JPH0794396B2 - Method for producing aromatic hydrocarbon - Google Patents

Method for producing aromatic hydrocarbon

Info

Publication number
JPH0794396B2
JPH0794396B2 JP61158761A JP15876186A JPH0794396B2 JP H0794396 B2 JPH0794396 B2 JP H0794396B2 JP 61158761 A JP61158761 A JP 61158761A JP 15876186 A JP15876186 A JP 15876186A JP H0794396 B2 JPH0794396 B2 JP H0794396B2
Authority
JP
Japan
Prior art keywords
catalyst
pyridine
aromatic hydrocarbon
zsm
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61158761A
Other languages
Japanese (ja)
Other versions
JPS6314732A (en
Inventor
方彦 古谷
斉 中島
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP61158761A priority Critical patent/JPH0794396B2/en
Publication of JPS6314732A publication Critical patent/JPS6314732A/en
Publication of JPH0794396B2 publication Critical patent/JPH0794396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軽質炭化水素より芳香族炭化水素を製造する
方法に関し、さらに詳しくは、亜鉛を含有し特定の組
成、性質を有する安定性に優れたZSM−5型ゼオライト
触媒を用いて、軽質炭化水素より芳香族炭化水素を高収
率で、かつ安定的に製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an aromatic hydrocarbon from a light hydrocarbon, and more specifically, to a zinc-containing compound having a specific composition and stability. The present invention relates to a method for stably producing an aromatic hydrocarbon from a light hydrocarbon in a high yield and using a superior ZSM-5 type zeolite catalyst.

(従来の技術) ZSM−5型ゼオライトの製法は、特公昭46−10064号等に
開示されている。また、特公昭56−42639号はパラフイ
ン、オレフインおよび/またはナフテンから成り、芳香
族炭化水素の含有量が15重量%以下のC5 +炭化水素よりZ
SM−5類のゼオライトを触媒として芳香族炭化水素を製
造する方法を、特公昭58−23368号はC2〜C4パラフイ
ン、オレフインまたはそれらの混合物より、特定の製法
で調製された特定の性質を有するZSM−5結晶性シリケ
ートを触媒として、特定の条件下での芳香族化合物を製
造する方法を開示している。さらに、特開昭55−51440
号には、ゼオライト触媒の安定化方法として、IB、I
IB、VIII族等の金属カチオンを含ませたゼオライトを、
金属クラスターを生成するより短い期間還元雰囲気で使
用し、次いで、酸化雰囲気で再生することでスチーム存
在下での脱アルミ現象による活性低下を抑制する方法
が、特開昭60−153944号には、ゼオライト触媒の活性を
新鮮触媒の活性の25%より低くならない程度に減少させ
る条件下でスチーム処理し安定化する方法が開示されて
いる。
(Prior Art) A method for producing ZSM-5 type zeolite is disclosed in Japanese Examined Patent Publication No. 46-10064 and the like. Further, Japanese Examined Patent Publication No. 56-42639 is composed of paraffin, olefin and / or naphthene, and has a content of aromatic hydrocarbons of 15% by weight or less from C 5 + hydrocarbons to Z.
A method for producing aromatic hydrocarbons using SM-5 type zeolite as a catalyst is disclosed in JP-B-58-23368, which has a specific property prepared by a specific production method from C 2 to C 4 paraffin, olefin or a mixture thereof. Disclosed is a method for producing an aromatic compound under specific conditions using a ZSM-5 crystalline silicate having ## STR3 ## as a catalyst. Furthermore, JP-A-55-51440
The issue, as a stabilizing method of the zeolite catalyst, I B, I
I B, the zeolite impregnated with a metal cation of Group VIII such as,
A method of suppressing the activity decrease due to dealumination phenomenon in the presence of steam by using in a reducing atmosphere for a shorter period of time for producing metal clusters and then regenerating in an oxidizing atmosphere is disclosed in JP-A-60-153944. A method of steaming and stabilizing under conditions that reduce the activity of the zeolite catalyst to no less than 25% of the activity of the fresh catalyst is disclosed.

(発明が解決しようとする問題点) 従来技術による軽質炭化水素より芳香族炭化水素を製造
する触媒は、いずれも初期活性は比較的高いが、コーク
様物質の蓄積による経時活性低下が大きく、芳香族炭化
水素の収率低下も大であり、実使用に際しては、数時間
〜数10時間間隔で頻繁に再生を必要とする等の問題を有
しており、満足できる水準にない。
(Problems to be Solved by the Invention) Although the catalysts for producing aromatic hydrocarbons from light hydrocarbons according to the prior art have relatively high initial activities, they have a large decrease in activity over time due to the accumulation of coke-like substances. The yield of group hydrocarbons is also greatly reduced, and in actual use, there are problems such as frequent regeneration at intervals of several hours to several tens of hours, which is not at a satisfactory level.

(問題点を解決するための手段) 本発明者らは、軽質炭化水素より高選択率で、かつ安定
的に芳香族炭化水素を製造するための触媒について鋭意
検討を加えた結果、ある特定の性状を有する亜鉛含有ZS
M−5型ゼオライトを触媒に用いると、経時劣化が極め
て小さく、安定して高収率の芳香族炭化水素が製造でき
ることを見い出したものである。
(Means for Solving Problems) As a result of intensive studies made by the present inventors on a catalyst for producing an aromatic hydrocarbon with a higher selectivity than a light hydrocarbon and stably, Zinc-containing ZS with properties
It has been found that when M-5 type zeolite is used as a catalyst, deterioration with time is extremely small and an aromatic hydrocarbon can be stably produced in a high yield.

