JPH0794264A - Electromagnetic induction heating device - Google Patents

Electromagnetic induction heating device

Info

Publication number
JPH0794264A
JPH0794264A JP24116393A JP24116393A JPH0794264A JP H0794264 A JPH0794264 A JP H0794264A JP 24116393 A JP24116393 A JP 24116393A JP 24116393 A JP24116393 A JP 24116393A JP H0794264 A JPH0794264 A JP H0794264A
Authority
JP
Japan
Prior art keywords
electromagnetic induction
temperature
resistor
heated
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24116393A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Ono
之良 小野
Kunio Kimura
邦夫 木村
Kimiyasu Honda
公康 本田
Yuichiro Sugita
勇一郎 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24116393A priority Critical patent/JPH0794264A/en
Publication of JPH0794264A publication Critical patent/JPH0794264A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To prevent overheating of a pan and generating temperature unevernness by measuring a temperature of a heated object through changing a resistance value of a resistor, and controlling electromagnetic induction based on a measured result. CONSTITUTION:Resistors 4A, 4B, 4C are connected to a temperature detecting circuit 3A, and based on changing a resistance value due to changing a temperature of the resistors 4A to 4C, the respective temperature is detected. In the circuit 3A, a signal corresponding to the largest temperature, detected by the resistors 4A to 4C, is output and applied to a comparator circuit 3C. In a circuit 3B, a desired temperature is left as preset, and a signal corresponding to this temperature is applied to the circuit 3C. Both the signals are compared in the circuit 3C, to apply a result compared signal to a coil control circuit 3D, and based on this compared signal, an AC current applied to an electromagnetic induction coil 1 is controlled. Then by generating a strong magnetic field in the periphery of the coil 1, a heated object 10, placed on a glass plate 2 to consist of ferromagnetic material, is quickly heated by electromagnetic induction action, and a resistance value is changed to control the current to the coil 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は調理、暖房、乾燥等に使
用される電磁誘導加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction heating device used for cooking, heating, drying and the like.

【0002】[0002]

【従来の技術】電磁誘導加熱装置は、25〜30kHz
の交流電流が印加される電磁誘導コイルに鉄等の磁性材
料で作られた被加熱物を近づけることによって被加熱物
を発熱させる装置である。このような電磁誘導加熱装置
においては、被加熱物の温度を所定の範囲に制御する必
要がある。そのための従来の技術においては、被加熱物
と電磁誘導コイル間に設けられたガラス板等の隔離部材
にサーミスタ等の測温体を設けている。サーミスタは隔
離部材のガラス板の電磁誘導コイル側の面に接触させて
取り付けられている。通常電磁誘導コイルは電磁誘導作
用を効果的に得るためにガラス板に密着して設けられて
いる。従って電磁誘導コイルとガラス板間には間隙はな
く、両者間にサーミスタを取り付けることはできない。
電磁誘導コイルは通常ドーナツ形であり中央に中空部が
あるので、その中空部にサーミスタを設けている。
2. Description of the Related Art An electromagnetic induction heating device is 25 to 30 kHz.
Is a device that heats an object to be heated by bringing the object to be heated made of a magnetic material such as iron close to the electromagnetic induction coil to which the alternating current is applied. In such an electromagnetic induction heating device, it is necessary to control the temperature of the object to be heated within a predetermined range. In a conventional technique for that purpose, a temperature measuring element such as a thermistor is provided on an isolation member such as a glass plate provided between the object to be heated and the electromagnetic induction coil. The thermistor is attached in contact with the surface of the glass plate of the isolation member on the electromagnetic induction coil side. Usually, the electromagnetic induction coil is provided in close contact with the glass plate in order to effectively obtain the electromagnetic induction effect. Therefore, there is no gap between the electromagnetic induction coil and the glass plate, and a thermistor cannot be attached between them.
Since the electromagnetic induction coil is usually a donut shape and has a hollow portion in the center, a thermistor is provided in the hollow portion.

【0003】被加熱物が加熱されると、その熱がガラス
板を伝わってガラス板に取り付けられたサーミスタの温
度を上昇させる。サーミスタの検出出力は検出回路に入
力されて所定の設定値と比較され、比較結果の制御信号
が出力される。この制御信号は交流電流の制御回路に印
加されて電流の大きさが制御され、その結果被加熱物の
温度が制御される。
When the object to be heated is heated, the heat is transmitted through the glass plate and raises the temperature of the thermistor attached to the glass plate. The detection output of the thermistor is input to the detection circuit, compared with a predetermined set value, and the control signal of the comparison result is output. This control signal is applied to an alternating current control circuit to control the magnitude of the current and consequently the temperature of the object to be heated.

