【0025】図1(A)において、SOI型半導体装置
の支持基板表面の絶縁領域1の内に低抵抗率半導体領域
2a、2bが形成されている。この低抵抗率半導体領域
2a、2bには、それぞれVSSライン5およびVDDライ
ン6が接続されている。
In FIG. 1A, low resistivity semiconductor regions 2a and 2b are formed in an insulating region 1 on the surface of a supporting substrate of an SOI type semiconductor device. A V SS line 5 and a V DD line 6 are connected to the low resistivity semiconductor regions 2a and 2b, respectively.

【0026】なお、低抵抗率半導体領域2a、2bの間
は誘電体領域1aによって分離され、その表面は絶縁膜
4によって覆われている。なお、絶縁膜4にはコンタク
ト孔7a、7bが形成され、VSSライン5およびVDD
イン6が低抵抗率半導体領域2a、2bにそれぞれ接触
する。
The low-resistivity semiconductor regions 2a and 2b are separated by a dielectric region 1a, and the surface thereof is covered with an insulating film 4. Contact holes 7a and 7b are formed in the insulating film 4, and the V SS line 5 and the V DD line 6 are in contact with the low resistivity semiconductor regions 2a and 2b, respectively.

【0027】低抵抗率半導体領域2a、2bの間には容
量Cが形成される。この容量は、低抵抗率半導体領域2
a、2bを近接配置し、誘電体領域1aを挟んで直接形
成してもよく、また低抵抗率半導体領域2a、2bがそ
れぞれSOI絶縁領域1を介して支持用半導体基板と形
成する容量を介して形成してもよい。
A capacitance C is formed between the low resistivity semiconductor regions 2a and 2b. This capacitance is equivalent to the low resistivity semiconductor region 2
a and 2b may be arranged in close proximity to each other and may be formed directly with the dielectric region 1a interposed therebetween, and the low-resistivity semiconductor regions 2a and 2b may be respectively formed via the SOI insulating region 1 and the capacitor formed with the supporting semiconductor substrate. You may form it.

【0028】なお、図1(A)には示していないが、こ
のSOI型半導体装置の他の部分には従来技術同様のp
MOSとnMOSの直列接続が形成され、電源ラインV
SSとVDDの間に接続される。
Although not shown in FIG. 1A, the other parts of this SOI semiconductor device have the same p
A series connection of MOS and nMOS is formed, and the power supply line V
Connected between SS and V DD .

【0029】図1(B)はこのようなESD保護回路の
等価回路を示す。パッド10a、10b、10cには、
それぞれ電源電圧VDD、入力信号、電源電圧VSSが印加
される。
FIG. 1B shows an equivalent circuit of such an ESD protection circuit. The pads 10a, 10b, 10c include
The power supply voltage V DD , the input signal, and the power supply voltage V SS are applied respectively.

【0030】パッド10aに接続されるラインとパッド
10bに接続されるラインの間にはpMOS11aが接
続され、パッド10bと10cの間にはnMOS11b
が接続される。さらに、パッド10aと10cに接続さ
れるラインの間に容量Cが接続されている。
A pMOS 11a is connected between the line connected to the pad 10a and a line connected to the pad 10b, and an nMOS 11b is connected between the pads 10b and 10c.
Are connected. Further, the capacitor C is connected between the lines connected to the pads 10a and 10c.

【0031】パッド10bにESDノイズが入射する
と、その極性に応じ電荷がパッド10aまたはパッド1
0cに接続されたラインに流れる。ここで、パッド10
aと10cに接続されたライン間には容量Cが接続され
ているため、入射した電荷は容量Cに吸収される。
When ESD noise is incident on the pad 10b, electric charges are generated depending on the polarity of the ESD noise.
Flows to the line connected to 0c. Where the pad 10
Since the capacitance C is connected between the lines connected to a and 10c, the incident electric charge is absorbed by the capacitance C.

【0032】図2は、図1(A)に示すような絶縁領域
中に埋め込まれた2つの半導体領域を形成する製造方法
の例を示す。図2(A)において、半導体デバイス形成
するための貼り合わせ用基板12の上にレジスト等によ
るマスク13a、13bが形成される。
FIG. 2 shows an example of a manufacturing method for forming two semiconductor regions buried in an insulating region as shown in FIG. In FIG. 2A, masks 13a and 13b made of resist or the like are formed on a bonding substrate 12 for forming a semiconductor device.

【0033】図2(B)に示すように、これらのマスク
13a、13bを用いて反応性イオンエッチイング(R
IE)等のエッチングを行うことにより、マスク13
a、13bの下に突起す半導体領域12a、12bを残
す。その後マスク13a、13bは除去する。
As shown in FIG. 2B, the reactive ion etching (R) is performed using these masks 13a and 13b.
By performing etching such as IE), the mask 13
The protruding semiconductor regions 12a and 12b are left under a and 13b. After that, the masks 13a and 13b are removed.