すなわち、本発明は、亜鉛を含むZSM−5型ゼオライト
を触媒として、軽質炭化水素より芳香族炭化水素を製造
する方法において、該ZSM−5型ゼオライトが下記
(i)〜(iii)を満たすことを特徴とする芳香族炭化
水素の製造方法である。
That is, the present invention is a method for producing an aromatic hydrocarbon from a light hydrocarbon by using a ZSM-5 type zeolite containing zinc as a catalyst, wherein the ZSM-5 type zeolite satisfies the following (i) to (iii): And a method for producing an aromatic hydrocarbon.

(i)ケイ素/アルミニウムの原子比が10〜75 (ii)亜鉛/ケイ素の原子比が0.008〜0.03 (iii)ピリジンを用い、昇温速度を15℃/分とした場
合の昇温脱離法による500〜900℃における当該ZSM−5
型ゼオライト1g当りのピリジンの脱離量が40〜120μmol 本発明に用いられるZSM−5型ゼオライト触媒のケイ素
/アルミニウムの原子比は10〜75、好ましくは12〜50で
ある。この比が75を上廻るものは触媒活性が不充分であ
り、10を下廻るものは実質的に得られない。また、亜鉛
/ケイ素の原子比は0.008〜0.03、好ましくは0.01〜0.0
2である。この比が0.03を上廻るものは触媒活性が低
く、一方、0.008を下廻る触媒では芳香族炭化水素の製
造に用いても、芳香族炭化水素の選択性が悪い。さら
に、本発明のZSM−5型ゼオライト触媒のアルカリ金属
含有量は、アルカリ金属/アルミニウムの原子比で0.05
以下であるものが好ましい。この比が0.05を上廻るほど
触媒の活性が乏しくなる。
(I) Atomic ratio of silicon / aluminum is 10 to 75 (ii) Atomic ratio of zinc / silicon is 0.008 to 0.03 (iii) Thermal desorption method using pyridine at a heating rate of 15 ° C / min. According to ZSM-5 at 500-900 ℃
The desorption amount of pyridine per 1 g of type zeolite is 40 to 120 μmol. The ZSM-5 type zeolite catalyst used in the present invention has an atomic ratio of silicon / aluminum of 10 to 75, preferably 12 to 50. When the ratio is more than 75, the catalytic activity is insufficient, and when it is less than 10, practically none is obtained. The atomic ratio of zinc / silicon is 0.008 to 0.03, preferably 0.01 to 0.0.
Is 2. A catalyst having a ratio of more than 0.03 has low catalytic activity, while a catalyst having a ratio of less than 0.008 has poor aromatic hydrocarbon selectivity even when used in the production of aromatic hydrocarbons. Further, the alkali metal content of the ZSM-5 type zeolite catalyst of the present invention is 0.05 in terms of alkali metal / aluminum atomic ratio.
The following are preferable. When this ratio exceeds 0.05, the activity of the catalyst becomes poor.

本発明に用いられるZSM−5型ゼオライト触媒の結晶粒
径は、1μm以下のものが特に好ましく作用する。本発
明でいう結晶粒径とは、走査型電子顕微鏡で観察した個
々のゼオライト粒子の最も短い方向での長さの平均値を
指す。最も短い方向の長さとは、例えば、ゼオライト粒
子が球状の場合は直径、板状の場合は厚さ、棒状の場合
は小さい方の太さであり、粒子が凝集している場合は一
次粒子の粒径である。また、ZSM−5型ゼオライト触媒
の比表面積は、窒素吸着法で測定した際に280〜340m2/g
であるものが好ましい。
The crystal grain size of the ZSM-5 type zeolite catalyst used in the present invention is particularly preferably 1 μm or less. The crystal grain size in the present invention refers to an average value of lengths of individual zeolite particles in the shortest direction observed by a scanning electron microscope. The length in the shortest direction is, for example, the diameter when the zeolite particles are spherical, the thickness when the plate-like shape, the smaller thickness when the rod-like shape, and the primary particle when the particles are agglomerated. The particle size. The specific surface area of ZSM-5 type zeolite catalyst is 280 to 340 m 2 / g when measured by the nitrogen adsorption method.
Are preferred.

本発明に用いられるZSM−5型ゼオライト触媒は、ピリ
ジンを用い、昇温速度を15℃/分とした場合の昇温脱離
法による500〜900℃における当該ZSM−5型ゼオライト1
g当りのピリジンの脱離量が40〜120μmolである。昇温
脱離法については、安盛により「化学と工業」,第19
巻,第10号,1208〜1214頁(1966)に説明されており、Z
SM−5型ゼオライトの昇温脱離法としては、「触媒」,
25,97〜99頁(1983)等に記載がみられる。
The ZSM-5 type zeolite catalyst used in the present invention is pyridine, and the ZSM-5 type zeolite at 500 to 900 ° C. by the temperature programmed desorption method when the temperature rising rate is 15 ° C./min.
The desorption amount of pyridine per g is 40 to 120 μmol. Regarding the temperature programmed desorption method, see Yasumori "Chemicals and Industry", No. 19
Vol. 10, No. 10, pp. 1208-1214 (1966).
As a temperature programmed desorption method for SM-5 type zeolite, "catalyst",
25 , pages 97-99 (1983), etc.

本発明でいうピリジンを用いた昇温脱離法とは、まず、
180℃で被測定触媒にピリジンを飽和吸着させ、それを
毎分15℃の一定速度で昇温させて、昇温に伴つて脱離し
てくるピリジンを、500〜900℃の間に限つて水素炎イオ
ン化検出器により検出し、脱離量をピリジンの検量線を
用いてピリジン換算量として求めることを指す。
The temperature programmed desorption method using pyridine referred to in the present invention is as follows.
Saturately adsorb pyridine on the catalyst to be measured at 180 ℃, raise it at a constant rate of 15 ℃ per minute, and desorb the pyridine that is desorbed as the temperature rises to 500 ℃ to 900 ℃. It is detected by a flame ionization detector, and the desorption amount is obtained as a pyridine conversion amount using a pyridine calibration curve.

