JPH0794401A - Charged particle beam lithography device - Google Patents

Charged particle beam lithography device

Info

Publication number
JPH0794401A
JPH0794401A JP23866793A JP23866793A JPH0794401A JP H0794401 A JPH0794401 A JP H0794401A JP 23866793 A JP23866793 A JP 23866793A JP 23866793 A JP23866793 A JP 23866793A JP H0794401 A JPH0794401 A JP H0794401A
Authority
JP
Japan
Prior art keywords
mark
height
deflection
electron beam
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23866793A
Other languages
Japanese (ja)
Other versions
JP3260513B2 (en
Inventor
Seiji Hattori
清司 服部
Kanji Wada
寛次 和田
Chikasuke Nishimura
慎祐 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23866793A priority Critical patent/JP3260513B2/en
Publication of JPH0794401A publication Critical patent/JPH0794401A/en
Application granted granted Critical
Publication of JP3260513B2 publication Critical patent/JP3260513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To provide a charged particle beam lithography device which can correct positional deviations caused by the tilting of the optical axis of an objective lens, can evaluate deflectional distortion at an arbitrary height, and can improve pattern accuracy. CONSTITUTION:An electron beam lithography device having a function for evaluating positional deviations caused by the tilting of the optical axis of an objective lens and anther function for evaluating deflectional distortion at an arbitrary height is provided with a mark table 14 which is provided as part of a sample table 12 and can be moved in the height direction, Z sensor 9 which optically measures the height of a part irradiated with an electron beam, and mechanism which measures the position of a mark on the table 14 by scanning the mark with the electron beam. By moving the sample table 12 to a plurality of locations in the deflecting area of the electron beam and measuring the position of the mark and the then height of the table 14 by changing the height of the table 14, the deflected and distorted amounts of the charge particle beam against a reference height are found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSI等の微細パター
ンを試料上に描画する荷電ビーム描画装置に係わり、特
に試料の高さに応じた偏向歪み量を求める機能を有する
荷電ビーム描画装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged beam drawing apparatus for drawing a fine pattern such as an LSI on a sample, and more particularly to a charged beam drawing apparatus having a function of obtaining a deflection distortion amount according to the height of the sample. .

【0002】[0002]

【従来の技術】従来、半導体ウエハ等の試料上に所望の
微細パターンを描画するものとして、電子ビーム描画装
置が使用されている。電子ビーム描画装置では、試料の
高さ変動に対するビームの照射位置を補正する機構が一
般的に具備されている。そしてこの補正量を求める手段
として、基準高さのマーク台と高さの異なるマーク台を
設けてそれぞれのマーク台で偏向歪み量を求め、これに
より高さに応じた偏向歪み量を求めていた。
2. Description of the Related Art Conventionally, an electron beam drawing apparatus has been used for drawing a desired fine pattern on a sample such as a semiconductor wafer. The electron beam drawing apparatus is generally equipped with a mechanism for correcting the irradiation position of the beam with respect to the height variation of the sample. As a means for obtaining this correction amount, a mark table having a reference height and a mark table having a different height are provided, and the deflection distortion amount is obtained at each mark table, thereby obtaining the deflection distortion amount according to the height. .

【0003】具体的には、第1のマーク台を所定の位置
にセットしたのち電子ビームで第1のマーク台上のマー
クを走査してマーク位置を測定し、次いで高さの異なる
第2のマーク台を上記と同じ平面方向位置にセットした
のち電子ビームで第2のマーク台上のマークを走査して
マーク位置を測定する。そして、これら2つのマーク位
置のずれから偏向歪み量を求めていた。
Specifically, after setting the first mark stand at a predetermined position, the mark on the first mark stand is scanned by an electron beam to measure the mark position, and then the second mark having a different height is set. After setting the mark stand at the same plane direction position as above, the mark on the second mark stand is scanned by the electron beam to measure the mark position. Then, the deflection distortion amount is obtained from the deviation between these two mark positions.