【0004】[0004]

【発明が解決しようとする課題】このようなドーナッツ
形の電磁誘導コイルを用いた電磁誘導加熱装置では、電
磁誘導コイルの円周上の部分における被加熱物の発熱は
大きいが、電磁誘導コイルの中央の空間部における被加
熱物の発熱は比較的低い。前記の従来の測温方法ではサ
ーミスタが電磁誘導コイルの中央部に設けられているの
で、サーミスタは被加熱物の比較的発熱の低い部分の温
度を検出することになり、被加熱物の正しい温度を検出
できない。この場合でも、時間が経過すれば被加熱物の
発熱の大きい部分の熱がガラス板を伝わり、サーミスタ
を取り付けた部分のガラス板の温度を上昇させて次第に
正しい温度に近づくが、それまでには相当の時間を要
し、温度の検出に時間遅れが生じる。電磁誘導加熱方式
においては、熱伝導による加熱方式と異なって、加熱時
に熱伝導による時間遅れや熱損失がないので、被加熱物
は急速に加熱される。従って温度検出に時間遅れがある
と被加熱物が過熱されたり、温度の変動が大きくて一定
温度に制御できない場合がある。被加熱物として調理用
の鍋を用いた場合は、一般に鍋底は平らでなく、その中
央部分は鍋の内側に向かって凸の形状をしている。従っ
て鍋底とガラス板との間に空間ができ、ガラス板の中央
と鍋底とは直接接触しないので、上記検出誤差の温度検
出の遅れが拡大される。その結果鍋を加熱しすぎたり、
鍋の温度が部分的に異なる温度むらを生じる場合があっ
た。
In the electromagnetic induction heating apparatus using such a donut-shaped electromagnetic induction coil, the heat generation of the object to be heated in the circumferential portion of the electromagnetic induction coil is large, but The heat generation of the object to be heated in the central space is relatively low. In the conventional temperature measuring method described above, the thermistor is provided in the center of the electromagnetic induction coil, so the thermistor detects the temperature of the portion of the object to be heated which is relatively low in heat generation. Cannot be detected. Even in this case, over time, the heat of the part of the object to be heated, which has a large amount of heat, is transmitted through the glass plate, raising the temperature of the glass plate in the part where the thermistor is attached and gradually approaching the correct temperature, but by then It takes a considerable amount of time and there is a time delay in detecting the temperature. In the electromagnetic induction heating method, unlike the heating method by heat conduction, there is no time delay or heat loss due to heat conduction during heating, so that the object to be heated is heated rapidly. Therefore, if there is a time delay in temperature detection, the object to be heated may be overheated, or the temperature may fluctuate so much that it cannot be controlled to a constant temperature. When a pot for cooking is used as the object to be heated, the pot bottom is generally not flat, and its central portion is convex toward the inside of the pot. Therefore, a space is formed between the bottom of the pan and the glass plate, and the center of the glass plate and the bottom of the pan do not come into direct contact with each other, so that the delay in temperature detection due to the above detection error is expanded. As a result, the pot is overheated,
In some cases, the temperature of the pot was partially different.

【0005】[0005]

【課題を解決するための手段】この発明の電磁誘導加熱
装置は、電磁誘導コイル制御手段から出力される交流電
流が印加される電磁誘導コイルに近接して電磁誘導コイ
ルと被加熱物間を隔離するガラス板を設け、前記ガラス
板に少なくとも1個の抵抗体を設け、抵抗体の抵抗値の
変化に基づいて、前記被加熱物の温度を測定する温度測
定手段を備えている。
The electromagnetic induction heating apparatus of the present invention is close to the electromagnetic induction coil to which the alternating current output from the electromagnetic induction coil control means is applied and isolates the electromagnetic induction coil from the object to be heated. A glass plate is provided, at least one resistor is provided on the glass plate, and temperature measuring means for measuring the temperature of the object to be heated is provided based on a change in resistance value of the resistor.

【0006】[0006]

【作用】被加熱物が接触するガラス板の領域に温度検出
素子の抵抗体を設けているので、被加熱物の熱はほとん
ど時間遅れなしで抵抗体に伝わる。
Since the resistor of the temperature detecting element is provided in the region of the glass plate with which the object to be heated contacts, the heat of the object to be heated is transferred to the resistor with almost no time delay.