【0034】図2(C)に示すように、突起部を形成し
た貼り合わせ用基板12の上に、CVD等により、Si
2 等の絶縁膜14および多結晶Si等の多結晶半導体
層15を堆積する。堆積直後の状態においては、多結晶
半導体層15は凹凸を有する表面を有するが、この表面
を研磨することによって図に示すような平坦な表面を得
る。
As shown in FIG. 2C, Si is formed on the bonding substrate 12 on which the protrusions are formed by CVD or the like.
An insulating film 14 such as O 2 and a polycrystalline semiconductor layer 15 such as polycrystalline Si are deposited. In the state immediately after the deposition, the polycrystalline semiconductor layer 15 has a surface having irregularities, but by polishing this surface, a flat surface as shown in the figure is obtained.

【0035】次に図2(D)に示すように、Si基板等
の支持基板16を準備し、この支持基板16の表面に多
結晶半導体層15が接合されるように貼り合わせ基板1
2を配置する。
Next, as shown in FIG. 2D, a supporting substrate 16 such as a Si substrate is prepared, and the bonded substrate 1 is bonded so that the polycrystalline semiconductor layer 15 is bonded to the surface of the supporting substrate 16.
Place 2.

【0036】この状態で、たとえば1000°C程度の
高温に保持することにより、支持基板16と貼り合わせ
用基板12は接着される。なお、温度と共に電圧、圧力
等を併用することにより貼り合わせ工程は簡単化かつ安
定化される。
In this state, the supporting substrate 16 and the bonding substrate 12 are adhered by being kept at a high temperature of about 1000 ° C., for example. The bonding process can be simplified and stabilized by using voltage and pressure together with temperature.

【0037】図2(E)に示すように、貼り合わせ後貼
り合わせ基板12を図中上側から研磨することにより、
突起部12a、12bのみを残すようにする。この状態
においては、貼り合わせ用基板12に形成された半導体
領域12a、12bが絶縁膜14中に分離した状態で残
される。
As shown in FIG. 2 (E), after laminating, the laminated substrate 12 is polished from the upper side in the drawing to
Only the protrusions 12a and 12b are left. In this state, the semiconductor regions 12a and 12b formed on the bonding substrate 12 are left in the insulating film 14 in a separated state.

【0038】なお、半導体領域12a、12bはいずれ
かの段階で高濃度に不純物をドープしておく。このよう
にして、図1(A)に示す低抵抗率半導体領域が形成さ
れる。
The semiconductor regions 12a and 12b are doped with impurities at a high concentration at any stage. In this way, the low resistivity semiconductor region shown in FIG. 1A is formed.

【0039】なお、同様の方法により絶縁膜中に埋め込
まれた半導体領域を多数形成し、それぞれにpMOS、
nMOS等を形成することができる。このように形成し
たSOI構造の上に絶縁膜を形成し、コンタクト孔を形
成後配線層を形成すれば図1(A)に示す半導体構造が
得られる。
A large number of semiconductor regions embedded in the insulating film are formed by the same method, and pMOS,
An nMOS or the like can be formed. An insulating film is formed on the SOI structure thus formed, contact holes are formed, and then a wiring layer is formed, whereby the semiconductor structure shown in FIG. 1A is obtained.

【0040】なお、図2(E)に示す構造においては、
半導体領域12a、12bは絶縁膜14を介して支持基
板16の上に形成された多結晶半導体層15と対向して
いる。すなわち、半導体領域12a、12bは支持基板
との間にも容量を形成する。
In the structure shown in FIG. 2 (E),
The semiconductor regions 12a and 12b face the polycrystalline semiconductor layer 15 formed on the support substrate 16 with the insulating film 14 interposed therebetween. That is, the semiconductor regions 12a and 12b also form a capacitance with the supporting substrate.

【0041】ESD保護用の容量を形成する半導体領域
の形状としては種々の形状が可能である。図4は本発明
の実施例によるESD保護容量の平面構成例を示す。絶
縁領域25内に配置された低抵抗率半導体領域23は、
共通の基幹部分から3つの枝状部分23a、23b、2
3cが張り出した形状を有する。絶縁領域25内に配置
された他の半導体領域24も同様に、共通の基幹部分か
ら3つの枝状部分24a、24b、24cが張り出した
形状を有する。
Various shapes are possible as the shape of the semiconductor region forming the capacitance for ESD protection. FIG. 4 shows a planar configuration example of an ESD protection capacitor according to an embodiment of the present invention. The low resistivity semiconductor region 23 arranged in the insulating region 25 is
From the common backbone part, three branch parts 23a, 23b, 2
3c has a projecting shape. Similarly, the other semiconductor regions 24 arranged in the insulating region 25 also have a shape in which three branch-shaped portions 24a, 24b, and 24c project from the common backbone portion.