【0004】しかしながら、この種の方法にあっては次
のような問題があった。即ち、第1及び第2のマーク台
上の各マークの相対位置が正しくないと正確な測定を行
うことはできず、さらにマーク形状の違いにより位置ず
れ誤差が発生する。従って、対物レンズの光軸の倒れに
よるビームの位置ずれを補正することができない上、任
意の高さにおける偏向歪みを評価することはできない。
このため、試料面の高さ変動に起因して描画パターン精
度が低下するという問題があった。
However, this type of method has the following problems. That is, accurate measurement cannot be performed unless the relative positions of the marks on the first and second mark bases are correct, and a positional deviation error occurs due to the difference in mark shape. Therefore, the displacement of the beam due to the tilt of the optical axis of the objective lens cannot be corrected, and the deflection distortion at an arbitrary height cannot be evaluated.
Therefore, there is a problem that the drawing pattern accuracy is reduced due to the height variation of the sample surface.

【0005】[0005]

【発明が解決しようとする課題】このように、従来の荷
電ビーム描画装置においては、対物レンズの光軸の倒れ
によるビームの位置ずれを補正することができないた
め、試料面の高さ変動に起因して描画パターン精度が低
下するという問題があった。さらに、任意の高さの偏向
歪みを評価することはできないという問題があった。
As described above, in the conventional charged beam drawing apparatus, since it is not possible to correct the positional deviation of the beam due to the tilt of the optical axis of the objective lens, it is possible to cause a variation in the height of the sample surface. Then, there is a problem that the drawing pattern accuracy is lowered. Further, there is a problem that it is not possible to evaluate the deflection distortion of any height.

【0006】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、対物レンズの光軸の倒
れによる位置ずれを補正することができ、かつ任意の高
さの偏向歪みを評価することができ、パターン精度の向
上をはかり得る荷電ビーム描画装置を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to correct a position shift due to tilting of an optical axis of an objective lens and to obtain a deflection distortion of an arbitrary height. Therefore, it is an object of the present invention to provide a charged beam drawing apparatus that can evaluate the pattern accuracy and can improve the pattern accuracy.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち本発
明は、対物レンズの光軸の倒れによる位置ずれ及び任意
高さの偏向歪みを評価する機能を備えた荷電ビーム描画
装置において、試料台の一部に設けられた高さ方向の移
動が可能なマーク台と、荷電ビームが照射される部分の
高さを光学的に測定する手段と、マーク台上のマークと
荷電ビームとを相対的に走査してマーク位置を測定する
手段とを具備し、荷電ビームの偏向領域内の複数箇所に
試料台を移動させ、それぞれの箇所でマーク台の高さを
変えてマーク位置及びその時のマーク台の高さを測定し
て、基準高さに対する荷電ビームの偏向歪み量を求める
ことを特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, according to the present invention, in the charged beam drawing apparatus having a function of evaluating the positional displacement due to the tilt of the optical axis of the objective lens and the deflection distortion of an arbitrary height, the movement in the height direction provided in a part of the sample stage is prevented. And a means for optically measuring the height of the portion irradiated with the charged beam, and a means for measuring the mark position by relatively scanning the mark on the mark stand and the charged beam. Then, move the sample table to multiple points in the deflection area of the charged beam, change the mark table height at each point, measure the mark position and the height of the mark table at that time, and charge the sample to the reference height. It is characterized in that the deflection distortion amount of the beam is obtained.

【0008】また、本発明の望ましい実施態様として、
マーク台の高さに応じた偏向歪み量を補正しつつ荷電ビ
ームを走査して、偏向領域の複数箇所でマーク位置を測
定し、偏向歪み補正誤差を評価する手段を具備すること
を特徴とする。
As a preferred embodiment of the present invention,
It is characterized by comprising means for scanning the charged beam while correcting the deflection distortion amount according to the height of the mark base, measuring the mark positions at a plurality of positions in the deflection area, and evaluating the deflection distortion correction error. .