本発明で用いる昇温脱離量の測定装置を第1図に示す。
試料すなわち被測定触媒4は20〜30メツシユに破砕し
て、内径6mmφ、外径8mmφ、150mm長のステンレス鋼製
の試料管3に入れる。キヤリヤガスとしてボンベ詰の窒
素を、60ml/minの流量でガス流量計1で調節しながら流
す。ピリジンはマイクロシリンジを用いて2〜5μず
つシリコンゴム製の注入口5より注入する。ほぼ全量吸
着した場合は10分後に、また、未吸着分が認められる場
合は流出の完了が検出器で確認された時点で、次の注入
を行い、飽和吸着に達するまで注入をくり返す。ピリジ
ンの触媒への飽和吸着が完了したならば、炉芯管内径22
mmφ、長さ65mmの管状電気炉2で15℃/分の速度で昇温
する。ここで、ピリジン注入口5の周りから水素炎イオ
ン化検出器6までのガス流路は、電気炉内の部分を除
き、リボンヒータ8等で加温し、外側を保温材9で覆つ
て180〜200℃に保温する。温度検出は試料管外部に密着
設置した温度検出端7の位置で行う。温度試料端7にお
ける検出温度が500℃になつた時から、さらに昇温して9
00℃に達するまでの間に、試料4から脱離するピリジン
を水素炎イオン化検出器(FID検出器)6で検出し、ピ
リジンの検量線を用いて、その脱離量を換算する。
The apparatus for measuring the temperature programmed desorption amount used in the present invention is shown in FIG.
The sample, that is, the catalyst 4 to be measured is crushed into 20 to 30 meshes and put into a stainless steel sample tube 3 having an inner diameter of 6 mmφ, an outer diameter of 8 mmφ and a length of 150 mm. Cylinder-filled nitrogen as carrier gas is flowed while controlling with the gas flow meter 1 at a flow rate of 60 ml / min. Pyridine is injected from a silicon rubber injection port 5 by 2 to 5 μm using a microsyringe. After adsorbing almost all the amount, 10 minutes later, and when unadsorbed content is observed, when the detector confirms the completion of the outflow, the next injection is performed, and the injection is repeated until saturated adsorption is reached. Once saturated adsorption of pyridine on the catalyst is complete, the inner diameter of the furnace core tube 22
The temperature is raised at a rate of 15 ° C./min in a tubular electric furnace 2 having a mmφ and a length of 65 mm. Here, the gas flow path from around the pyridine injection port 5 to the hydrogen flame ionization detector 6 is heated by a ribbon heater 8 or the like except the inside of the electric furnace, and the outside is covered with a heat insulating material 9 to 180- Keep warm at 200 ° C. The temperature detection is performed at the position of the temperature detection end 7 closely attached to the outside of the sample tube. Temperature When the detected temperature at the sample end 7 reaches 500 ° C, further increase the temperature to 9
Pyridine desorbed from the sample 4 is detected by a hydrogen flame ionization detector (FID detector) 6 until the temperature reaches 00 ° C., and the desorbed amount is converted using a calibration curve of pyridine.

上記方法で求めたピリジンの脱離量が触媒1gにつき40μ
molを下廻ると、触媒活性が不充分であり、ピリジン脱
離量が触媒1gにつき120μmolを上廻ると、触媒の経時安
定性が悪い。
The desorption amount of pyridine obtained by the above method is 40μ per 1g of catalyst.
If it is less than mol, the catalytic activity is insufficient, and if the amount of pyridine released exceeds 120 μmol per 1 g of catalyst, the stability of the catalyst over time is poor.

本発明に用いられる触媒は、例えば、特公昭46−10064
号等の公知方法により合成したZSM−5型ゼオライトを
公知方法によりプロトン型に変換し、イオン交換法、含
浸法等の方法により亜鉛を含有させ、次いで、加熱処
理、好ましくは水蒸気共存下で加熱処理することにより
調製される。水蒸気条件下で加熱処理する場合の好適な
条件は、600〜800℃の温度、0.1〜1気圧の水分圧、0.2
〜20時間の処理時間である。水蒸気は空気あるいは窒素
等の不活性ガスで希釈して使用してもよい。さらに好ま
しい温度と時間の範囲としては第2図に示すA,B,C,Dで
囲まれた範囲である。
The catalyst used in the present invention is, for example, JP-B-46-10064.
ZSM-5 type zeolite synthesized by a publicly known method such as No. No. etc. is converted into a proton type by a publicly known method, and zinc is contained by a method such as an ion exchange method or an impregnation method, and then heat treatment, preferably heating in the presence of steam is performed. It is prepared by processing. Suitable conditions for heat treatment under steam conditions are a temperature of 600 to 800 ° C., a water pressure of 0.1 to 1 atm, and a 0.2.
~ 20 hours processing time. The steam may be diluted with air or an inert gas such as nitrogen before use. A more preferable temperature and time range is the range surrounded by A, B, C and D shown in FIG.

処理温度が低すぎたり処理時間が短かすぎると、処理後
の触媒のピリジン脱離量が多すぎるものとなり、逆に処
理温度が高すぎたり処理時間が長すぎると、処理後の触
媒のピリジン脱離量が少なくなりすぎる。
If the treatment temperature is too low or the treatment time is too short, the amount of pyridine desorbed in the catalyst after the treatment will be too large. Conversely, if the treatment temperature is too high or the treatment time will be too long, the pyridine of the catalyst after the treatment will be too large. The desorption amount becomes too small.

なお、使用に際し、適切な触媒粒子形状を付与するた
め、アルミナ、シリカ等通常用いられている多孔性無機
質バインダーを配合したり、水添/脱水素金属成分をさ
らに添加して用いてもよい。
In addition, in order to give an appropriate catalyst particle shape upon use, a commonly used porous inorganic binder such as alumina or silica may be blended, or a hydrogenated / dehydrogenated metal component may be further added and used.