【0042】半導体領域23と半導体領域24は、互い
にその枝状部分23a〜23cと24a〜24cが互い
にかみ合うようにインターデジタル形状に配置される。
半導体領域23はVSSライン21に接続され、半導体領
域24はVDDライン22に接続される。
The semiconductor region 23 and the semiconductor region 24 are arranged in an interdigital form such that the branch portions 23a to 23c and 24a to 24c thereof are engaged with each other.
The semiconductor region 23 is connected to the V SS line 21, and the semiconductor region 24 is connected to the V DD line 22.

【0043】このようなインターデジタル形状を採用す
ることにより、半導体領域23と半導体24の対向面積
が増大し、形成する容量のキャパシタンスが増大する。
図5は、図4に示すような構成の容量を、集積回路チッ
プに配置する配置例を示す。半導体チップ20の中央部
には集積回路部分が形成され、周辺部にはパッドが形成
される。中央部の回路部分と周辺部のパッドとの間にV
SSライン21とVDDライン22が中央領域を取り囲むよ
うに配置されている。
By adopting such an interdigital shape, the facing area between the semiconductor region 23 and the semiconductor 24 increases, and the capacitance of the capacitance formed increases.
FIG. 5 shows an arrangement example in which a capacitor having the structure shown in FIG. 4 is arranged on an integrated circuit chip. An integrated circuit portion is formed in the central portion of the semiconductor chip 20, and pads are formed in the peripheral portion. V between the central circuit and the peripheral pads
The SS line 21 and the V DD line 22 are arranged so as to surround the central region.

【0044】このVSSライン21とVDDライン22の間
に複数個所において図4に示すようなESD保護回路2
6が配置される。図示の構成においては、3つのESD
保護回路26a、26b、26cが示されている。容量
を分散配置することにより電源ライン全体に対する保護
機能が均一化される。
The ESD protection circuit 2 as shown in FIG. 4 is provided at a plurality of places between the V SS line 21 and the V DD line 22.
6 is arranged. In the configuration shown, three ESDs
The protection circuits 26a, 26b, 26c are shown. By disposing the capacitors in a distributed manner, the protection function for the entire power supply line is made uniform.

【0045】なお、必要に応じてESD保護回路の数を
増減することができる。また、VSSライン21、VDD
イン22の対向する全長に渡ってESD保護回路を形成
することもできる。
The number of ESD protection circuits can be increased or decreased as necessary. Further, the ESD protection circuit can be formed over the entire length of the V SS line 21 and the V DD line 22 facing each other.

【0046】超薄膜SOI型CMOS回路においては、
半導体デバイスを形成する半導体層は、たとえば約0.
1μmと極め薄くされる。このような場合、容量を形成
する半導体領域の側面の面積は厚さに応じて小さくな
る。容量を増大させるためには、半導体領域間の誘電体
層の厚さを薄くすればよいが、あまり薄くすると耐圧が
不足してしまう。
In the ultra-thin SOI type CMOS circuit,
The semiconductor layers forming the semiconductor device are, for example, about 0.
It is made extremely thin with 1 μm. In such a case, the area of the side surface of the semiconductor region forming the capacitance becomes smaller according to the thickness. In order to increase the capacitance, it is sufficient to reduce the thickness of the dielectric layer between the semiconductor regions, but if it is too thin, the breakdown voltage will be insufficient.

【0047】たとえば、SiO2 の誘電体層を利用する
場合、対向する半導体領域間には厚さ約0.5μm程度
の誘電体領域を残す。この半導体領域間の誘電体層の厚
さは、リーク電流が無視できる程度となり、かつ絶縁破
壊されない程度の厚さを確保する必要がある。1つの目
安として、最小露光線幅程度の誘電体層を用いる。
For example, when a dielectric layer of SiO 2 is used, a dielectric region having a thickness of about 0.5 μm is left between opposing semiconductor regions. It is necessary to secure the thickness of the dielectric layer between the semiconductor regions so that the leakage current is negligible and the dielectric breakdown does not occur. As one measure, a dielectric layer having a minimum exposure line width is used.