【0009】[0009]

【作用】本発明によれば、単一のマーク台をビーム偏向
領域内の複数箇所に移動させ、各位置でマーク台を高さ
方向に移動させつつマーク位置を測定することにより、
対物レンズの光軸の倒れによるビーム位置ずれを求める
ことができ、これを補正することができる。また、無段
階でマーク台の高さを変えられることから、高さに依存
した偏向歪みを従来より高い精度で求められると共に、
補正精度の評価が可能になる。
According to the present invention, by moving a single mark base to a plurality of positions within the beam deflection area and measuring the mark position while moving the mark base in the height direction at each position,
The beam position shift due to the tilt of the optical axis of the objective lens can be obtained, and this can be corrected. Moreover, since the height of the mark base can be changed steplessly, deflection distortion depending on the height can be obtained with higher accuracy than before, and
It is possible to evaluate the correction accuracy.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は、本発明の一実施例に係わる電子ビ
ーム描画装置を示す概略構成図である。1は電子銃、2
はビームの位置を制御する偏向制御回路、3は偏向アン
プ、4は偏向器、5は対物レンズ、6は反射電子信号を
処理する回路、7は反射電子検出器、8はZセンサ制御
回路、9は試料面の高さを測定するZセンサ、10はZ
センサ用レーザ、11はウエハ等の試料、12はステー
ジ、13は上下方向に伸縮するピエゾ素子、14はキャ
リブレーション用マークを設けたマーク台、15はピエ
ゾ素子13を駆動する高圧電源、16はステージの位置
を測定するレーザ測長計、17は制御用の計算機であ
る。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a schematic configuration diagram showing an electron beam drawing apparatus according to an embodiment of the present invention. 1 is an electron gun, 2
Is a deflection control circuit for controlling the position of the beam, 3 is a deflection amplifier, 4 is a deflector, 5 is an objective lens, 6 is a circuit for processing backscattered electron signals, 7 is a backscattered electron detector, 8 is a Z sensor control circuit, 9 is a Z sensor for measuring the height of the sample surface, 10 is Z
A laser for sensor, 11 is a sample such as a wafer, 12 is a stage, 13 is a piezo element that expands and contracts in the vertical direction, 14 is a mark base provided with a calibration mark, 15 is a high-voltage power supply that drives the piezo element 13, and 16 is A laser length meter for measuring the position of the stage, and 17 is a control computer.

【0011】マーク台14上に設けたキャリブレーショ
ン用マークは、断面V字型溝を十字型に形成したもので
ある。Zセンサ9はPSD(半導体位置検出機)や2分
割検出器からなり、斜め入射光による反射光の位置を測
定して高さ測定を行うものである。
The calibration mark provided on the mark base 14 has a V-shaped cross-section groove formed in a cross shape. The Z sensor 9 is composed of a PSD (semiconductor position detector) or a two-divided detector, and measures the position of the reflected light due to the oblique incident light to measure the height.

【0012】電子ビームは対物レンズ5でステージ12
上の試料11上に焦点を結び、偏向器4で試料11上の
任意の点に位置決めできる。ステージ12には、ピエゾ
素子13で上下動できるZ駆動マーク台14が取り付け
られている。ステージ12はレーザ測長計16で正確に
移動量が測定可能であり、マーク台14や試料11の高
さはZセンサ制御回路8,Zセンサ9及びレーザ10に
より測定可能である。そして、マーク台14は、Zセン
サ9の出力をフィードバックして計算機17から任意の
高さに制御可能となっている。
The electron beam passes through the objective lens 5 and the stage 12
It is focused on the upper sample 11 and can be positioned at any point on the sample 11 by the deflector 4. A Z drive mark stand 14 that can be moved up and down by a piezo element 13 is attached to the stage 12. The amount of movement of the stage 12 can be accurately measured by the laser length meter 16, and the heights of the mark base 14 and the sample 11 can be measured by the Z sensor control circuit 8, the Z sensor 9 and the laser 10. The mark table 14 can be controlled by the calculator 17 to an arbitrary height by feeding back the output of the Z sensor 9.