本発明方法に用いる軽質炭化水素は、パラフインを含有
し、オレフインを含有していてもよく、沸点が190℃以
下の炭化水素である。好ましくは芳香族炭化水素の含有
量が15重量%以下、炭素数4以上のものがよい。
The light hydrocarbon used in the method of the present invention is a hydrocarbon containing paraffin and may contain olefin, and having a boiling point of 190 ° C. or lower. Preferably, the aromatic hydrocarbon content is 15% by weight or less and the number of carbon atoms is 4 or more.

反応条件としては、原料炭化水素により異なるが、400
〜600℃の温度、0.1〜10hr-1の重量空間速度(WHSV)、
0.5〜10気圧の圧力、好ましくは450〜550℃の温度、0.2
〜2hr-1の重量空間速度、0.8〜5気圧の圧力が採用され
る。
The reaction conditions vary depending on the raw material hydrocarbon, but 400
~ 600 ℃ temperature, 0.1 ~ 10hr -1 weight hourly space velocity (WHSV),
0.5-10 atm pressure, preferably 450-550 ° C temperature, 0.2
Weight space velocities of ~ 2hr -1 and pressures of 0.8-5 atmospheres are employed.

本発明の方法の触媒は、安定性が優れているため、固定
床、移動床、流動床いずれの方式で用いることもできる
が、特に固定床方式で用いる場合、顕著な効果を示す。
すなわち、設備的に簡単な固定床方式でもつて、再生間
隔も大巾に長くして実施できる。
Since the catalyst of the method of the present invention has excellent stability, it can be used in any of the fixed bed, moving bed and fluidized bed systems, but particularly when it is used in the fixed bed system, a remarkable effect is exhibited.
In other words, the fixed bed system is simple in terms of equipment and the regeneration interval can be greatly extended.

(発明の効果) 本発明の方法によれば、軽質炭化水素より芳香族炭化水
素を高収率で、かつ経時安定的に製造することができ
る。したがつて、触媒の再生繰り返しの期間も長くで
き、再生頻度も少なくて済む等、工業的利点は極めて大
きい。本発明方法の触媒は、安定性に優れているため、
固定床方式で効率的に使用できる。
(Effects of the Invention) According to the method of the present invention, aromatic hydrocarbons can be produced from light hydrocarbons in high yield and stably over time. Therefore, the catalyst can be regenerated repeatedly for a long period of time, and the frequency of regeneration can be reduced. Since the catalyst of the method of the present invention has excellent stability,
Can be used efficiently with the fixed bed system.

(実施例) 以下、実施例を挙げて本発明を具体的に示すが、本発明
は、これに限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

参考例1 触媒の調製 ケイ酸ソーダ(水ガラス3号)290gを蒸留水230gに溶解
させたA液、別に硫酸アルミニウム16水塩11.4gおよび
テトラプロピルアンモニウムブロマイド50g、硫酸13gを
蒸留水300gに溶解させたB液を調合した。次いで、ホモ
ジナイザーを用い、A液を強撹拌下にB液を添加し均質
混合ゲル状にした。このゲルを1オートクレーブに仕
込み、160℃、1000rpmの撹拌下、35時間保持結晶化させ
た。反応後、固形物を過、水洗、脱水、乾燥後、550
℃、3時間空気中で焼成した。
Reference Example 1 Preparation of catalyst Solution A prepared by dissolving 290 g of sodium silicate (water glass No. 3) in 230 g of distilled water, and separately 11.4 g of aluminum sulfate 16-hydrate, 50 g of tetrapropylammonium bromide and 13 g of sulfuric acid were dissolved in 300 g of distilled water. The prepared solution B was prepared. Then, using a homogenizer, solution B was added to solution A with vigorous stirring to form a homogeneous mixed gel. This gel was charged into one autoclave, and kept and crystallized for 35 hours under stirring at 160 ° C. and 1000 rpm. After the reaction, the solid is filtered, washed with water, dehydrated and dried, and then 550
Calcination was performed in the air for 3 hours.

得られた白色粉末をX線回折で確認したところ、ZSM−
5型の回折パターンを示した。螢光X線分析によりSi/A
l比を求めたところ、23であつた。走査型電子顕微鏡
(日立製作所製X−650型1)により5000倍で粒子形状
を観察したところ、球状の平均粒径0.5μmで、一部凝
集したものも見られた。
When the obtained white powder was confirmed by X-ray diffraction, ZSM-
A diffraction pattern of Form 5 was shown. Si / A by fluorescent X-ray analysis
When the l ratio was determined, it was 23. When the particle shape was observed with a scanning electron microscope (X-650 type 1 manufactured by Hitachi, Ltd.) at a magnification of 5000, a spherical average particle diameter of 0.5 μm and some aggregates were also observed.

このゼオライトを10%塩化アンモニウム水溶液を用い、
常法によりイオン交換しH型ゼオライトとした。次い
で、硝酸亜鉛5%水溶液を含浸させ、蒸発乾固、乾燥、
焼成(500℃、3時間)し、亜鉛含有ゼオライト触媒A
を調製した。
Using 10% ammonium chloride aqueous solution for this zeolite,
Ion exchange was carried out by a conventional method to obtain H-type zeolite. Then, impregnate with a 5% aqueous solution of zinc nitrate, evaporate to dryness, dry,
Baking (500 ° C, 3 hours), zinc-containing zeolite catalyst A
Was prepared.