【0048】ESDノイズは人体等から発生するが、典
型的には500V程度の電圧が生じる。このようなES
D電圧を緩和するためには、容量は大きい方が望まし
い。図6は、半導体領域間に形成される容量のキャパシ
タンスをさらに増大するのに適した平面形状を示す。
The ESD noise is generated by the human body or the like, but a voltage of about 500 V is typically generated. ES like this
In order to reduce the D voltage, it is desirable that the capacitance be large. FIG. 6 shows a planar shape suitable for further increasing the capacitance of the capacitance formed between the semiconductor regions.

【0049】半導体領域23は、2つの枝状部分23
a、23bを有し、同様の2つの枝状部分24a、24
bを有する半導体領域24と対向配置されている。これ
らの枝状部分23a、23bと24a、24bはインタ
ーデジタル形状にかみ合って配置されている。
The semiconductor region 23 has two branch portions 23.
a, 23b and two similar branch portions 24a, 24
It is arranged so as to face the semiconductor region 24 having b. These branch portions 23a, 23b and 24a, 24b are arranged so as to interlock with each other in an interdigital shape.

【0050】さらに、対向する各枝状部分において、枝
状部分23aからさらに突出する突起部28が形成さ
れ、枝状部分24からも突起する突起領域27が形成さ
れ、突起部28と交互にかみ合うように配置されてい
る。これらの突起27、28により、半導体領域23、
24の対向部分の周縁の長さは増大する。
Further, in each of the opposed branch portions, a protruding portion 28 further protruding from the branch portion 23a is formed, and a protruding region 27 protruding from the branch portion 24 is also formed, and the protruding portions 28 are alternately engaged with each other. Are arranged as follows. These protrusions 27 and 28 allow the semiconductor region 23,
The peripheral length of the opposing portion of 24 increases.

【0051】すなわち、半導体領域23、24の側面の
面積が増大している。この増大した側面が互いに対向配
置されることにより、その間に形成される容量のキャパ
シタンスも増大する。
That is, the areas of the side surfaces of the semiconductor regions 23 and 24 are increased. By arranging the increased side surfaces to face each other, the capacitance of the capacitance formed between them also increases.

【0052】図7は、本発明の他の実施例によるESD
保護容量の配置例を示す。半導体領域23と24が2次
元状にかつ交互に配置され、市松模様のパターンを形成
している。各半導体領域23、24の周囲には誘電体領
域が配置されている。
FIG. 7 shows an ESD according to another embodiment of the present invention.
An example of arrangement of protection capacitors is shown. The semiconductor regions 23 and 24 are two-dimensionally and alternately arranged to form a checkered pattern. A dielectric region is arranged around each semiconductor region 23, 24.

【0053】これらの半導体領域の上に、図に示すよう
に斜め方向に電源配線21a、21b、21c、21d
と22a、22b、22c、…が交互に配置されてい
る。すなわち、半導体領域23はVSSライン21に接続
され、半導体領域24はVDDライン22に接続される。
従って、各半導体領域23、24はその周囲を他の電源
ラインに接続される半導体領域に囲まれており、その全
側面で容量を形成する。
On these semiconductor regions, power supply wirings 21a, 21b, 21c and 21d are obliquely provided as shown in the figure.
And 22a, 22b, 22c, ... Are alternately arranged. That is, the semiconductor region 23 is connected to the V SS line 21, and the semiconductor region 24 is connected to the V DD line 22.
Therefore, each semiconductor region 23, 24 is surrounded by a semiconductor region connected to another power supply line, and a capacitance is formed on all side surfaces thereof.

【0054】本実施例においては、各半導体領域の主表
面における面積を小さくし、主表面側から電源ラインに
コンタクトを取ることにより、容量を増加させると共に
半導体領域内での電圧降下をほとんど無視できるように
することも可能である。
In the present embodiment, by reducing the area of the main surface of each semiconductor region and making contact with the power supply line from the main surface side, the capacitance is increased and the voltage drop in the semiconductor region can be almost ignored. It is also possible to do so.

【0055】ESDノイズは電圧が高いので、導電性領
域に鋭角なエッジがあると、そこにおいて放電を生じや
すい。図8は、本発明の他の実施例による、耐圧の高い
ESD保護容量の構成例を示す。絶縁領域中に円形の半
導体領域24とそれを囲むリング状の半導体領域23が
形成され、その間に容量を形成する。
Since the ESD noise has a high voltage, if the conductive region has a sharp edge, a discharge is likely to occur at the sharp edge. FIG. 8 shows a configuration example of an ESD protection capacitor having a high breakdown voltage according to another embodiment of the present invention. A circular semiconductor region 24 and a ring-shaped semiconductor region 23 surrounding it are formed in the insulating region, and a capacitance is formed between them.