【0013】対物レンズ5の光軸の倒れについて図2を
使って説明する。対物レンズ5へのビームの入射角が傾
いている場合、試料面の高さが基準面に対してずれると
ビームの位置は図2のようにずれる。高さが異なる段差
状のマーク台が装備されている描画装置の場合、マーク
間の相対距離が正確に測定できないと、この位置ずれ量
を検出することはできない。ここで、マーク台を基準面
に対して垂直に上下させることができれば上記位置ずれ
を検出することができる。
The tilting of the optical axis of the objective lens 5 will be described with reference to FIG. When the incident angle of the beam on the objective lens 5 is inclined, the position of the beam shifts as shown in FIG. 2 when the height of the sample surface deviates from the reference surface. In the case of a drawing apparatus equipped with stepped mark stands of different heights, this positional shift amount cannot be detected unless the relative distance between marks can be accurately measured. Here, if the mark base can be vertically moved up and down with respect to the reference plane, the above-mentioned positional deviation can be detected.

【0014】本実施例装置の場合、±20μmの上下動
に対してx,y方向のマークの位置ずれ量が0.001
μm以下のZ駆動マーク台14を用いて、対物レンズ5
の光軸倒れを測定した。その結果、±20μmに対して
0.01μm程度の位置ずれが確認された。このずれを
アライメントコイルで補正する方法もあるが、ここでは
この光軸の倒れによる位置ずれと偏向感度、偏向歪み全
て含めて補正する方法について述べる。
In the case of the apparatus of this embodiment, the amount of mark displacement in the x and y directions is 0.001 with respect to the vertical movement of ± 20 μm.
Using the Z drive mark stand 14 of μm or less, the objective lens 5
The optical axis tilt of the was measured. As a result, a displacement of about 0.01 μm was confirmed with respect to ± 20 μm. There is also a method of correcting this deviation with an alignment coil, but here, a method of correcting the positional deviation due to the tilt of the optical axis, the deflection sensitivity, and the deflection distortion will be described.

【0015】試料面の高さに応じた偏向歪みの補正(Z
補正)を、次の3次の多項式を用いて行う。 X= a0 + a1*x + a2*y + a3*x*y +a4*x2 + a5*y2 + a6*x2 *y + a7*x*y2 + a8*x3 + a9*y3 Y= b0 + b1*x + b2*y + b3*x*y +b4*x2 + b5*y2 + b6*x2 *y + b7*x*y2 + b8*x3 + b9*y3 ここで、偏向データx,y、偏向補正量をX,Y、補正
パラメータをai,bi(i=0〜9)とする。各補正
パラメータはZ(基準面からの高さずれ量)の関数にな
っており次式で表現される。
Correction of deflection distortion according to the height of the sample surface (Z
(Correction) is performed using the following third-order polynomial. X = a0 + a1 * x + a2 * y + a3 * x * y + a4 * x 2 + a5 * y 2 + a6 * x 2 * y + a7 * x * y 2 + a8 * x 3 + a9 * y 3 Y = b0 + b1 * x + b2 * y + b3 * x * y + b4 * x 2 + b5 * y 2 + b6 * x 2 * y + b7 * x * y 2 + b8 * x 3 + b9 * y 3 Here, the deflection data x, y, the deflection correction amount are X, Y, and the correction parameters are ai, bi (i = 0 to 9). Each correction parameter is a function of Z (amount of height deviation from the reference surface) and is expressed by the following equation.

【0016】 ai= A0i + A1i*Z bi= B0i + B1i*Z (i=0〜9) 本実施例装置の場合、Zを5ポイント(0,±10,±
20μm)変えて偏向歪みを求めた。偏向歪みは偏向領
域内5×5ポイントをメッシュ状にマークを移動させ、
各々の位置でマーク位置を測定して求めている。この様
にこれら全ての測定を1つのマークで実行すればマーク
の形状に伴う位置ずれ誤差を無くすことができる。
Ai = A0i + A1i * Z bi = B0i + B1i * Z (i = 0 to 9) In the case of the apparatus of this embodiment, Z is 5 points (0, ± 10, ±
20 μm) and the deflection distortion was determined. For deflection distortion, move the mark in a mesh shape at 5 × 5 points in the deflection area,
The mark position is measured and obtained at each position. In this way, if all these measurements are performed with one mark, it is possible to eliminate the positional deviation error due to the shape of the mark.