螢光X線分析によりZn/Si、Na/Al比を求めたところ、そ
れぞれ0.017と0.02であつた。窒素吸着法による比表面
積は340m2/gであつた。また、昇温脱離法によりピリジ
ンの脱離量を測定したところ、500〜900℃での脱離量は
300μmol/g−触媒であつた。測定試料は粉末を圧縮成形
破砕し、20〜30メツシユに整粒したものを400℃で1時
間乾燥して用いた。測定方法、条件は、本文前記記載の
方法によつた。管状電気炉および温度制御装置は島津製
作所製熱分析装置(DT−30)を用い、FID検出器は島津
製作所製ガスクロマトグラフ(GC−8A)の検出器を用い
た。
When the Zn / Si and Na / Al ratios were determined by fluorescent X-ray analysis, they were 0.017 and 0.02, respectively. The specific surface area measured by the nitrogen adsorption method was 340 m 2 / g. In addition, when the desorption amount of pyridine was measured by the temperature programmed desorption method, the desorption amount at 500 to 900 ° C was
It was 300 μmol / g-catalyst. As the measurement sample, powder was crushed by compression molding, sized to 20 to 30 mesh, dried at 400 ° C. for 1 hour, and used. The measuring method and conditions were as described above in the text. The tubular electric furnace and the temperature control device used were a Shimadzu Corporation thermal analyzer (DT-30), and the FID detector used was a Shimadzu gas chromatograph (GC-8A) detector.

以下の例で示すピリジンの脱離量は、特に記載のない場
合、全て前述の方法および条件下で測定し、500〜900℃
でのピリジン脱離量である。
Desorption amount of pyridine shown in the following examples, unless otherwise specified, all measured under the method and conditions described above, 500 ~ 900 ℃
Is the amount of pyridine desorbed.

参考例2 触媒の調製 参考例1と同様に、ただし、原料のアルミニウム量を減
少させSi/Al比50、粒子径0.9μのZSM−5ゼオライトを
合成した。次いで、プロトン型にし、亜鉛を含有させ、
Zn/Si=0.015、Na/Al=0.03で、ピリジン脱離量は260μ
mol/gの亜鉛含有H型ゼオライト触媒Cを調製した。
Reference Example 2 Preparation of catalyst In the same manner as in Reference Example 1, except that the amount of raw material aluminum was reduced, ZSM-5 zeolite having a Si / Al ratio of 50 and a particle size of 0.9 μ was synthesized. Next, it is made into a proton type and contains zinc,
Zn / Si = 0.015, Na / Al = 0.03, pyridine desorption amount is 260μ
An H-type zeolite catalyst C containing mol / g of zinc was prepared.

参考例3 触媒の調製 シリカ源としてシリカゾル(シリカとして30重量%含
有)を用い、アルミ源を添加することなく、水酸化ナト
リウムを用い、ゲル組成物のpHを10.8に調整した以外
は、参考例1と同様の方法により、高シリカゼオライト
を合成した。得られたゼオライトのX線回折パターンは
ZSM−5型であり、Si/Al比は100以上で、結晶形状は角
ばつた球状で、平均径4μmのものであつた。これを参
考例1と同様にプロトン型とし、亜鉛を含浸担持させた
触媒Hを得た。
Reference Example 3 Preparation of Catalyst Reference Example except that silica sol (containing 30% by weight as silica) was used as a silica source, sodium hydroxide was used without adding an aluminum source, and the pH of the gel composition was adjusted to 10.8. A high silica zeolite was synthesized in the same manner as in 1. The X-ray diffraction pattern of the obtained zeolite is
It was a ZSM-5 type, had a Si / Al ratio of 100 or more, and had a crystal shape of a spherical shape with an average diameter of 4 μm. This was made into a proton type in the same manner as in Reference Example 1 to obtain a catalyst H in which zinc was impregnated and supported.

この触媒のZn/Si比は0.014で、ピリジン脱離量は85μmo
l/gを示した。
The catalyst had a Zn / Si ratio of 0.014 and a pyridine desorption amount of 85 μmo.
It showed l / g.

参考例4 触媒の調製 参考例1と同様に、ただし、硫酸アルミニウムの量を25
g、硫酸量を1.0gとし、ゼオライトの合成を行ない、粒
子径0.2μ、Si/Al比13のZSM−5ゼオライトを得た。次
いで、プロトン型とし、亜鉛を含有させ、Zn/Si比0.01
8、Na/Al比0.02の触媒Iを調製した。この触媒Iの比表
面積は340m2/gであり、ピリジンの脱離量は360μmol/g
であつた。
Reference Example 4 Preparation of catalyst As in Reference Example 1, except that the amount of aluminum sulfate was 25
The amount of g and the amount of sulfuric acid were 1.0 g, and zeolite was synthesized to obtain ZSM-5 zeolite having a particle size of 0.2 μ and a Si / Al ratio of 13. Then, the proton type, containing zinc, Zn / Si ratio 0.01
8. Catalyst I with Na / Al ratio 0.02 was prepared. The specific surface area of this catalyst I is 340 m 2 / g, and the desorption amount of pyridine is 360 μmol / g
It was.

実施例1 参考例1で調製した触媒Aを9〜20メツシユに圧縮成
型、整粒後、10mmφの石英製反応管に充填し、80容量%
(窒素希釈)のスチーム中(大気圧)で650℃、2時間
処理した(触媒B)。
Example 1 The catalyst A prepared in Reference Example 1 was compression molded into 9 to 20 mesh, sized, and then filled in a 10 mmφ quartz reaction tube to obtain 80% by volume.
It was treated at 650 ° C. for 2 hours in steam (atmospheric pressure) diluted with nitrogen (catalyst B).

この触媒の比表面積は330m2/g、ピリジンの昇温脱離量
は110μmol/gであつた。この触媒を10mmφのステンレス
製反応管に充填し、n−ヘキサンを供給反応させた。反
応条件および結果を第1表に示す。また、これら反応の
経時安定性を示す指標として、分解活性が1/2になるま
での通液時間を半減期として合せ示した。
The specific surface area of this catalyst was 330 m 2 / g, and the temperature programmed desorption amount of pyridine was 110 μmol / g. This catalyst was filled in a 10 mmφ stainless steel reaction tube, and n-hexane was supplied and reacted. The reaction conditions and results are shown in Table 1. In addition, as an index showing the stability of these reactions over time, the liquid passing time until the decomposition activity becomes 1/2 is also shown as a half-life.