【0007】[0007]

【実施例】図1はこの発明が適用される電磁誘導加熱装
置の断面を示す斜視図である。この図においては、電磁
誘導加熱装置を調理器に適用した場合を示している。図
において、ドーナツ形の電磁誘導コイル1の上部には電
磁誘導コイル1に密着してガラス板2が設けられ、その
上に置かれる鉄鍋等の被加熱物10と電磁誘導コイル1
間を隔離している。ガラス板2は厚さが数ミリメートル
でその材質は熱膨張率の低いリチウムシリケートガラ
ス、石英ガラス等が望ましい。ガラス板の代りにセラミ
ック板の表面を上記のリチウムシリケートガラスや石英
ガラスで被覆した板状部材を用いてもよい。ガラス板2
の下面には例えば金属薄膜の抵抗体4が形成されてお
り、抵抗体4は、保護膜である厚さが約100ミクロン
のガラス層5によって覆われている。抵抗体4が膜状で
薄いので熱容量が小さく、また厚さの厚いサーミスタの
ように取付場所に制約されることもない。ガラス層5は
耐湿性、耐摩耗性、電気絶縁性の点から高シリカガラス
が望ましい。電磁誘導コイル1は電磁誘導コイル制御装
置3に接続されており、そこから所定の交流電流が供給
される。
1 is a perspective view showing a cross section of an electromagnetic induction heating apparatus to which the present invention is applied. In this figure, a case where the electromagnetic induction heating device is applied to a cooking device is shown. In the figure, a glass plate 2 is provided in the upper part of a donut-shaped electromagnetic induction coil 1 so as to be in close contact with the electromagnetic induction coil 1, and an object to be heated 10 such as an iron pan and the electromagnetic induction coil 1 placed thereon.
The spaces are isolated. The glass plate 2 has a thickness of several millimeters, and its material is preferably lithium silicate glass, quartz glass or the like having a low coefficient of thermal expansion. Instead of the glass plate, a plate-shaped member obtained by coating the surface of the ceramic plate with the above-mentioned lithium silicate glass or quartz glass may be used. Glass plate 2
A resistor 4 which is, for example, a metal thin film is formed on the lower surface of the resistor 4, and the resistor 4 is covered with a glass layer 5 that is a protective film and has a thickness of about 100 microns. Since the resistor 4 is in the form of a film and is thin, it has a small heat capacity, and is not restricted by the mounting location unlike a thermistor having a large thickness. The glass layer 5 is preferably made of high-silica glass in terms of moisture resistance, abrasion resistance and electric insulation. The electromagnetic induction coil 1 is connected to the electromagnetic induction coil control device 3 and a predetermined alternating current is supplied thereto.

【0008】図2は抵抗体4の第1実施例の平面図であ
る。この実施例においては抵抗体4はジグザグ形の薄膜
抵抗により構成されている。第1実施例の抵抗体4は被
加熱物の温度制御においてそれほど高い精度を要しない
場合に用いられる。更に高い精度で温度制御を行うこと
ができる抵抗体の実施例を次に示す。
FIG. 2 is a plan view of the first embodiment of the resistor 4. In this embodiment, the resistor 4 is composed of a zigzag thin film resistor. The resistor 4 of the first embodiment is used when the temperature control of the object to be heated does not require very high accuracy. An example of a resistor that can perform temperature control with higher accuracy will be described below.

【0009】図3は抵抗体の第2実施例の平面図であ
る。この実施例では半径の異なる円弧状の3本の抵抗体
4A、4B、4Cが同心で設けられており、それぞれの
端子は図5に示す電磁誘導コイル制御装置3に接続され
ている。
FIG. 3 is a plan view of the second embodiment of the resistor. In this embodiment, three arcuate resistors 4A, 4B and 4C having different radii are concentrically provided, and their respective terminals are connected to the electromagnetic induction coil control device 3 shown in FIG.