【0017】なお、マーク位置の測定は種々の方法が可
能であるが、例えば次のようにして行う。まず、異なる
Y方向位置でビームをX方向に走査し、このときの反射
電子を反射電子検出器7で検出してマークのX方向ライ
ンを求める。次いで、異なるX方向位置でビームをY方
向に走査し、このときの反射電子を反射電子検出器7で
検出してマークのY方向ラインを求める。そして、X方
向ライン及びY方向ラインの交点をマーク位置として測
定する。ここで、ビームを走査する代わりにステージ1
2をX,Y方向に移動してもよい。
Various methods can be used to measure the mark position. For example, the mark position is measured as follows. First, the beam is scanned in the X direction at different Y-direction positions, and the backscattered electrons at this time are detected by the backscattered electron detector 7 to obtain the X-direction line of the mark. Next, the beam is scanned in the Y direction at different X-direction positions, and the backscattered electrons at this time are detected by the backscattered electron detector 7 to obtain the Y-direction line of the mark. Then, the intersection of the X-direction line and the Y-direction line is measured as the mark position. Here, instead of scanning the beam, the stage 1
2 may be moved in the X and Y directions.

【0018】図3には、各高さにおける理想格子点から
のずれを代表的な部分だけ示した。ビームは試料面に対
して回転しながら入射してくるため、マークの高さを変
えてビームの位置を測定すると、偏向フィールドは図3
の様に変化する。このとき、対物レンズ5の光軸の倒れ
がある場合には、偏向フィールドの中心部でその位置ず
れ量が測定できる。
FIG. 3 shows only typical portions of deviations from the ideal lattice points at each height. Since the beam is incident on the surface of the sample while rotating, when the position of the beam is measured by changing the height of the mark, the deflection field is
It changes like. At this time, if the optical axis of the objective lens 5 is tilted, the amount of displacement can be measured at the center of the deflection field.

【0019】本実施例の装置では図3で示されるような
回転,倍率,光軸の倒れによる位置ずれを上記3次の多
項式で補正した。また、偏向領域が1mm□と狭いた
め、各パラメータ(ai,bi)をZの一次項で表現し
た。パラメータを求める際には5点のデータから回帰直
線を求めて係数を算出している。偏向領域が広い場合に
は、各パラメータ(ai,bi)をZの2以上の補正式
で表現するとさらに高精度化できる。
In the apparatus of this embodiment, the positional deviation due to the rotation, the magnification, and the tilt of the optical axis as shown in FIG. 3 is corrected by the above third-order polynomial. Further, since the deflection area is as narrow as 1 mm □, each parameter (ai, bi) is expressed by the first-order term of Z. When obtaining the parameter, a regression line is obtained from the data of 5 points to calculate the coefficient. When the deflection region is wide, it is possible to further improve the accuracy by expressing each parameter (ai, bi) by a correction formula of 2 or more of Z.

【0020】このように本実施例では、高さが異なる段
差状のマーク台が装備されている装置とは異なり、高さ
方向に上下移動可能なマーク台14を用いることによ
り、高さ方向の違いによる位置ずれ量を求めることがで
きる。この場合、マーク間の相対距離が正確に測定でき
ないために位置ずれ量を検出できない等の不都合が生じ
ることはなく、上記位置ずれ量を正確に求めることがで
きる。また、単一マークを用いることから、マーク形状
の違いによる誤差が発生することもない。 (実施例2)上記の方法で得られた補正パラメータの確
かさや補正精度を確認するためには描画パターンの位置
を測定する方法しか提案されていなかった。そこで、前
記のZ駆動マーク台14を使った装置構成でZ補正精度
を評価する方法について述べる。
As described above, in this embodiment, unlike the apparatus equipped with the stepped mark bases having different heights, by using the mark bases 14 which can move up and down in the height direction, The amount of positional deviation due to the difference can be obtained. In this case, since the relative distance between the marks cannot be accurately measured, there is no inconvenience that the positional deviation amount cannot be detected, and the positional deviation amount can be accurately obtained. Moreover, since a single mark is used, an error due to a difference in mark shape does not occur. (Embodiment 2) In order to confirm the accuracy and the correction accuracy of the correction parameters obtained by the above method, only the method of measuring the position of the drawing pattern has been proposed. Therefore, a method for evaluating the Z correction accuracy with the device configuration using the Z drive mark stand 14 will be described.