なお、 分解活性は、次式で求めた反応速度定数(k)の値を用
い、この値が1/2になるまでの時間を半減期とした。
In addition, For the decomposition activity, the value of the reaction rate constant (k) obtained by the following equation was used, and the time until this value became 1/2 was defined as the half-life.

x:原料炭化水素の転化率 θ:接触時間 実施例2 参考例2で調製した触媒Cを実施例1と同様に、80容量
%スチーム中で、650℃、5時間処理した(触媒D)。
この比表面積は315m2/gで、ピリジンの昇温脱離量は85
μmol/gを示した。この触媒Dを実施例1と同様に、n
−ヘキサンの反応に供した。結果は第1表に合せ示し
た。
x: Conversion of raw material hydrocarbon θ: Contact time Example 2 The catalyst C prepared in Reference Example 2 was treated in 80% by volume steam at 650 ° C. for 5 hours in the same manner as in Example 1 (Catalyst D).
This specific surface area is 315 m 2 / g, and the temperature programmed desorption amount of pyridine is 85.
It showed μmol / g. This catalyst D was treated with n as in Example 1.
-Subjected to hexane reaction. The results are also shown in Table 1.

実施例3 参考例4で調製の触媒Iを実施例1と同様に、ただし、
750℃、1時間、80容量%スチーム中で加熱処理した
(触媒J)。この触媒Jの比表面積は310m2/g、ピリジ
ンの昇温脱離量は73μmol/gであつた。この触媒Jを実
施例1と同様に、n−ヘキサンの反応に供した。結果は
第1表に合せ示した。
Example 3 The catalyst I prepared in Reference Example 4 was prepared as in Example 1, except that
Heat treatment was performed in steam at 80% by volume for 1 hour at 750 ° C. (catalyst J). The specific surface area of this catalyst J was 310 m 2 / g, and the temperature programmed desorption amount of pyridine was 73 μmol / g. This catalyst J was subjected to the reaction of n-hexane in the same manner as in Example 1. The results are also shown in Table 1.

実施例4 参考例1で調製の触媒Aを実施例1と同様に、ただし、
700℃、2時間、80容量%スチーム中で加熱処理した
(触媒K)。この触媒Kのピリジンの昇温脱離量は90μ
mol/gであつた。実施例1と同様に、この触媒をn−ヘ
キサンの反応に供した。結果は第1表に合せ示した。
Example 4 The catalyst A prepared in Reference Example 1 was used as in Example 1, except that
Heat treatment was carried out in steam at 80% by volume for 2 hours at 700 ° C. (catalyst K). The desorption amount of pyridine of this catalyst K at temperature rise is 90μ.
It was mol / g. This catalyst was subjected to the reaction of n-hexane in the same manner as in Example 1. The results are also shown in Table 1.

実施例5 調製触媒Bを用い、C5炭化水素(パラフイン75重量%、
オレフイン25重量%)の芳香族化反応を行つた。反応条
件および結果を第2表に示した。
Example 5 Using the prepared catalyst B, C 5 hydrocarbon (75% by weight of paraffin,
Aromatization reaction of olefin (25% by weight) was carried out. The reaction conditions and results are shown in Table 2.

実施例6 触媒Bを用い、C4炭化水素(イソブタン50%、n−ブタ
ン50%)の芳香族化反応を行なつた。
Example 6 Using catalyst B, an aromatization reaction of C 4 hydrocarbons (50% isobutane, 50% n-butane) was carried out.

反応温度510℃、大気圧下、WHSV0.3hr-1で実施した。初
期2時間目のアロマ収率は50重量%であつた。実施例1
と同様に、半減期を求めると50日であつた。
It was carried out at a reaction temperature of 510 ° C. and atmospheric pressure at WHSV of 0.3 hr −1 . The aroma yield in the initial 2 hours was 50% by weight. Example 1
Similarly, the half-life was calculated to be 50 days.

実施例7 参考例1で調製した触媒Aを、空気中で850℃10時間加
熱処理して触媒Lを得た。この触媒Lの比表面積は310m
2/g、ピリジンの脱離量は100μmol/gであつた。
Example 7 The catalyst A prepared in Reference Example 1 was heat-treated in air at 850 ° C. for 10 hours to obtain a catalyst L. The specific surface area of this catalyst L is 310 m
The amount of desorbed pyridine was 2 / g, and the amount of pyridine released was 100 μmol / g.

この触媒を実施例1と同様に、n−ヘキサンの反応に供
した。反応条件は500℃、WHSV=0.5hr-1、大気圧条件で
あつた。10時間後のアロマ収率は50重量%を示し、半減
期としては50日と極めて安定していることが確認され
た。
This catalyst was subjected to the reaction of n-hexane in the same manner as in Example 1. The reaction conditions were 500 ° C., WHSV = 0.5 hr −1 and atmospheric pressure. The aroma yield after 10 hours was 50% by weight, and it was confirmed that the half-life was 50 days, which was extremely stable.

実施例8 実施例4で調製した触媒Kを用い、実施例1と同様に、
ただし、反応温度530℃、WHSV=0.8hr-1、水素/原料炭
化水素=1、圧力3気圧でn−ヘキサンの反応を行なつ
た。
Example 8 Using the catalyst K prepared in Example 4, as in Example 1,
However, n-hexane was reacted at a reaction temperature of 530 ° C., WHSV = 0.8 hr −1 , hydrogen / raw material hydrocarbon = 1, and a pressure of 3 atm.