【0056】これらの半導体領域の上に絶縁膜を介して
SSライン21、VDDライン22が配置され、絶縁膜中
に形成したコンタクト孔28を介してリング状半導体領
域23および円形状半導体領域24にオーミックコンタ
クトする。
A V SS line 21 and a V DD line 22 are arranged on these semiconductor regions with an insulating film interposed therebetween, and a ring-shaped semiconductor region 23 and a circular semiconductor region are provided with a contact hole 28 formed in the insulating film interposed therebetween. Ohmic contact with 24.

【0057】この構成においては、半導体領域23と2
4の対向面において突起が全く存在せず、耐圧が向上す
る。このため、半導体領域23、24間の誘電領域の厚
さを減少させることが可能になる。
In this structure, the semiconductor regions 23 and 2 are
There is no protrusion on the opposing surface of No. 4, and the breakdown voltage is improved. Therefore, it is possible to reduce the thickness of the dielectric region between the semiconductor regions 23 and 24.

【0058】なお、これらの半導体領域は必ずしも円形
にする必要はなく、楕円形状または長円形状などなだら
かな曲線を形成するいかなる形状としてもよい。電源配
線の一方が接地電位の場合は、接地電位を外側に配置す
るのが好ましい。
Note that these semiconductor regions do not necessarily have to be circular, and may have any shape such as an elliptical shape or an oval shape that forms a gentle curve. When one of the power supply wirings has a ground potential, it is preferable to arrange the ground potential outside.

【0059】SOI型構造において、表面層に形成され
る半導体層は相互間に容量を形成できる他、支持基板と
して半導体基板を用いる場合、支持基板との間にも容量
を形成する。
In the SOI type structure, the semiconductor layers formed on the surface layer can form a capacitance between them, and when a semiconductor substrate is used as a support substrate, a capacitance is also formed between the semiconductor substrate and the support substrate.

【0060】図9は、本発明の他の実施例によるSOI
型半導体装置のESD保護容量の構成例を示す。支持用
Si基板29の上に絶縁膜25が配置され、この絶縁膜
25中に半導体領域23、24が配置されている。半導
体領域23、24は絶縁膜25の一部を介して支持基板
29と対向し、容量C1、C2を形成する。
FIG. 9 shows an SOI according to another embodiment of the present invention.
An example of the configuration of the ESD protection capacitor of the semiconductor device of the present invention is shown. The insulating film 25 is arranged on the supporting Si substrate 29, and the semiconductor regions 23 and 24 are arranged in the insulating film 25. The semiconductor regions 23 and 24 face the support substrate 29 via a part of the insulating film 25, and form capacitors C1 and C2.

【0061】半導体領域23、24の表面は、絶縁膜3
1によって覆われる。絶縁膜31中にはコンタクト孔2
8が形成され、半導体領域23、24の一部を露出す
る。これらのコンタクト孔を覆うようにVSSライン2
1、VDDライン22が形成される。すなわち、VSSライ
ン21とVDDライン22の間には、半導体領域23、支
持基板29、半導体領域24によって形成されるEDS
保護容量が接続される。
The surfaces of the semiconductor regions 23 and 24 are covered with the insulating film 3
Covered by 1. The contact hole 2 is formed in the insulating film 31.
8 is formed to expose a part of the semiconductor regions 23 and 24. V SS line 2 to cover these contact holes
1, V DD line 22 is formed. That is, the EDS formed by the semiconductor region 23, the support substrate 29, and the semiconductor region 24 is provided between the V SS line 21 and the V DD line 22.
The protection capacitor is connected.

【0062】なお、図1(A)、図4〜図9には、ES
D保護回路用の容量部分のみを図示したが、同一の半導
体チップ上に図3(C)に示すようなMOSトランジス
タ構造を形成し、図1(B)に示すようなESD保護回
路を形成する。ESD保護容量として図1、4〜8に示
す構成と図9に示す構成を組み合わせるまたは兼用させ
ることもできる。
In FIG. 1 (A) and FIGS. 4 to 9, ES is shown.
Although only the capacitance portion for the D protection circuit is shown, a MOS transistor structure as shown in FIG. 3C is formed on the same semiconductor chip to form an ESD protection circuit as shown in FIG. 1B. . As the ESD protection capacitor, the configurations shown in FIGS. 1, 4 to 8 and the configuration shown in FIG. 9 can be combined or combined.

【0063】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various changes, improvements, combinations and the like can be made.

【0064】[0064]

【発明の効果】以上説明したように、本発明によれば、
製造工程を複雑化させることなく、ESD耐性を向上し
たSOI型半導体装置が提供される。
As described above, according to the present invention,
An SOI semiconductor device having improved ESD resistance is provided without complicating the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本実施例を示す断面図および回路図
である。
FIG. 1 is a sectional view and a circuit diagram showing a basic embodiment of the present invention.