【0010】図4は抵抗体の第3実施例の平面図であ
る。この実施例においては、半径の異なる7本の円弧状
の抵抗体素子を同心に配置し、内側の3本の抵抗体素子
を直列に接続して第1の抵抗体4Dを形成している。次
に最内側の抵抗体素子から第4番目と第5番目の抵抗体
素子を直列に接続して第2の抵抗体4Eを形成してい
る。そして外側の2本の抵抗体素子を直列に接続して第
3の抵抗体4Fを形成している。この第3実施例では、
抵抗体4D、4E、4Fのそれぞれの長さが第2実施例
の抵抗体4A、4B、4Cの長さの約2倍である。従っ
て、抵抗体4D、4E、4Fを電気抵抗率の比較的低い
金属材料を用いて形成させることができる。又、この第
3実施例においては、抵抗体4D〜4Fのそれぞれの抵
抗体素子を流れる電流の方向は、隣り合う抵抗体素子で
は互いに逆方向である。従って電磁波等による外来ノイ
ズによってこの抵抗体素子に誘起される電流は打消さ
れ、外来ノイズの影響による誤差の発生を防ぐことがで
きる。上記の第2及び第3実施例における最も外側の抵
抗体4C又は4Fの円弧の半径はいずれも鍋等の通常使
用される被加熱物10の最大の半径にほぼ等しくなされ
るのが望ましい。抵抗体4A〜4Fは温度係数の大きい
貴金属抵抗体を用いており、貴金属としては白金、ルテ
ニウム又はそれらの合金が適している。抵抗体の形成法
としては、ペースト状の抵抗体による印刷法、蒸着法、
スパッタリング法等が適している。又検出信号の減衰を
防ぐために、抵抗体4A〜4Fの円弧状の部分以外のリ
ード線6の部分の抵抗値は抵抗体4A〜4Fの抵抗値よ
り低い値(例えば抵抗体の抵抗値の1/50以下)にな
るように他の良導体の金属膜を用いるのが望ましい。
FIG. 4 is a plan view of a third embodiment of the resistor. In this embodiment, seven arc-shaped resistor elements having different radii are arranged concentrically, and the inner three resistor elements are connected in series to form the first resistor 4D. Next, the fourth and fifth resistor elements are connected in series from the innermost resistor element to form the second resistor 4E. Then, the two outer resistor elements are connected in series to form the third resistor 4F. In this third embodiment,
The length of each of the resistors 4D, 4E, 4F is about twice the length of the resistors 4A, 4B, 4C of the second embodiment. Therefore, the resistors 4D, 4E, 4F can be formed using a metal material having a relatively low electric resistivity. Further, in the third embodiment, the directions of the currents flowing through the resistor elements of the resistors 4D to 4F are opposite to each other in the adjacent resistor elements. Therefore, the current induced in the resistor element due to the external noise due to the electromagnetic wave or the like is canceled, and the occurrence of an error due to the influence of the external noise can be prevented. It is desirable that the radius of the arc of the outermost resistor 4C or 4F in the second and third embodiments is approximately equal to the maximum radius of the object 10 to be heated which is normally used such as a pot. The resistors 4A to 4F use noble metal resistors having a large temperature coefficient, and platinum, ruthenium or alloys thereof are suitable as the noble metal. As a method of forming the resistor, a printing method using a paste-like resistor, a vapor deposition method,
A sputtering method or the like is suitable. Further, in order to prevent the attenuation of the detection signal, the resistance value of the portion of the lead wire 6 other than the arc-shaped portions of the resistors 4A to 4F is lower than the resistance value of the resistors 4A to 4F (for example, 1 of the resistance value of the resistors is 1). / 50 or less), it is desirable to use another good conductive metal film.

【0011】図5は電磁誘導コイル制御装置3のブロッ
ク図である。図において、温度検出回路3Aには抵抗体
4A、4B、4C(又は4D、4E、4F)が接続さ
れ、抵抗体4A〜4Cの温度変化による抵抗値の変化に
基づいてそれぞれの温度が検出される。この温度検出回
路3Aにおいては、3個の抵抗体4A、4B、4Cで検
出された最も高い温度に対応する信号が出力され比較回
路3Cに印加される。一方、温度設定回路3Bにおいて
は、所望の温度があらかじめ設定されており、その温度
に対応する信号が同様に比較回路3Cに印加される。比
較回路3Cにおいては上記両信号が比較され、結果の比
較信号がコイル制御回路3Dに印加される。コイル制御
回路3Dにおいてはこの比較信号に基づいて電磁誘導コ
イル1に印加する交流電流を制御する。
FIG. 5 is a block diagram of the electromagnetic induction coil control device 3. In the figure, resistors 4A, 4B, 4C (or 4D, 4E, 4F) are connected to the temperature detection circuit 3A, and the respective temperatures are detected based on the change in the resistance value due to the temperature change of the resistors 4A to 4C. It In the temperature detection circuit 3A, a signal corresponding to the highest temperature detected by the three resistors 4A, 4B, 4C is output and applied to the comparison circuit 3C. On the other hand, in the temperature setting circuit 3B, a desired temperature is preset, and a signal corresponding to the temperature is similarly applied to the comparison circuit 3C. In the comparison circuit 3C, the above two signals are compared, and the resulting comparison signal is applied to the coil control circuit 3D. The coil control circuit 3D controls the alternating current applied to the electromagnetic induction coil 1 based on this comparison signal.