【0021】上記の方法で求められた各補正パラメータ
(ai,bi)を制御回路にセットした後、Zセンサ9
の出力を得て偏向歪み補正をリアルタイムで実行する。
Z駆動マーク台14の高さを基準の高さ(Z=0μm)
に設定し、偏向フィールドの中心でマーク位置を測定し
これを基準マーク位置とする。次に、偏向フィールドの
4隅でマーク位置を測定し、基準マーク位置からのずれ
を求める。Z駆動マーク台14の高さを次々に変えて同
様な測定を繰り返す。
After setting each correction parameter (ai, bi) obtained by the above method in the control circuit, the Z sensor 9
Then, the deflection distortion correction is executed in real time.
Height based on the height of the Z drive mark stand 14 (Z = 0 μm)
The mark position is measured at the center of the deflection field, and this is set as the reference mark position. Next, the mark positions are measured at the four corners of the deflection field, and the deviation from the reference mark position is obtained. The same measurement is repeated by changing the height of the Z drive mark base 14 one after another.

【0022】補正が正しく行われていれば、どの状態で
マークを測定してもマークの座標は同じになるはずであ
るため、ずれが大きい場合にはキャリブレーション精度
が悪いか制御回路で演算誤差が発生していることにな
る。
If the correction is performed correctly, the coordinates of the mark should be the same no matter which state the mark is measured. Therefore, if the deviation is large, the calibration accuracy may be poor or the calculation error in the control circuit may occur. Is occurring.

【0023】本実施例装置の場合、ここで得られたずれ
の量から各補正パラメータ(ai,bi)を再計算し、
微調整している。また、各ポイントで、ずれ量がある誤
差量以下になるまで繰り返し微調整すると高精度化でき
る。また、任意の高さで偏向歪みが得られることから、
Z補正をZの1次関数のみならず多項式に当てはめて補
正することも可能である。
In the case of the apparatus of this embodiment, each correction parameter (ai, bi) is recalculated from the deviation amount obtained here,
Fine-tuned. Further, at each point, it is possible to improve the accuracy by repeatedly finely adjusting the amount of deviation until it becomes less than a certain error amount. In addition, since deflection distortion can be obtained at any height,
It is also possible to apply Z correction to not only a linear function of Z but also a polynomial to perform correction.

【0024】なお、本発明は上述した各実施例に限定さ
れものではない。実施例では、電子ビーム描画装置につ
いて説明したが、イオンビーム描画装置にも同様に適用
できるのは勿論のことである。また、マーク形状はV溝
十字型に限らず、仕様に応じて適宜変更可能である。そ
の他、本発明の要旨を逸脱しない範囲で、種々変形して
実施することができる。
The present invention is not limited to the above embodiments. In the embodiment, the electron beam writing apparatus has been described, but it goes without saying that the same can be applied to the ion beam writing apparatus. Further, the mark shape is not limited to the V-shaped groove cross shape, but can be appropriately changed according to the specifications. In addition, various modifications can be made without departing from the scope of the present invention.