【図2】図1に示す半導体装置の製造方法を説明するた
めの概略断面図である。
FIG. 2 is a schematic cross-sectional view for explaining the method for manufacturing the semiconductor device shown in FIG.

【図3】従来の技術を説明するための回路図および断面
図である。
FIG. 3 is a circuit diagram and a cross-sectional view for explaining a conventional technique.

【図4】本発明の実施例によるESD保護容量の平面形
状を示す平面図である
FIG. 4 is a plan view showing a planar shape of an ESD protection capacitor according to an exemplary embodiment of the present invention.

【図5】チップ内におけるESD保護容量の配置を示す
平面図である。
FIG. 5 is a plan view showing an arrangement of ESD protection capacitors in a chip.

【図6】本発明の実施例によるESD保護容量の平面形
状を示す平面図である。
FIG. 6 is a plan view showing a planar shape of an ESD protection capacitor according to an exemplary embodiment of the present invention.

【図7】本発明の実施例によるESD保護容量の平面形
状を示す平面図である。
FIG. 7 is a plan view showing a planar shape of an ESD protection capacitor according to an exemplary embodiment of the present invention.

【図8】本発明の実施例によるESD保護容量の平面形
状を示す平面図である。
FIG. 8 is a plan view showing a planar shape of an ESD protection capacitor according to an exemplary embodiment of the present invention.

【図9】本発明の実施例によるESD保護容量の構成を
概略的に示す断面図である。
FIG. 9 is a cross-sectional view schematically showing a structure of an ESD protection capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁領域 2 低抵抗率半導体領域 3 絶縁膜 5 VSSライン 6 VDDライン 7 コンタクト孔 10 パッド 11 MOSトランジスタ 12 貼り合わせ用基板 13 マスク 14 絶縁膜 15 多結晶半導体層 16 支持基板 21、22 電源配線 23、24 半導体領域1 Insulation Region 2 Low Resistivity Semiconductor Region 3 Insulation Film 5 VSS Line 6 V DD Line 7 Contact Hole 10 Pad 11 MOS Transistor 12 Bonding Substrate 13 Mask 14 Insulation Film 15 Polycrystalline Semiconductor Layer 16 Support Substrate 21, 22 Power Supply Wiring 23, 24 Semiconductor region

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/092 27/12 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 27/092 27/12 K

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性支持基板上に半導体表面層を有す
るSOI型半導体装置であって、 半導体表面層上に形成された1対の電源供給線(5、
6)と、 前記1対の電源供給線に接続され、表面層中に配置され
た1対の低抵抗率半導体領域(2a、2b)と、 前記1対の低抵抗率半導体領域間に配置された誘電体領
域(1a)とを有し、前記1対の低抵抗半導体領域が容
量を形成するSOI型半導体装置。
1. An SOI semiconductor device having a semiconductor surface layer on an insulating support substrate, comprising a pair of power supply lines (5, 5) formed on the semiconductor surface layer.
6), a pair of low resistivity semiconductor regions (2a, 2b) connected to the pair of power supply lines and disposed in the surface layer, and disposed between the pair of low resistivity semiconductor regions. And a dielectric region (1a), wherein the pair of low resistance semiconductor regions form a capacitance.
【請求項2】 前記支持基板は、半導体基板を含み、半
導体基板表面に前記誘電体領域に連続する絶縁層が形成
されている請求項1記載のSOI型半導体装置。
2. The SOI semiconductor device according to claim 1, wherein the supporting substrate includes a semiconductor substrate, and an insulating layer continuous with the dielectric region is formed on a surface of the semiconductor substrate.
【請求項3】 前記1対の低抵抗率半導体領域(2a、
2b)はその側面で前記誘電体領域(1a)を介して対
向し、容量を形成する請求項2記載のSOI型半導体装
置。
3. The pair of low resistivity semiconductor regions (2a, 2a,
The SOI type semiconductor device according to claim 2, wherein 2b) face each other on the side surface thereof via the dielectric region (1a) to form a capacitor.
【請求項4】 前記1対の低抵抗率半導体領域が複数対
設けられ、共通の1対の電源供給線に接続されている請
求項3記載のSOI型半導体装置。
4. The SOI semiconductor device according to claim 3, wherein a plurality of pairs of the pair of low resistivity semiconductor regions are provided and connected to a common pair of power supply lines.
【請求項5】 前記1対の低抵抗率半導体領域は、支持
基板表面に射影した形状が、インターデジタル部を含む
請求項3ないし4記載のSOI型半導体装置。
5. The SOI semiconductor device according to claim 3, wherein the pair of low-resistivity semiconductor regions has an interdigital portion in a shape projected onto the surface of the support substrate.
【請求項6】 前記1対の低抵抗率半導体領域の外縁は
90度以下の角度をなす屈曲部を有さない請求項3〜5
のいずれかに記載のSOI型半導体装置。
6. The outer edges of the pair of low-resistivity semiconductor regions do not have bent portions forming an angle of 90 degrees or less.
The SOI semiconductor device according to any one of 1.
【請求項7】 前記1対の低抵抗率半導体領域は、1方
が他方を取り囲む形状を有する請求項3〜6のいずれか
に記載のSOI型半導体装置。
7. The SOI semiconductor device according to claim 3, wherein one of the pair of low resistivity semiconductor regions has a shape surrounding the other.
【請求項8】 前記1対の低抵抗率半導体領域は市松模
様状に配置され、前記1対の電源供給線が交互に接続さ
れている請求項4記載のSOI型半導体装置。
8. The SOI type semiconductor device according to claim 4, wherein the pair of low-resistivity semiconductor regions are arranged in a checkered pattern, and the pair of power supply lines are alternately connected.
【請求項9】 前記1対の低抵抗率半導体領域は前記半
導体基板を介して容量を形成する請求項2記載のSOI
型半導体装置。
9. The SOI according to claim 2, wherein the pair of low resistivity semiconductor regions form a capacitance via the semiconductor substrate.
Type semiconductor device.
JP23395193A 1993-09-20 1993-09-20 Semiconductor device Expired - Lifetime JP3195474B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23395193A JP3195474B2 (en) 1993-09-20 1993-09-20 Semiconductor device
KR1019940023089A KR0134418B1 (en) 1993-09-20 1994-09-13 Esd tolerated soi device
FR9411169A FR2710454B1 (en) 1993-09-20 1994-09-20 Semiconductor device, of the semiconductor on insulator type, with tolerance towards electrostatic discharges.
US08/915,140 US5828106A (en) 1993-09-20 1997-08-20 ESD tolerated SOI device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23395193A JP3195474B2 (en) 1993-09-20 1993-09-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0794679A true JPH0794679A (en) 1995-04-07
JP3195474B2 JP3195474B2 (en) 2001-08-06