【0012】電磁誘導コイル制御装置3からの交流電流
が電磁誘導コイル1に与えられると、電磁誘導コイル1
の周囲に強磁場が発生し、ガラス板2上に置かれた鉄鍋
等の強磁性体よりなる被加熱物10は電磁誘導作用によ
り急速に発熱する。この熱は、被加熱物10に接してい
るガラス板2を介して抵抗体4A〜4Cに伝えられ、そ
の温度が上昇して抵抗値が変化する。この抵抗値の変化
は電磁誘導コイル制御装置3の温度検出回路3Aにおい
て検出され、温度設定回路3Bにおいてあらかじめ設定
されている所望の設定温度と比較し、設定された温度で
加熱されるように電磁誘導コイル1への電流を増減させ
る。温度設定回路3Bにおいて、例えば所望の「加熱プ
ログラム」を設定し、温度検出回路3Aの検出出力をこ
の加熱プログラムと比較対照し、そのプログラム通りの
加熱がなされるように電磁誘導コイル1へ与えられる電
流を制御することもできる。被加熱物10が発生する熱
はガラス板内に拡散するが、その温度は被加熱物10の
発熱部から離れるに従って低下する。
When an alternating current from the electromagnetic induction coil controller 3 is applied to the electromagnetic induction coil 1, the electromagnetic induction coil 1
A strong magnetic field is generated around the object, and the object to be heated 10 made of a ferromagnetic material such as an iron pot placed on the glass plate 2 rapidly generates heat due to the electromagnetic induction effect. This heat is transmitted to the resistors 4A to 4C via the glass plate 2 that is in contact with the object to be heated 10, and the temperature thereof rises and the resistance value changes. This change in the resistance value is detected by the temperature detection circuit 3A of the electromagnetic induction coil control device 3, compared with a desired set temperature preset in the temperature setting circuit 3B, and the electromagnetic wave is heated to the set temperature. Increase or decrease the current to the induction coil 1. In the temperature setting circuit 3B, for example, a desired "heating program" is set, the detection output of the temperature detection circuit 3A is compared and compared with this heating program, and the electromagnetic induction coil 1 is provided with the heating according to the program. The current can also be controlled. The heat generated by the object to be heated 10 diffuses into the glass plate, but the temperature thereof decreases as the distance from the heating portion of the object to be heated 10 increases.

【0013】本発明の実施例の実験例について、前記の
従来例のものと比較しつつ以下に説明する。図1に示す
構成で、厚さ3mm、幅28cm、長さ28cmの大き
さのガラス板2に図3に示す形状の抵抗体4A、4B、
4Cをガラス板中央よりそれぞれ半径50mm、65m
m、80mmの位置に形成した本発明の実施例と、同様
の大きさのガラス板を用いた従来例のものを比較した。
両者のガラス板2上に水1リットルを入れた口径18c
mのホーロ鍋を置き、1kwの電力を電磁誘導コイルに
与え、それぞれのホーロ鍋を加熱した時の、鍋中の水が
沸騰してからの検出遅れ時間を測定した。実施例の場
合、抵抗体4A、4B、4Cの検出遅れ時間はそれぞれ
30秒、26秒、46秒であり、本実施例を用いた場
合、30秒以内に沸騰検知が可能である。また最も外側
の抵抗体4Cが大きな検出遅れを示すことから、抵抗体
4Cが鍋の端に近いという情報も得られ、このことから
鍋の大きさを検知することができる。これに対し、従来
例の場合は、126秒必要であり、本発明の実施例の4
倍以上の時間を必要とした。
An experimental example of the embodiment of the present invention will be described below in comparison with that of the above-mentioned conventional example. With the structure shown in FIG. 1, the resistors 4A, 4B having the shape shown in FIG. 3 are formed on the glass plate 2 having a thickness of 3 mm, a width of 28 cm, and a length of 28 cm.
4C from the center of the glass plate with a radius of 50 mm and 65 m, respectively
An example of the present invention formed at positions of m and 80 mm was compared with a conventional example using a glass plate of the same size.
Caliber 18c with 1 liter of water on both glass plates 2
The holo pot of m was placed, 1 kw of electric power was applied to the electromagnetic induction coil, and the detection delay time after the water in the pot boiled when each holo pot was heated was measured. In the case of the embodiment, the detection delay times of the resistors 4A, 4B, and 4C are 30 seconds, 26 seconds, and 46 seconds, respectively, and when this embodiment is used, boiling detection can be performed within 30 seconds. Further, since the outermost resistor 4C exhibits a large detection delay, information that the resistor 4C is close to the end of the pot is also obtained, and from this, the size of the pot can be detected. On the other hand, in the case of the conventional example, 126 seconds are required, which is 4th of the embodiment of the present invention.
Needed more than double the time.