【0025】[0025]

【発明の効果】以上詳述したように本発明によれば、偏
向領域内の複数箇所に試料台を移動させ、それぞれの箇
所で単一のマーク台の高さを変えてマーク位置及びその
時のマーク台の高さを測定して、基準高さに対する荷電
ビームの偏向歪み量を求めることにより、対物レンズの
光軸の倒れによる位置ずれを補正することができ、かつ
任意の高さの偏向歪みを評価することができる。従っ
て、荷電ビーム描画装置における描画パターン精度の向
上をはかることが可能となる。
As described in detail above, according to the present invention, the sample table is moved to a plurality of positions in the deflection area, and the height of a single mark table is changed at each point to determine the mark position and the mark position. By measuring the height of the mark table and determining the deflection distortion amount of the charged beam with respect to the reference height, it is possible to correct the positional deviation due to the tilt of the optical axis of the objective lens, and it is possible to obtain the deflection distortion of any height. Can be evaluated. Therefore, it is possible to improve the drawing pattern accuracy in the charged beam drawing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に使用した電子ビーム描画装置
を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an electron beam drawing apparatus used in an embodiment of the present invention.

【図2】対物レンズの光軸の倒れによるビームの位置ず
れを示す図。
FIG. 2 is a diagram showing a positional deviation of a beam due to tilting of an optical axis of an objective lens.

【図3】マーク台の高さと偏向フィールド内のビームの
位置関係を示す図。
FIG. 3 is a diagram showing a positional relationship between the height of a mark table and a beam in a deflection field.

【符号の説明】[Explanation of symbols]

1…電子銃 2…偏向制御回路 3…偏向アンプ 4…偏向器 5…対物レンズ 6…反射電子信号
処理回路 7…反射電子検出器 8…Zセンサ制御
回路 9…高さ測定用のZセンサ 10…Zセンサ用
のレーザ 11…ウエハ等の試料 12…ステージ 13…ピエゾ素子 14…マーク台 15…ピエゾ駆動用の高圧電源 16…レーザ測長
計 17…制御用計算機
DESCRIPTION OF SYMBOLS 1 ... Electron gun 2 ... Deflection control circuit 3 ... Deflection amplifier 4 ... Deflector 5 ... Objective lens 6 ... Reflection electron signal processing circuit 7 ... Reflection electron detector 8 ... Z sensor control circuit 9 ... Height measurement Z sensor 10 ... laser for Z sensor 11 ... sample such as wafer 12 ... stage 13 ... piezo element 14 ... mark stand 15 ... high voltage power supply for piezo drive 16 ... laser length meter 17 ... control computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料台に設けられた高さ方向の移動が可能
なマーク台と、荷電ビームが照射される部分の高さを光
学的に測定する手段と、前記マーク台上のマークと荷電
ビームとを相対的に走査してマーク位置を測定する手段
とを具備し、 荷電ビームの偏向領域内の複数箇所に前記試料台を移動
させ、それぞれの箇所で前記マーク台の高さを変えてマ
ーク位置及びその時のマーク台の高さを測定して、基準
高さに対する荷電ビームの偏向歪み量を求めることを特
徴とする荷電ビーム描画装置。
1. A mark table provided on a sample table, which is movable in a height direction, a means for optically measuring the height of a portion irradiated with a charged beam, a mark on the mark table, and a charge. And a means for measuring the mark position by relatively scanning the beam, moving the sample stage to a plurality of positions within the deflection region of the charged beam, and changing the height of the mark stage at each position. A charged beam drawing apparatus characterized by measuring a mark position and a height of a mark stand at that time to obtain a deflection distortion amount of a charged beam with respect to a reference height.
JP23866793A 1993-09-27 1993-09-27 Charged beam drawing equipment Expired - Fee Related JP3260513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23866793A JP3260513B2 (en) 1993-09-27 1993-09-27 Charged beam drawing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23866793A JP3260513B2 (en) 1993-09-27 1993-09-27 Charged beam drawing equipment

Publications (2)

Publication Number Publication Date
JPH0794401A true JPH0794401A (en) 1995-04-07
JP3260513B2 JP3260513B2 (en) 2002-02-25

Family

ID=17033535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23866793A Expired - Fee Related JP3260513B2 (en) 1993-09-27 1993-09-27 Charged beam drawing equipment