Family

ID=16963185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23395193A Expired - Lifetime JP3195474B2 (en) 1993-09-20 1993-09-20 Semiconductor device

Country Status (4)

Country Link
US (1) US5828106A (en)
JP (1) JP3195474B2 (en)
KR (1) KR0134418B1 (en)
FR (1) FR2710454B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321226A (en) * 1996-05-30 1997-12-12 Nec Ic Microcomput Syst Ltd Electrostatic protector for semiconductor integrated circuit
WO1998044687A1 (en) * 1997-03-31 1998-10-08 Hitachi, Ltd. Modem using capacitive insulating barrier, insulating coupler, and integrated circuit used in the modem
US7289553B2 (en) 1998-02-27 2007-10-30 Hitachi, Ltd. Isolator and a modem device using the isolator
JP2009278078A (en) * 2008-04-18 2009-11-26 Semiconductor Energy Lab Co Ltd Semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331072A (en) * 1996-06-12 1997-12-22 Toshiba Corp Semiconductor device and its manufacturing method
US6084285A (en) * 1997-10-20 2000-07-04 The Board Of Trustees Of The Leland Stanford Junior University Lateral flux capacitor having fractal-shaped perimeters
US6137671A (en) * 1998-01-29 2000-10-24 Energenius, Inc. Embedded energy storage device
US6558998B2 (en) * 1998-06-15 2003-05-06 Marc Belleville SOI type integrated circuit with a decoupling capacity and process for embodiment of such a circuit
US6617681B1 (en) * 1999-06-28 2003-09-09 Intel Corporation Interposer and method of making same
US6245600B1 (en) 1999-07-01 2001-06-12 International Business Machines Corporation Method and structure for SOI wafers to avoid electrostatic discharge
US6657275B1 (en) * 1999-08-02 2003-12-02 Intel Corporation Pad and via placement design for land side capacitors
US6384452B1 (en) * 2000-07-17 2002-05-07 Agere Systems Guardian Corp Electrostatic discharge protection device with monolithically formed resistor-capacitor portion
US8319313B1 (en) * 2004-10-26 2012-11-27 Marvell Israel (M.I.S.L) Ltd. Circuits, systems, and methods for reducing effects of cross talk in I/O lines and wire bonds
DE102005047409A1 (en) * 2005-10-04 2007-04-12 Infineon Technologies Ag Semiconductor component has several strip elements forming electrodes intermeshing with one another and of which at least one strip element has a non-constant cross-section
JP4320038B2 (en) * 2007-03-16 2009-08-26 Okiセミコンダクタ株式会社 Semiconductor integrated circuit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206060A (en) * 1981-06-12 1982-12-17 Nec Corp Manufacturing method for semiconductor device
JPS5989450A (en) * 1982-11-15 1984-05-23 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPH0612805B2 (en) * 1983-03-31 1994-02-16 富士通株式会社 Method of manufacturing semiconductor memory device
US5202751A (en) * 1984-03-30 1993-04-13 Kabushiki Kaisha Toshiba Semiconductor integrated circuit
JPS6132561A (en) * 1984-07-25 1986-02-15 Sanyo Electric Co Ltd Electrostatic breakdown preventive element
JPS63124542A (en) * 1986-11-14 1988-05-28 Nec Corp Semiconductor integrated circuit
US4989057A (en) * 1988-05-26 1991-01-29 Texas Instruments Incorporated ESD protection for SOI circuits
JPH0283967A (en) * 1988-09-20 1990-03-26 Fujitsu Ltd Semiconductor memory device
DE4041271C2 (en) * 1989-12-25 1998-10-08 Toshiba Kawasaki Kk Semiconductor device with a ferroelectric capacitor