【0014】本発明の実施例によれば、被加熱物10の
底面の全域に対応する部分に温度検出用の抵抗体4A〜
4C又は4D〜4Fが設けられているので、被加熱物1
0の底面は常にいずれかの抵抗体に接している。従って
被加熱物10の底面の温度は短時間に抵抗体4A〜4C
のいずれかに伝達され、その温度が検出される。また、
被加熱物10の底面の半径が、抵抗体4Cの半径より小
さくかつ抵抗体4Bの半径より大きい場合には、抵抗体
4Bの温度は被加熱物10の温度に応じて変化するが、
抵抗体4Cの温度は相当の時間遅れを伴って変化する。
従って抵抗体4A、4B、4Cの個々の温度変化を温度
検出回路3Aにおいて検出し、それらを比較することに
よって、被加熱物10の半径を検出することもできる。
この場合、被加熱物10の半径が小さい場合には、電磁
誘導コイル1に与えられる電流を減少させるなど必要な
制御を電磁誘導コイル制御装置3において行うこともで
きる。被加熱物10が電磁誘導コイル1の中央の正しい
位置に置かれておらずいずれか一方にずれている場合に
も、各抵抗体4A〜4Cの検出値に大幅な差異が生じ
る。従ってこのような場合には、警報信号を発生して使
用者に被加熱物10を正しい位置に置くように注意を促
すこともできる。
According to the embodiment of the present invention, the temperature detecting resistors 4A to 4A are provided on the portion corresponding to the entire bottom surface of the object 10 to be heated.
Since 4C or 4D to 4F are provided, the object to be heated 1
The bottom surface of 0 is always in contact with either resistor. Therefore, the temperature of the bottom surface of the object to be heated 10 is set to the resistors 4A to 4C in a short time.
, And the temperature is detected. Also,
When the radius of the bottom surface of the object to be heated 10 is smaller than the radius of the resistor 4C and larger than the radius of the resistor 4B, the temperature of the resistor 4B changes according to the temperature of the object to be heated 10,
The temperature of the resistor 4C changes with a considerable time delay.
Therefore, the temperature of the resistors 4A, 4B, and 4C can be detected by the temperature detection circuit 3A and compared with each other to detect the radius of the object to be heated 10.
In this case, when the radius of the object to be heated 10 is small, the electromagnetic induction coil control device 3 can perform necessary control such as reducing the current applied to the electromagnetic induction coil 1. Even when the object to be heated 10 is not placed at the correct position in the center of the electromagnetic induction coil 1 and is displaced to either one, a large difference occurs in the detected values of the resistors 4A to 4C. Therefore, in such a case, an alarm signal can be generated to remind the user to place the article 10 to be heated in the correct position.

【0015】図6は本発明の第4の実施例の抵抗体の構
成を示す平面図である。図において抵抗体4D、4E、
4Fの形状は前記第3実施例のものと同じである。この
実施例においては、最も内側の抵抗体4Dの近傍に例え
ばサーミスタ等の検温素子7を設けている。検温素子7
は、図1に示すガラス層5に密着させるのが望ましい。
一般に抵抗体4D、4E、4Fの電気抵抗率は、製造時
の種々の条件によってある程度のばらつきが生じる。こ
のばらつきは、あるガラス板2内の個々の抵抗体4D、
4E、4F間では、各抵抗体の膜厚を同一にすることは
容易なのでほとんど無視できるほど小さい値である。し
かし、異なる複数のガラス板2間では、両者の膜厚を同
一にすることはむずかしく、前記のばらつきは無視でき
ないほど大きな値となる。そこで検温素子7によって検
出された温度に基づいて、実質的に検温素子7と同じ温
度である抵抗体4Dの抵抗とあらかじめ定められている
基準抵抗値との誤差を検出する。そしてこの検出された
誤差に基づいて抵抗体4Dの電気抵抗率の基準値からの
偏差を求め、前記の温度検出回路3Aにおいて各抵抗体
4D、4E、4Fのそれぞれの検出値をこの偏差に基づ
いて補正する。以上のように第4実施例では、複数の抵
抗体のいずれか1個(上記の例では4D)の温度を検温
素子7によって検出することによって、すべての抵抗体
の電気抵抗率の誤差を補正することができる。
FIG. 6 is a plan view showing the structure of the resistor according to the fourth embodiment of the present invention. In the figure, resistors 4D, 4E,
The shape of 4F is the same as that of the third embodiment. In this embodiment, a temperature detecting element 7 such as a thermistor is provided near the innermost resistor 4D. Temperature measuring element 7
Is preferably brought into close contact with the glass layer 5 shown in FIG.
Generally, the electrical resistivity of the resistors 4D, 4E, 4F varies to some extent depending on various conditions during manufacturing. This variation is caused by the individual resistors 4D in a certain glass plate 2,
Since it is easy to make the film thickness of each resistor the same between 4E and 4F, the value is so small that it can be almost ignored. However, it is difficult for the plurality of different glass plates 2 to have the same film thickness, and the above-mentioned variation becomes a large value that cannot be ignored. Therefore, based on the temperature detected by the temperature detecting element 7, an error between the resistance of the resistor 4D having substantially the same temperature as the temperature detecting element 7 and a predetermined reference resistance value is detected. Then, based on the detected error, the deviation of the electrical resistivity of the resistor 4D from the reference value is obtained, and the respective detection values of the resistors 4D, 4E, 4F in the temperature detection circuit 3A are based on this deviation. To correct. As described above, in the fourth embodiment, the temperature of any one of the plurality of resistors (4D in the above example) is detected by the temperature detecting element 7 to correct the error in the electrical resistivity of all the resistors. can do.

【0016】[0016]

【発明の効果】この発明によれば、電磁誘導コイルと被
加熱物間を隔離するガラス板の被加熱物が接する位置に
おいて、ガラス板の被加熱物が接する面の対向面に温度
検出用の抵抗体を設けているので、被加熱物の熱は短時
間で抵抗体に伝わる。従って被加熱物の温度の検出に時
間遅れが生じることはない。その結果被加熱物を加熱し
すぎたり、被加熱物の温度が部分的に異なる温度むらが
生じることのない電磁誘導加熱装置を提供することがで
きる。
According to the present invention, at the position where the object to be heated of the glass plate that separates the electromagnetic induction coil from the object to be heated is in contact, the temperature detection is performed on the surface of the glass plate opposite to the surface in contact with the object to be heated. Since the resistor is provided, the heat of the object to be heated is transferred to the resistor in a short time. Therefore, there is no time delay in detecting the temperature of the object to be heated. As a result, it is possible to provide an electromagnetic induction heating device that does not overheat the object to be heated and does not cause temperature unevenness where the temperature of the object to be heated is partially different.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例が適用される電磁誘導加熱装置
の一部を断面にした斜視図。
FIG. 1 is a perspective view showing a partial cross section of an electromagnetic induction heating apparatus to which an embodiment of the present invention is applied.

【図2】本発明の第1実施例の抵抗体を設けたガラス板
の平面図。
FIG. 2 is a plan view of a glass plate provided with a resistor according to the first embodiment of the present invention.

【図3】本発明の第2実施例の抵抗体を設けたガラス板
の平面図。
FIG. 3 is a plan view of a glass plate provided with a resistor according to a second embodiment of the present invention.

【図4】本発明の第3実施例の抵抗体及び検温素子を設
けたガラス板の平面図。
FIG. 4 is a plan view of a glass plate provided with a resistor and a temperature measuring element according to a third embodiment of the present invention.

【図5】本発明の電磁誘導コイル制御装置のブロック
図。
FIG. 5 is a block diagram of an electromagnetic induction coil control device of the present invention.

【図6】本発明の第4実施例の抵抗体を設けたガラス板
の平面図。
FIG. 6 is a plan view of a glass plate provided with a resistor according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電磁誘導コイル 2 ガラス板 3 電磁誘導コイル制御回路 4A、4D、4C 抵抗体 4D、4E、4F 抵抗体 5 ガラス層 7 検温素子 10 被加熱物 1 Electromagnetic Induction Coil 2 Glass Plate 3 Electromagnetic Induction Coil Control Circuit 4A, 4D, 4C Resistor 4D, 4E, 4F Resistor 5 Glass Layer 7 Thermometric Element 10 Heated Object