通液後2時間目のアロマ収率は47重量%を示し、200時
間目のアロマ収率も47重量%と極めて安定しており、実
施例1と同様に、半減期を求めると45日であつた。
The aroma yield at 2 hours after passing the solution was 47% by weight, and the aroma yield at 200 hours was 47% by weight, which was extremely stable. As with Example 1, the half-life was determined to be 45 days. Atsuta

実施例9 実施例4で調製した触媒Kにシリカゾルを加え、混練り
押出成形し、ゼオライト/シリカバインダー=70/30重
量比で約1mmφ×2mm長さの触媒粒子とした。これを実施
例5同様C5炭化水素の反応に供した。反応条件は510
℃、WHSV=0.5hr-1(ゼオライト基準)、大気圧下で実
施した。その結果、反応2時間目のアロマ収率は49重量
%であり、半減期は60日であつた。
Example 9 Silica sol was added to the catalyst K prepared in Example 4, and the mixture was kneaded and extrusion-molded to obtain catalyst particles having a zeolite / silica binder = 70/30 weight ratio of about 1 mmφ × 2 mm length. This was subjected to C 5 hydrocarbon reaction as in Example 5. Reaction conditions are 510
C., WHSV = 0.5 hr −1 (based on zeolite), and atmospheric pressure. As a result, the aroma yield at 2 hours after the reaction was 49% by weight, and the half-life was 60 days.

実施例10 実施例9で調製した造粒触媒を用い、C4炭化水素(イソ
ブタン60重量%、n−ブテン40重量%)を反応温度510
℃、WHSV=0.7hr-1、大気圧条件で反応させた。
Example 10 Using the granulation catalyst prepared in Example 9, C 4 hydrocarbons (60% by weight of isobutane and 40% by weight of n-butene) were used at a reaction temperature of 510.
The reaction was carried out under the conditions of ℃, WHSV = 0.7hr −1 and atmospheric pressure.

反応後2時間目のアロマ収率は56重量%であり、反応10
00時間目のアロマ収率は54重量%と活性低下は極めて小
さかつた。
The aroma yield in the second hour after the reaction was 56% by weight.
The aroma yield at the 00th hour was 54% by weight, and the decrease in activity was extremely small.

比較例1 参考例1で調製の触媒Aを実施例1と同様に、ただし、
条件を850℃、1時間に変え、スチーム下での加熱処理
を行い、触媒Eを得た。この触媒の比表面積は250m2/g
で、ピリジンの昇温脱離量は17μmol/gであつた。この
触媒を実施例1と同様に、n−ヘキサンの反応に供し
た。反応温度515℃、WHSV=0.6hr-1、大気圧下で実施し
た結果、アロマ収率は14重量%と低い値を示した。
Comparative Example 1 The catalyst A prepared in Reference Example 1 was used in the same manner as in Example 1, except that
The conditions were changed to 850 ° C. for 1 hour, and heat treatment was performed under steam to obtain catalyst E. The specific surface area of this catalyst is 250 m 2 / g
Thus, the temperature programmed desorption amount of pyridine was 17 μmol / g. This catalyst was subjected to the reaction of n-hexane in the same manner as in Example 1. As a result of carrying out at a reaction temperature of 515 ° C., WHSV = 0.6 hr −1 and atmospheric pressure, the aroma yield was as low as 14% by weight.

比較例2〜6 参考例1で調製の触媒A、H、Iおよび触媒Aを実施例
1と同様に、ただし、550℃、1時間スチーム80容量%
下で加熱処理した触媒F(これのピリジンの昇温脱離量
は180μmol/gであつた)、さらに、参考例2で調製した
触媒Cを538℃、100%スチーム中で8時間処理した触媒
G(このもののピリジンの昇温脱離量は150μmol/gであ
つた)、各々を実施例1と同様に、n−ヘキサンの反応
に供した。結果を第3表に示した。
Comparative Examples 2 to 6 Catalysts A, H, I and Catalyst A prepared in Reference Example 1 were used in the same manner as in Example 1, except that 550 ° C. and 1 hour steam 80% by volume.
Catalyst F heat-treated under the following conditions (the temperature-programmed desorption amount of pyridine was 180 μmol / g), and further, Catalyst C prepared in Reference Example 2 was treated at 538 ° C. and 100% steam for 8 hours. G (the temperature-programmed desorption amount of pyridine was 150 μmol / g), and each was subjected to the reaction of n-hexane in the same manner as in Example 1. The results are shown in Table 3.

これら比較触媒使用の径時劣化は大きく、半減期が短か
いことが判る。
It can be seen that these comparative catalysts have large deterioration over time and have a short half-life.

比較例7 参考例2で調製の触媒Cを用い、実施例1と同様に、n
−ヘキサンの転化反応を515℃,WHSV=8hr-1,大気圧下で
実施した。結果はアロマ収率47%で、半減期は1日であ
った。
Comparative Example 7 Using the catalyst C prepared in Reference Example 2, as in Example 1, n
-The conversion reaction of hexane was carried out at 515 ° C, WHSV = 8 hr -1 and atmospheric pressure. The result was an aroma yield of 47% and a half-life of 1 day.

【図面の簡単な説明】[Brief description of drawings]