JPH03222361A (en) * 1990-01-26 1991-10-01 Hitachi Ltd Semiconductor integrated circuit device
JP3019430B2 (en) * 1991-01-21 2000-03-13 ソニー株式会社 Semiconductor integrated circuit device
JP3071278B2 (en) * 1991-12-11 2000-07-31 株式会社東芝 Semiconductor device and manufacturing method thereof
JP3241789B2 (en) * 1991-12-18 2001-12-25 株式会社東芝 Semiconductor device and method of manufacturing semiconductor device
US5499207A (en) * 1993-08-06 1996-03-12 Hitachi, Ltd. Semiconductor memory device having improved isolation between electrodes, and process for fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321226A (en) * 1996-05-30 1997-12-12 Nec Ic Microcomput Syst Ltd Electrostatic protector for semiconductor integrated circuit
WO1998044687A1 (en) * 1997-03-31 1998-10-08 Hitachi, Ltd. Modem using capacitive insulating barrier, insulating coupler, and integrated circuit used in the modem
US7289553B2 (en) 1998-02-27 2007-10-30 Hitachi, Ltd. Isolator and a modem device using the isolator
US7522692B2 (en) 1998-02-27 2009-04-21 Hitachi, Ltd. Isolator and a modem device using the isolator
JP2009278078A (en) * 2008-04-18 2009-11-26 Semiconductor Energy Lab Co Ltd Semiconductor device

Also Published As

Publication number Publication date
KR0134418B1 (en) 1998-04-20
US5828106A (en) 1998-10-27
JP3195474B2 (en) 2001-08-06
FR2710454B1 (en) 1996-03-29
FR2710454A1 (en) 1995-03-31

Similar Documents

Publication Publication Date Title
KR100456526B1 (en) Silicon-on-insulator substrate having an etch stop layer, fabrication method thereof, silicon-on-insulator integrated circuit fabricated thereon, and method of fabricating silicon-on-insulator integrated circuit using the same
JP4332925B2 (en) Semiconductor device and manufacturing method thereof
JP3195474B2 (en) Semiconductor device
US20070262383A1 (en) Soi substrate and semiconductor integrated ciruit device
JPH09115999A (en) Semiconductor integrated circuit device
JP2002124681A (en) Semiconductor device
US7196378B2 (en) Electrostatic-protection dummy transistor structure
KR910000229B1 (en) Semiconductor integrated circuit device having a protected circuit and a method for manufacturing thereof
JP3834212B2 (en) Semiconductor integrated circuit device
EP0617313A2 (en) Light valve device with a protection circuit including a semiconductor device
JP2004363136A (en) Semiconductor circuit device
CN106663657B (en) Electrostatic protection device and electrostatic protection circuit
US20010038126A1 (en) Structure for esd protection with single crystal silicon sided junction diode
JP2001015589A (en) Semiconductor device
JPH0278230A (en) Semiconductor integrated circuit device
JP2002094033A (en) Semiconductor device
JPH08288400A (en) Logic circuit device
JPS624338A (en) Manufacture of semiconductor device
JPH02146773A (en) Semiconductor device
US7332778B2 (en) Semiconductor device and method of manufacturing same
JP2780896B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0468575A (en) Electrostatic breakdown protective element of semiconductor integrated circuit
JPH03278571A (en) Output buffer
JP3319445B2 (en) Semiconductor device
JPH10223843A (en) Protective circuit of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 13