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉田 勇一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichiro Sugita 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 交流電流を出力する電磁誘導コイル制御
手段、 前記交流電流が印加される電磁誘導コイル、 電磁誘導コイルに近接して設けられ、電磁誘導コイルと
被加熱物間を隔離するガラス板、 前記ガラス板に設けられた少なくとも一個の抵抗体、及
び抵抗体の抵抗値の変化に基づいて、前記被加熱物の温
度を測定する温度測定手段、 温度測定手段の測定結果に基づいて前記電磁誘導コイル
制御手段を制御する制御手段、 を有する電磁誘導加熱装置。
1. An electromagnetic induction coil control means for outputting an alternating current, an electromagnetic induction coil to which the alternating current is applied, a glass plate which is provided in the vicinity of the electromagnetic induction coil and isolates the electromagnetic induction coil from the object to be heated. , At least one resistor provided on the glass plate, and temperature measuring means for measuring the temperature of the object to be heated based on a change in resistance value of the resistor, the electromagnetic wave based on the measurement result of the temperature measuring means An electromagnetic induction heating device comprising: a control unit that controls the induction coil control unit.
【請求項2】 前記ガラス板に設けられた抵抗体はガラ
ス層によって被覆されている請求項1の電磁誘導加熱装
置。
2. The electromagnetic induction heating device according to claim 1, wherein the resistor provided on the glass plate is covered with a glass layer.
【請求項3】 前記抵抗体は、同心の複数の円弧状に構
成されている請求項1の電磁誘導加熱装置。
3. The electromagnetic induction heating device according to claim 1, wherein the resistor is formed into a plurality of concentric arcs.
【請求項4】 少なくとも1個の抵抗体に検温素子を設
けた請求項3の電磁誘導加熱装置。
4. The electromagnetic induction heating device according to claim 3, wherein at least one resistor is provided with a temperature detecting element.
【請求項5】 前記同心の円弧状に構成された複数の抵
抗体の隣り合う複数の抵抗体を直列に接続して各抵抗体
を構成した請求項3の電磁誘導加熱装置。
5. The electromagnetic induction heating device according to claim 3, wherein each of the resistors is configured by connecting a plurality of adjacent resistors of the plurality of resistors having the concentric arc shape in series.
JP24116393A 1993-09-28 1993-09-28 Electromagnetic induction heating device Pending JPH0794264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24116393A JPH0794264A (en) 1993-09-28 1993-09-28 Electromagnetic induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24116393A JPH0794264A (en) 1993-09-28 1993-09-28 Electromagnetic induction heating device

Publications (1)

Publication Number Publication Date
JPH0794264A true JPH0794264A (en) 1995-04-07

Family

ID=17070199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24116393A Pending JPH0794264A (en) 1993-09-28 1993-09-28 Electromagnetic induction heating device

Country Status (1)

Country Link
JP (1) JPH0794264A (en)

Similar Documents

Publication Publication Date Title
US5227610A (en) Process and device for indicating an anomalous thermal stress condition in a heating surface made from glass ceramic or a comparable material
US5352864A (en) Process and device for output control and limitation in a heating surface made from glass ceramic or a comparable material
EP0286217B1 (en) Thick film electrically resistive tracks
US4237368A (en) Temperature sensor for glass-ceramic cooktop
US5258736A (en) Temperature sensor or temperature sensor arrangement made from glass ceramic and bonding film resistors
EP0916234B1 (en) Heating element
US4447710A (en) Electric cookers incorporating radiant heaters
KR19980080206A (en) Heater-sensor composite
US20230266015A1 (en) Electric Heater And Cooking Appliance Having Same
JPH03141579A (en) Temperature measuring device for electromagnetic cooker and utensil provided with said temperature measuring device
US5977523A (en) Electric heating method
GB2103910A (en) Improvements in electric cookers incorporating radiant heaters
EP1266544B1 (en) Temperature sensor
JP3317017B2 (en) Temperature detector for induction cooker
JPH0794264A (en) Electromagnetic induction heating device
JPH07142161A (en) Electromagnetic induction heating device
JPH08321377A (en) Electromagnetic induction heating device
JPH0822886A (en) Uniform heater
JP3079573B2 (en) Pot for induction cooker
JPH07142160A (en) Electromagnetic induction heating device
WO1997021326A1 (en) A resistive heating element for a cooker
JPH0778678A (en) Cooking apparatus with heater
JPH05203164A (en) Cooking oven
JP3713253B2 (en) Electromagnetic heating container
CA1129923A (en) Temperature sensor for glass-ceramic cooktop