第1図はピリジンを用いて触媒の昇温脱離量を測定する
ための装置の説明図、第2図は触媒の水蒸気下加熱処理
の最適条件範囲を示す図表である。
FIG. 1 is an explanatory view of an apparatus for measuring the temperature programmed desorption amount of a catalyst using pyridine, and FIG. 2 is a table showing an optimum condition range of the heat treatment under steam of the catalyst.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】亜鉛を含むZSM−5型ゼオライトを触媒と
して軽質炭化水素より芳香族炭化水素を製造する方法に
おいて、該ZSM−5型ゼオライトが下記(i)〜(iii)
を満たすことを特徴とする芳香族炭化水素の製造方法。 (i)ケイ素/アルミニウムの原子比が10〜75 (ii)亜鉛/ケイ素の原子比が0.008〜0.03 (iii)ピリジンを用い、昇温速度を15℃/分とした場
合の昇温脱離法による500〜900℃における当該ZSM−5
型ゼオライト1g当りのピリジンの脱離量が40〜120μmol
1. A method for producing an aromatic hydrocarbon from a light hydrocarbon using a ZSM-5 type zeolite containing zinc as a catalyst, wherein the ZSM-5 type zeolite has the following (i) to (iii):
A method for producing an aromatic hydrocarbon, which satisfies: (I) Atomic ratio of silicon / aluminum is 10 to 75 (ii) Atomic ratio of zinc / silicon is 0.008 to 0.03 (iii) Thermal desorption method using pyridine at a heating rate of 15 ° C / min. According to ZSM-5 at 500-900 ℃
Desorption of pyridine is 40-120μmol per 1g of zeolite
【請求項2】450〜550℃の温度、0.2〜2hr-1の重量空間
速度、0.8〜5気圧の圧力で実施する特許請求の範囲第
1項記載の芳香族炭化水素の製造方法。
2. The process for producing an aromatic hydrocarbon according to claim 1, which is carried out at a temperature of 450 to 550 ° C., a weight hourly space velocity of 0.2 to 2 hr −1 and a pressure of 0.8 to 5 atm.
【請求項3】軽質炭化水素の炭素数が4以上、沸点が19
0℃以下、かつ芳香族炭化水素の含有量が15重量%以下
である特許請求の範囲第1項または第2項記載の芳香族
炭化水素の製造方法。
3. A light hydrocarbon having 4 or more carbon atoms and a boiling point of 19
The method for producing an aromatic hydrocarbon according to claim 1 or 2, wherein the aromatic hydrocarbon content is 0% or less and the aromatic hydrocarbon content is 15% by weight or less.
JP61158761A 1986-07-08 1986-07-08 Method for producing aromatic hydrocarbon Expired - Lifetime JPH0794396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158761A JPH0794396B2 (en) 1986-07-08 1986-07-08 Method for producing aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158761A JPH0794396B2 (en) 1986-07-08 1986-07-08 Method for producing aromatic hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6314732A JPS6314732A (en) 1988-01-21
JPH0794396B2 true JPH0794396B2 (en) 1995-10-11

Family

ID=15678761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158761A Expired - Lifetime JPH0794396B2 (en) 1986-07-08 1986-07-08 Method for producing aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JPH0794396B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2801686B2 (en) * 1989-10-16 1998-09-21 旭化成工業株式会社 Hydrocarbon catalytic conversion
US5789331A (en) * 1993-09-30 1998-08-04 Sanyo Petrochemical Co., Ltd. Method for partially dealuminating a zeolite catalyst
RU2118634C1 (en) * 1994-10-03 1998-09-10 Санио Петрокемикал Ко., Лтд. Method of producing aromatic hydrocarbons
DE102004029544A1 (en) * 2004-06-18 2006-01-05 Basf Ag Shaped body containing a microporous material and at least one silicon-containing binder, process for its preparation and its use as catalyst, in particular in a process for the preparation of triethylenediamine (TEDA)
JP2006305408A (en) * 2005-04-26 2006-11-09 Tosoh Corp Catalyst for aromatization reaction and method for producing aromatic hydrocarbon using the same
US8034987B2 (en) * 2006-01-16 2011-10-11 Asahi Kasei Chemicals Corporation Process for producing propylene and aromatic hydrocarbons, and producing apparatus therefor
RU2548362C2 (en) * 2009-06-25 2015-04-20 Чайна Петролеум & Кемикал Корпорейшн Catalyst for catalytic cracking and method of increasing catalyst selectivity (versions)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ202811A (en) * 1981-12-23 1984-12-14 Mobil Oil Corp Converting fossil fuel to hydrocarbon mixture rich in benzene,toluene and xylene

Also Published As

Publication number Publication date
JPS6314732A (en) 1988-01-21

Similar Documents

Publication Publication Date Title
CA1131206A (en) Aluminum - modified silica and its uses as catalyst
US6093866A (en) Alkylation catalyst and the application thereof
JP2909591B2 (en) Mordenite-based catalysts containing at least one metal of group VIII and its use in isomerizing aromatic C lower 8 fractions
JPH0794396B2 (en) Method for producing aromatic hydrocarbon
US6165439A (en) Dealuminated NU-86 zeolite and its use for the conversion of hydrocarbons
EP0023089A1 (en) Method of preparing zeolite ZSM-48, the zeolite so prepared and its use as catalyst for organic compound conversion
JP4771191B2 (en) Process for the preparation of EUO structure type zeolites, the resulting zeolites and their use as isomerization catalysts for C8 aromatics
JP2708212B2 (en) Method for modifying molecular sieve
CN1769249A (en) Method for catalytically isomerizing aromatic compound
US5336648A (en) Zeolite catalysts suitable for hydrocarbon conversion
JPH0735343B2 (en) Aromatic hydrocarbon manufacturing method
JPH06346063A (en) Catalytic conversion of light hydrocarbon
JPS6197231A (en) Production of lower olefin
DE69324194T2 (en) CATALYST AND METHOD FOR DEHYDRATING HYDROCARBONS
JP2000042418A (en) Catalyst for isomerization of xylene and isomerization of xylene
US4748291A (en) Catalytic treatment process
RU2302291C1 (en) Light hydrocarbon aromatization process catalyst, method for preparation thereof, and aromatic hydrocarbon production process
JPH0859566A (en) Production of methylamines
JPH06192135A (en) Method for converting light hydrocarbon
JP2000169863A (en) Isomerization of hydrocarbon
US4656149A (en) Process for the activation of siliceous catalysts
JP3489904B2 (en) Method for producing methylamines
JPS6246488B2 (en)
JPS6314739A (en) Production of mono and/or dialkyl-substituted naphthalene
JP2932102B2 (en) Use of gallium-containing aluminosilicate-type catalysts in the aromatization of light fractions predominantly containing C2 hydrocarbons

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term