Country Status (1)

Country Link
JP (1) JP3260513B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086182A (en) * 2004-09-14 2006-03-30 Hitachi High-Technologies Corp Method and system for electron-beam exposure
JP2009260265A (en) * 2008-03-25 2009-11-05 Nuflare Technology Inc Electron beam writing apparatus and electron beam writing method
JP2013038297A (en) * 2011-08-10 2013-02-21 Nuflare Technology Inc Charged particle beam lithography device and charged particle beam lithography method
TWI600878B (en) * 2014-12-10 2017-10-01 日立全球先端科技股份有限公司 Height measuring device, and charged particle beam device
CN109698106A (en) * 2017-10-20 2019-04-30 纽富来科技股份有限公司 Charged particle beam drawing apparatus and charged particle beam plotting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086182A (en) * 2004-09-14 2006-03-30 Hitachi High-Technologies Corp Method and system for electron-beam exposure
JP4563756B2 (en) * 2004-09-14 2010-10-13 株式会社日立ハイテクノロジーズ Electron beam drawing method and electron beam drawing apparatus
JP2009260265A (en) * 2008-03-25 2009-11-05 Nuflare Technology Inc Electron beam writing apparatus and electron beam writing method
JP2013038297A (en) * 2011-08-10 2013-02-21 Nuflare Technology Inc Charged particle beam lithography device and charged particle beam lithography method
TWI600878B (en) * 2014-12-10 2017-10-01 日立全球先端科技股份有限公司 Height measuring device, and charged particle beam device
US10101150B2 (en) 2014-12-10 2018-10-16 Hitachi High-Technologies Corporation Height measurement device and charged particle beam device
CN109698106A (en) * 2017-10-20 2019-04-30 纽富来科技股份有限公司 Charged particle beam drawing apparatus and charged particle beam plotting method
US10553396B2 (en) 2017-10-20 2020-02-04 Nuflare Technology, Inc. Charged particle beam writing apparatus and charged particle beam writing method
CN109698106B (en) * 2017-10-20 2021-03-12 纽富来科技股份有限公司 Charged particle beam lithography apparatus and charged particle beam lithography method

Also Published As

Publication number Publication date
JP3260513B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US8614428B2 (en) Charged particle beam writing method and charged particle beam writing apparatus
US4442361A (en) System and method for calibrating electron beam systems
US4119854A (en) Electron beam exposure system
JP6791051B2 (en) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
KR102221957B1 (en) Charged particle beam writing apparatus and charged particle beam writing method
US6624430B2 (en) Method of measuring and calibrating inclination of electron beam in electron beam proximity exposure apparatus, and electron beam proximity exposure apparatus
KR20200120512A (en) Multi-charged particle beam writing apparatus and multi-charged particle beam writing method
KR900001506B1 (en) Correcting method of electron beam devices
JP3260513B2 (en) Charged beam drawing equipment
JP3508622B2 (en) Electron beam drawing apparatus and drawing method using electron beam
WO2001069643A1 (en) Charged particle beam scanning device
US5117111A (en) Electron beam measuring apparatus
JP2000091225A (en) Device and method for charged particle beam exposure
JPH05315221A (en) Positioning apparatus
JPH0922859A (en) Compensation method for sample surface height in electron beam exposure process
JP3274791B2 (en) Electron beam drawing equipment
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
JP3866782B2 (en) Electron beam exposure apparatus and exposure method
JP3315882B2 (en) Electron beam drawing equipment
JP4627467B2 (en) Electron beam detector, electron beam measurement method, and electron beam drawing apparatus
JP2786662B2 (en) Charged beam drawing method
JP3242481B2 (en) Charged particle beam exposure method
JP3238827B2 (en) Reference deflection angle setting method for charged particle beam writing system
JP3291096B2 (en) Beam control method for electron beam exposure apparatus
JP2005340345A (en) Electron beam apparatus, method for measuring distortion in deflection position of electron beam, method for correcting deflection position of electron beam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees