JPH079418B2 - Spectrum ultrasound microscope - Google Patents

Spectrum ultrasound microscope

Info

Publication number
JPH079418B2
JPH079418B2 JP63202570A JP20257088A JPH079418B2 JP H079418 B2 JPH079418 B2 JP H079418B2 JP 63202570 A JP63202570 A JP 63202570A JP 20257088 A JP20257088 A JP 20257088A JP H079418 B2 JPH079418 B2 JP H079418B2
Authority
JP
Japan
Prior art keywords
subject
frequency
transducer
frequency distribution
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63202570A
Other languages
Japanese (ja)
Other versions
JPH0251060A (en
Inventor
教尊 中曽
祐輔 塚原
雅雄 斎藤
克己 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP63202570A priority Critical patent/JPH079418B2/en
Publication of JPH0251060A publication Critical patent/JPH0251060A/en
Publication of JPH079418B2 publication Critical patent/JPH079418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、被検体の弾性的性質の二次元観察に係わり、
とくに被検体の二次元の定量計測を短時間に行うスペク
トラム超音波顕微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to two-dimensional observation of elastic properties of a subject,
In particular, the present invention relates to a spectrum ultrasonic microscope that performs two-dimensional quantitative measurement of a subject in a short time.

〈従来技術〉 近年、圧電体を用いて超音波を発振し、音響レンズで屈
折させ超音波伝播用液体を介して被検体表面上に収束さ
せながら被検体表面をX−Yスキャンさせ、その反射波
或いは透過波の出力を得ることで被検体の弾性的性質を
二次元で表示する超音波顕微鏡が開発されている。
<Prior Art> In recent years, an ultrasonic wave is oscillated using a piezoelectric body, refracted by an acoustic lens, and converged on the surface of the object via an ultrasonic wave propagating liquid, and an XY scan is performed on the surface of the object. Ultrasonic microscopes have been developed that two-dimensionally display the elastic properties of a subject by obtaining the output of waves or transmitted waves.

代表的な超音波顕微鏡の概要を説明すると、第2図に示
すように、数十から数百MHzの一定の周波数を発振する
高周波発振器9を用いて高周波バースト信号を作り、圧
電体10に印加する。高周波バースト信号は圧電体で音波
に変換(印加された電気信号を音波に変換して被検体に
入射し、その反射音波を再び電気信号に変換する装置を
「トランスジューサー」と呼ぶ)され、溶融石英或いは
サファイア等よりなる遅延材11中を伝播し、遅延材と超
音波伝播用液体12の音速の差により屈折され被検体13上
に収束される。試料の音響的な性質を反映した音波の反
射波は、再び超音波伝播用液体12に放出され、遅延材11
で位相整合されたのち圧電体10で再び電気信号に変換さ
れる。得られた電気信号を増幅しダイオード検波した後
その出力をビデオ信号として用いている。以上の行程
を、試料に対してトランスジューサーをX−Yスキャン
しながら同時に行い、被検体の二次元の反射強度の画像
として表示する。
An outline of a typical ultrasonic microscope will be described. As shown in FIG. 2, a high frequency burst signal is generated using a high frequency oscillator 9 that oscillates a constant frequency of several tens to several hundreds of MHz and applied to the piezoelectric body 10. To do. High-frequency burst signals are converted into sound waves by a piezoelectric body (a device that converts applied electric signals into sound waves, enters the subject, and converts the reflected sound waves back into electric signals is called a "transducer") and melts. The light propagates through the delay material 11 made of quartz or sapphire, and is refracted by the difference in sound velocity between the delay material and the ultrasonic wave propagating liquid 12 to be converged on the subject 13. The reflected wave of the acoustic wave that reflects the acoustic properties of the sample is emitted again to the ultrasonic wave propagating liquid 12, and the delay member 11
After being phase-matched with each other, it is converted into an electric signal again by the piezoelectric body 10. After the obtained electric signal is amplified and diode-detected, its output is used as a video signal. The above steps are simultaneously performed on the sample while the transducer is scanning XY, and the two-dimensional reflection intensity image of the subject is displayed.

今までの超音波顕微鏡はこのようにある一定の周波数の
音波を音響レンズによって垂直成分も含めた広い入射角
で被検体に照射し、その反射波の出力を画像の明暗とし
て表示するものが殆どである。
Most acoustic microscopes up to now irradiate a subject with a wide incidence angle including a vertical component by an acoustic lens, and display the output of the reflected wave as the brightness of the image. Is.

しかし、被検体表面の粗さ、被検体表面に励起される弾
性表面波によるエネルギーの基板深部方向への漏洩、エ
ネルギーが弾性表面波としてトランスジューサーの位置
から検出不可能な領域へ逃げてしまうことによる反射波
成分の現象等、多くの現象の影響が積分された結果とし
ての出力しか得れず、且つ常に一画像内での相対的な出
力の関係しか提供しえない。このように今日の超音波顕
微鏡は、その原理からくる定量計測を行う上での困難さ
をもっている。
However, the roughness of the surface of the specimen, the leakage of energy due to the surface acoustic waves excited on the surface of the specimen to the depth direction of the substrate, and the energy escaping from the transducer position to an undetectable area as surface acoustic waves. Only the output as a result of the integration of the effects of many phenomena such as the phenomenon of the reflected wave component due to is obtained, and only the relation of the relative output in one image can be always provided. As described above, today's ultrasonic microscopes have difficulty in performing quantitative measurement based on its principle.

超音波顕微鏡を用いて定量計測を可能とするものに特開
昭61-20857号公報に記載のV(z)曲線法を原理とする
ものがある。V(z)曲線法を第3図に示すように、音
響レンズ19を被検体表面垂直方向に上下させ、被検体表
面へ垂直入射し、反射してきた成分と、被検体表面に斜
めから入射し、一旦弾性表面波として被検体表面上を伝
播し、再放出された成分の干渉に起因する出力の振動周
期Δから弾性表面波の音速を測定し、その値から被検
体の弾性定数或いは構造を定量測定することが出来る。
しかしこの方法は、被検体表面で二次元的に測定を試み
る場合、一点一点トランスジューサーを精度良く上下す
る必要があるため、一枚の画像を作成するのに膨大な時
間がかかることが欠点である。
One that enables quantitative measurement using an ultrasonic microscope is disclosed in Japanese Patent Application Laid-Open No. 61-20857, which uses the V (z) curve method as a principle. As shown in FIG. 3 by the V (z) curve method, the acoustic lens 19 is moved vertically in the direction perpendicular to the surface of the subject, and is vertically incident on the surface of the subject. , Once propagated as a surface acoustic wave on the surface of the subject, and the sound velocity of the surface acoustic wave is measured from the oscillation period Δ z of the output due to the interference of the components re-emitted, and from that value, the elastic constant or structure of the subject is measured. Can be quantitatively measured.
However, with this method, when attempting two-dimensional measurement on the surface of the subject, it is necessary to move up and down the point-by-point transducer with high accuracy, so it may take a huge amount of time to create one image. It is a drawback.

トランスジューサーを被検体に対して上下するような機
械的走査をすることなく、被検体表面に励起される弾性
表面波の音速或いは弾性表面波を励起しえる超音波の周
波数など、絶対値として正確に、短時間に試料表面二次
元的に高分解能で得られるならば、今までの超音波顕微
鏡では成しえなかった被検体の弾性定数或いは膜のある
被検体ならば膜厚をあるいは亀裂深さを定量的にそれら
の情報から得ることが可能となり、現在の精密加工等に
おける被破壊検査手段、あるいは物性研究の分野など極
めて広い分野で有用な評価装置となる。
Accurate as an absolute value, such as the speed of sound of a surface acoustic wave excited on the surface of the subject or the frequency of ultrasonic waves that can excite the surface acoustic wave without mechanically moving the transducer up and down with respect to the subject. In addition, if the sample surface can be obtained two-dimensionally with high resolution in a short time, the elastic constant of the object that could not be achieved with the conventional ultrasonic microscope or the film thickness or the crack depth in the case of an object with a film. Since it becomes possible to quantitatively obtain the information from the information, it becomes a useful evaluation device in an extremely wide field such as the destructive inspection means in the current precision machining or the field of physical property research.

〈発明が解決しようとする課題〉 以上説明したように、従来の超音波顕微鏡は被検体の物
性定数や構造パラメータの定量測定が困難であり、V
(z)曲線法等を用いて二次元的な被検体の定量測定を
行おうとすると測定に長時間かかるという問題点があっ
た。
<Problems to be Solved by the Invention> As described above, in the conventional ultrasonic microscope, it is difficult to quantitatively measure the physical constants and structural parameters of the object, and V
(Z) If a two-dimensional quantitative measurement of an object is performed using the curve method or the like, there is a problem that the measurement takes a long time.

〈問題点を解決するための手段〉 本発明は以上の問題点を省みてなされたもので、広帯域
の高周波パルスを発振する手段と、発振された電気信号
を音波に変換し一定の入射角で被検体に入射しその反射
波を受信するトランスジューサーと、得られた信号を周
波数分析する手段と、その周波数分布の特徴を定量的に
抽出あるいは記憶する手段とを具備し、さらにこれらの
行程と連動する、被検体表面平行に、被検体に対してト
ランスジューサーを移動させるか或いはトランスジュー
サーに対して被検体を音波の発振と受信および周波数分
析の行程を同期させて二次元的に移動させる駆動手段を
有して、被検体各点に於ける超音波の試料への入射角に
依存した反射波の周波数分布の情報、或いは其から求め
られた定量的な被検体の情報を二次元に出力する手段を
有する装置を用いることによって、被検体の物性定数、
膜厚等の構造パラメータ、あるいは亀裂の存在や剥離を
被検体表面で二次元的にかつ定量的に測定、検出を可能
とするものである。
<Means for Solving Problems> The present invention has been made by omitting the above problems, and a means for oscillating a high-frequency pulse in a wide band and an oscillated electric signal converted into a sound wave at a constant incident angle. The method further comprises a transducer for entering a subject and receiving the reflected wave thereof, means for frequency-analyzing the obtained signal, and means for quantitatively extracting or storing the characteristics of the frequency distribution thereof, and the steps of these steps. Drive to move the transducer relative to the subject in parallel with the surface of the subject, or to move the subject two-dimensionally with respect to the transducer by synchronizing the oscillation and reception of sound waves and the process of frequency analysis. With a means, the information of the frequency distribution of the reflected wave depending on the incident angle of the ultrasonic wave at each point of the subject to the sample, or the quantitative information of the subject obtained from it is two-dimensionally obtained. By using a device having a means for outputting, the physical property constant of the subject,
It is possible to two-dimensionally and quantitatively measure and detect the structural parameters such as the film thickness, or the presence or separation of cracks on the surface of the subject.

〈作用〉 一般に被検体に一定の角度で超音波を入射し、その反射
波の周波数分布や反射係数の周波数依存性に被検体の弾
性定数、又構造パラメータに対応した変化が観られ、実
際の非破壊検査や物性研究に重要な情報を提供しえるこ
とを我々は明らかにした。
<Operation> Generally, an ultrasonic wave is incident on a subject at a constant angle, and the frequency distribution of the reflected wave and the frequency dependence of the reflection coefficient show a change corresponding to the elastic constant of the subject or a structural parameter. We have revealed that it can provide important information for nondestructive inspection and physical property research.

超音波をある一定の角度で被検体に入射したときの被検
体の反射係数は、装置の周波数応答関数を得ておくなら
ば(1)式によって得ることが出来る。
The reflection coefficient of the subject when ultrasonic waves are incident on the subject at a certain angle can be obtained by the equation (1) if the frequency response function of the apparatus is obtained in advance.

ここでP2は装置の応答関数の周波数分布であり、P1は被
検体に於ける反射波の周波数分布である。
Here, P2 is the frequency distribution of the response function of the device, and P1 is the frequency distribution of the reflected wave at the subject.

このように入射角θを一定とするならば、無次元データ
である周波数fの関数の反射係数が得られる。
If the incident angle θ is constant in this way, the reflection coefficient as a function of the frequency f, which is dimensionless data, can be obtained.

特に、第4図に示すように反射係数が物性定数或いは構
造パラメータの関数として、ある周波数23で極小をもつ
場合、反射係数の極小をとる周波数はX−Yスキャン時
に於けるトランスジューサーと被検体の相対距離の変動
に対して比較的安定な情報として反射波全体のエネルギ
ーに影響を受けることなく得ることが出来る。
In particular, as shown in FIG. 4, when the reflection coefficient has a minimum at a certain frequency 23 as a function of a physical property constant or a structural parameter, the frequency at which the reflection coefficient has the minimum is the transducer and the object under XY scanning. It is possible to obtain information that is relatively stable with respect to fluctuations in the relative distance of the signal without being affected by the energy of the entire reflected wave.

このように、一画面内に於ける出力の相対値を情報とし
て用いる従来の超音波顕微鏡に対して、本発明のスペク
トラム超音波顕微鏡は、被検体表面各点に於ける反射波
の周波数分布の形状を測定対象とすることで、被検体の
表面状態やトランスジューサーの特性、装置全体の電気
的或いは機械的な不安定要素を取り除き、被検体固有の
音波に対する応答を純粋に取り出すことが出来る。
As described above, the spectrum ultrasonic microscope of the present invention is different from the conventional ultrasonic microscope that uses the relative value of the output within one screen as information, in the frequency distribution of the reflected wave at each point on the surface of the subject. By using the shape as the measurement target, it is possible to remove the surface condition of the subject, the characteristics of the transducer, the electrically or mechanically unstable element of the entire apparatus, and purely take out the response to the sound wave peculiar to the subject.

さらに、既知の物性と構造を持つ多くの被検体に対して
いろいろな超音波の入射角で反射波の周波数依存性を調
べたところ、被検体の物性と構造に依存して入射角にあ
る程度の幅を持たせた場合でもその周波数分布の形状は
その入射角の広がりの中心の角度で入射したときとほぼ
同じ形状をとることを見出していることから、トランス
ジューサーの形状を第6図に示すような構造にすること
で超音波を被検体表面に収束させ、トランスジューサー
の圧電体面積より狭い領域の観察が可能で高い分解能を
もって画像を得ることができる。
Furthermore, we investigated the frequency dependence of the reflected wave at various incident angles of ultrasonic waves on many subjects with known physical properties and structures. Since it has been found that the shape of the frequency distribution is almost the same as that of the case where the light is incident at the center angle of the spread of the incident angle even when the width is given, the shape of the transducer is shown in FIG. With such a structure, the ultrasonic waves can be focused on the surface of the subject, an area smaller than the piezoelectric area of the transducer can be observed, and an image can be obtained with high resolution.

〈実施例〉 以下本発明を実施例により図面に基づき詳細に説明す
る。
<Examples> The present invention will be described in detail below with reference to the drawings based on examples.

第1図にスペクトラム超音波顕微鏡のブロックダイアグ
ラムの例を示した。
FIG. 1 shows an example of a block diagram of a spectrum ultrasonic microscope.

インパルス発信器を広帯域高周波パルス発信器1として
用い、トランスジューサーは超音波を被検体に入射し、
反射波を受信するよう設置する。トランスジューサーの
受信部3は広帯域用増幅器4に接続され、増幅された信
号はスペクトルアナライザーよりなる周波数分析装置5
に依って周波数分析され、A/D変換される。得られた周
波数分布はコンピューターよりなる周波数分布デジタル
演算及び記憶装置6によって操作者に依ってプログラム
された特徴抽出が行われて記憶された後、結果が画像出
力装置7に表示される。試料台と連結しているX−Yス
テージ駆動装置8はインパルス発信器から出される信号
に同期してX−Yスキャンされる。
The impulse oscillator is used as the broadband high frequency pulse oscillator 1, and the transducer injects ultrasonic waves into the subject,
Install to receive reflected waves. The receiving unit 3 of the transducer is connected to a wide band amplifier 4, and the amplified signal is a frequency analyzer 5 including a spectrum analyzer.
The frequency is analyzed according to the A / D conversion. The obtained frequency distribution is subjected to feature extraction programmed by an operator by the frequency distribution digital calculation and storage device 6 and stored by the operator, and the result is displayed on the image output device 7. The XY stage driving device 8 connected to the sample stage is scanned in XY in synchronization with the signal output from the impulse oscillator.

以上の構成によりなる装置によってつぎの様な測定が可
能であった。
The following measurement was possible with the device having the above configuration.

膜の構成されている試料に基板、膜、超音波伝播用液体
の組合せで決まるある特定の入射角で超音波を入射し、
その反射率が極小になる周波数があった場合、膜厚dと
反射率極小周波数fは基板、膜、超音波伝播用液体の組
合せで決定される定数Cとつぎの関係があることを我々
は見出している。
An ultrasonic wave is incident on a sample composed of a film at a specific incident angle determined by the combination of the substrate, the film, and the ultrasonic wave propagating liquid,
If there is a frequency at which the reflectance becomes a minimum, we find that the film thickness d and the reflectance minimum frequency f have the following relationship with the constant C determined by the combination of the substrate, the film, and the ultrasonic wave propagating liquid. Is heading.

f * d=C ……(2) このことを用いて溶融石英上に金のメッキを行ったもの
を被検体としての金の膜厚を測定する場合、超音波を約
30degで入射すると、擬似弾性表面波と呼ばれる表面波
が被検体表面に励起され、基板にエネルギーを放出しな
がら伝播することがわかっている。このことから、トラ
ンスジューサーの音波の入射角を30degに設定し、スペ
クトル超音波顕微鏡の周波数分布のデジタル演算及び記
憶装置に、第5図Aに示すように試料が先の入射角で特
定の周波数で特異な吸収による極小を示さないものに対
して同じトランスジューサーを用いて採取した場合の周
波数分布24を記憶させておく。次に第5図Bに示すよう
に同じ入射角で被検体で得られたそれぞれの周波数での
反射波の周波数分布25の成分が得られたとすると、各周
波数で於いて周波数分布25の値から周波数分布24の値を
引くと第5図Cに示すように被検体特有の極小現象を明
確に示す周波数分布26が得られる。得られた周波数分布
26で極小値をとった周波数27を得、(2)式から膜厚d
を算出してdの大小を明暗として画像出力装置のモニタ
ー画面に表示するようにした。以上の処理をX−Yステ
ージ駆動装置を用いて被検体全面にわたって行い、被検
体全面の膜厚分布図を得るように設定した。
f * d = C (2) When using this to measure the thickness of gold as a test object on a fused quartz plate plated with gold, ultrasonic waves are applied.
It is known that when incident at 30 deg, a surface wave called a pseudo-surface acoustic wave is excited on the surface of the subject and propagates while releasing energy to the substrate. From this, the incident angle of the sound wave of the transducer is set to 30 deg, and the sample is stored in the digital operation and storage device of the frequency distribution of the spectrum ultrasonic microscope as shown in FIG. The frequency distribution 24 in the case where the same transducer is used for samples that do not show a local minimum due to peculiar absorption in (3) is stored. Next, as shown in FIG. 5B, if the components of the frequency distribution 25 of the reflected wave at each frequency obtained at the subject at the same incident angle are obtained, from the value of the frequency distribution 25 at each frequency, When the value of the frequency distribution 24 is subtracted, a frequency distribution 26 clearly showing the minimal phenomenon peculiar to the subject is obtained as shown in FIG. 5C. Obtained frequency distribution
The frequency 27, which has the minimum value at 26, is obtained, and the film thickness d is calculated from the equation (2).
Was calculated, and the magnitude of d was set as light and dark and displayed on the monitor screen of the image output device. The above processing was performed over the entire surface of the subject using the XY stage drive device, and settings were made so as to obtain a film thickness distribution chart of the entire subject.

測定の結果、被検体全面に渡って高い空間分解能で膜厚
の分布図が二次元的に得られ、後に破壊検査に依って調
べたところスペクトラム超音波顕微鏡に依って得られた
膜厚分布図が正しい値を示している事が実証された。
As a result of the measurement, a distribution map of the film thickness was obtained two-dimensionally with a high spatial resolution over the entire surface of the subject, and when it was later examined by destructive inspection, the film thickness distribution map obtained by the spectrum ultrasonic microscope It has been proved that shows the correct value.

また膜の構成されている試料に基板、膜、超音波伝播用
液体の組合せで決まる、ある特定の入射角で超音波を入
射すると弾性表面波と呼ばれる波が強く試料表面に励起
される。この場合、極微小な面積に超音波を照射し、そ
の領域の反射音波を採取すると、基板にエネルギーを放
出しなくとも弾性表面波として受信用トランスジューサ
ーによって検出出来ない領域まで伝播していくため、弾
性表面波を励起した周波数成分のみが大きく反射波出力
の極小をとることを我々はみいだした。
Further, when an ultrasonic wave is incident on a sample having a film, which is determined by a combination of the substrate, the film, and the ultrasonic wave propagating liquid, a wave called a surface acoustic wave is strongly excited on the sample surface. In this case, if ultrasonic waves are applied to a very small area and the reflected sound waves in that area are collected, they propagate as surface acoustic waves to areas that cannot be detected by the receiving transducer without releasing energy to the substrate. , We found that only the frequency component excited by the surface acoustic wave has a large minimum output of the reflected wave.

このため、第6図に示すように中心入射角40deg、入射
角幅4degにトランスジューサーを設定した。周波数分布
のデジタル演算及び記憶装置では先の例と同様、得られ
る反射波の周波数分布の極小周波数を求め、膜がクロ
ム、基板が銅の場合の定数Cを求め、膜厚dを求めるよ
うに設定し、被検体全面にわたり測定を行った。この結
果、極微小な面積に超音波を照射し、その領域の反射波
を採取することによって反射波出力の極小現象が大きく
現れ、正確にしかも短時間に膜厚の被検体全面の膜厚測
定が行われた。
Therefore, as shown in FIG. 6, the transducer was set to have a central incident angle of 40 deg and an incident angle width of 4 deg. In the digital operation and storage device of the frequency distribution, as in the previous example, the minimum frequency of the frequency distribution of the obtained reflected wave is calculated, the constant C is calculated when the film is chromium and the substrate is copper, and the film thickness d is calculated. After setting, measurement was performed over the entire surface of the subject. As a result, by radiating ultrasonic waves to a very small area and collecting the reflected wave in that area, a minimal phenomenon of reflected wave output appears significantly, and the film thickness of the entire surface of the subject can be measured accurately and in a short time. Was done.

溶融石英基板上に金の膜を蒸着した試料を塩酸に浸して
おくと、境界への塩酸の進入によって金の膜が短時間に
しかも微小領域で多くの部分から剥離する事が知られて
いる。
It is known that when a sample with a gold film deposited on a fused quartz substrate is immersed in hydrochloric acid, the gold film will peel off from many parts in a short time due to the entry of hydrochloric acid at the boundary. .

しかし、今までこの剥離の過程を継続的に観察すること
は困難であった。このため超音波伝播媒体に塩酸を用
い、本発明のスペクトラム超音波顕微鏡によって測定を
行った。基板から膜が剥離すると、膜が密着していた時
には基板へのエネルギーを漏洩しながら伝播する擬似弾
性表面波の影響で存在していた反射波出力のある周波数
での極小現象が起きなくなることを我々は見出したた
め、周波数分布のデジタル演算及び記憶装置に於いて極
小現象の起きた被検体の部分はモニター画面を明に、極
小現象の起きなかった点に於いてはモニター画面を暗と
して表示しながら且つ(2)式によって得た膜厚を記憶
するよう設定をおこない、長時間に渡って繰り返し被検
体全面における観察を行った。
However, until now, it was difficult to continuously observe this peeling process. Therefore, hydrochloric acid was used as the ultrasonic wave propagation medium, and measurement was performed using the spectrum ultrasonic microscope of the present invention. If the film peels off from the substrate, the minimal phenomenon at a certain frequency of the reflected wave output that was present due to the influence of the pseudo surface acoustic wave propagating while leaking energy to the substrate when the film was in close contact does not occur. Since we found, in the digital operation of frequency distribution and storage device, the part of the subject where the minimal phenomenon occurred shows the monitor screen as bright, and at the point where the minimal phenomenon did not occur, the monitor screen was displayed as dark. Meanwhile, the film thickness obtained by the equation (2) was set to be stored, and the entire surface of the subject was repeatedly observed for a long time.

この測定によって金の膜の剥離の様子が時間を追って観
察された。また観察の後スペクトラム超音波顕微鏡の記
憶していた反射波出力極小周波数から膜厚分布分布を画
像表示したところ、膜厚の薄い部分からより多くの剥離
が発生していたことが判明した。
By this measurement, the peeling of the gold film was observed over time. In addition, after observation, when the film thickness distribution distribution was image-displayed from the reflected wave output minimum frequency stored in the spectrum ultrasonic microscope, it was found that more peeling occurred from the thin film portion.

基板上に膜の形成されている試料に於いて第(3)式の
関係が成り立つ場合は膜と基板の間に異種の物質よりな
る中間層が存在するか、あるいは境界が完全に接合して
いないことを示している事を我々は見出した。
When the relation of the expression (3) is established in the sample in which the film is formed on the substrate, there is an intermediate layer made of a different kind of material between the film and the substrate, or the boundary is completely joined. We found that it did not.

異なる2つの入射角で超音波を被検体に入射しその領域
の反射波を採取してそのそれぞれの入射角で反射波の出
力が極小となる周波数が完全に密着している試料に対し
てf1,f2であったとし、被検体に於いてはf1′、f2′で
あったとして、 このため、溶融石英の上に金の膜を蒸着し、入射角θ1
=17.0deg及び入射角θ2=25.0degに設定し、入射角幅
θ3=3degで第7図に示す様なセンサーを用いてそれぞ
れの入射角で独立に反射波を採取出来るように設定を行
った。
Ultrasonic waves are incident on the subject at two different incident angles, the reflected waves in that region are sampled, and the output of the reflected waves is minimized at each of the incident angles. , f2, and f1 ′ and f2 ′ in the subject, For this reason, a gold film is vapor-deposited on fused silica and the incident angle θ1
= 17.0 deg and incident angle θ2 = 25.0 deg, and the incident angle width θ3 = 3 deg was set so that the reflected wave could be independently collected at each incident angle using the sensor as shown in FIG. .

さらに前もって得られたf1,f2に対して(3)式が成り
立つかどうか判断を行い、成り立たなけば明を、成り立
てば暗をその測定点の状態としてモニター画面に表示す
るよう周波数分布のデジタル演算及び記憶装置を設定し
測定を行った。この結果、被検体に明の部分が認められ
たため、破壊試験に依って確認したところ、モニター画
面で明の表示の行われた領域に油膜の存在が確認され
た。
Furthermore, it is judged whether or not the formula (3) holds for f1 and f2 obtained in advance, and if it does not hold, the light distribution is displayed on the monitor screen as the state of the measuring point, and the dark distribution is displayed on the monitor screen. And the storage device was set and the measurement was performed. As a result, since a bright portion was observed in the subject, the presence of an oil film was confirmed in the area where the bright display was made on the monitor screen when confirmed by the destructive test.

物性未知の被検体に対して次の用な実験を行った。The following useful experiments were conducted on a subject whose physical properties were unknown.

広帯域パルス発信器は100MHz付近までの周波数成分を持
つ信号を発信するよう設定を行い、出力はカラーモニタ
ー画面で赤青緑の3原色それぞれの色の輝度を独立に周
波数分布のデジタル演算及び記憶装置からの命令により
表現するように設定を行った。
The wideband pulse oscillator is set to transmit signals with frequency components up to around 100MHz, and the output is a digital operation and storage device for the frequency distribution independently of the brightness of each of the three primary colors of red, blue and green on the color monitor screen. I set it up to be expressed by the command from.

周波数分布のデジタル演算及び記憶装置には前もって装
置の応答関数の周波数分布を記憶させておき、被検体に
於いて得られた反射波の周波数分布から(1)式を用い
て被検体の反射係数を求め、さらに得られた反射係数の
周波数分布を0MHzから30MHzまでを緑に、30MHzから60MH
zまでを青に、60MHzから100MHzまでを赤で、それぞれの
周波数領域の反射係数の積分値をそれに対応する色の輝
度に変換してカラーモニター画面に表示する信号を送る
よう設定を行った。以上、被検体表面各点における反射
係数の周波数分布の特徴を色に依って表現するようにス
ペクトラム超音波顕微鏡の設定を行い、X−Yステージ
駆動装置によって被検体全面の観測を行った。
The frequency distribution of the response function of the device is stored in advance in the digital operation and storage device of the frequency distribution, and the reflection coefficient of the subject is calculated using the formula (1) from the frequency distribution of the reflected wave obtained in the subject. Then, the frequency distribution of the obtained reflection coefficient is calculated from 0MHz to 30MHz in green, and from 30MHz to 60MH.
By setting up to z in blue and from 60MHz to 100MHz in red, the settings were made to send the signal to be displayed on the color monitor screen by converting the integrated value of the reflection coefficient in each frequency region into the brightness of the corresponding color. As described above, the spectrum ultrasonic microscope is set so that the characteristic of the frequency distribution of the reflection coefficient at each point on the surface of the subject is expressed by the color, and the entire surface of the subject is observed by the XY stage drive device.

測定の結果、被検体はカラーモニター画面で黄色っぽく
表される領域と、緑に表現される領域の2つの領域に大
別されて表された。この観察の後、被検体各部の化学組
成比を化学分析装置を用いて調べたところ、カラーモニ
ター画面で黄色っぽく表される領域は緑に表現される領
域とは異なった化学組成比をしていることが判明した。
As a result of the measurement, the subject was roughly classified into two regions, a region expressed in yellow on the color monitor screen and a region expressed in green. After this observation, the chemical composition ratio of each part of the subject was examined by using a chemical analyzer, and the area displayed in yellowish color on the color monitor screen had a different chemical composition ratio from the area expressed in green. It turned out that

〈発明の効果〉 以上説明したように、本発明によれば被検体表面をX−
Yスキャンしながら一定の入射角で広帯域の超音波を被
検体に入射しその反射波を採取し、周波数分布を得て演
算記憶することが可能なため、被検体二次元にわたる音
響特性を短時間に、且つ定量的に観察することが出来、
極めて汎用性の高い測定装置として活用される。
<Effects of the Invention> As described above, according to the present invention, the surface of the subject is exposed to X-
While performing Y-scan, a wide-band ultrasonic wave is incident on the subject at a constant angle of incidence, the reflected wave is sampled, and the frequency distribution can be obtained and calculated and stored. And can be observed quantitatively,
It is used as an extremely versatile measuring device.

また第2の発明によれば、充分な空間分解能をもって被
検体二次元にわたる音響特性を短時間に、且つ定量的に
測定することが出来る。
Further, according to the second aspect of the present invention, it is possible to quantitatively measure the acoustic characteristics over two dimensions of the subject in a short time with sufficient spatial resolution.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の典型的な実施例のブロックダイヤグラ
ム、第2図は従来の超音波顕微鏡のブロックダイヤグラ
ム、第3図はV(z)曲線法を超音波顕微鏡で行うとき
のブロックダイヤグラム、第4図は出力極小を持つ周波
数分布の例、第5図A、B、Cは反射係数の求め方の説
明図、第6図は中心入射角θ1、入射角幅θ2に設定し
たトランスジューサーの説明図、第7図は2つの入射角
θ1及びθ2を持ち、入射角幅θ3のトランスジューサ
ーの説明図である。 1……広帯域高周波パルス発信器 2……トランスジューサーの発信部 3……トランスジューサーの受信部 4……広帯域用増幅器 5……周波数分析装置 6……デジタル演算及び記憶装置 7……画像出力装置 8……X−Yステージ駆動装置 9……高周波発信器 10……圧電体 11……遅延材 12……超音波伝播用液体 13……被検体 14……サーキュレーター 15……増幅器 16……出力検出装置 17……画像出力装置 18……X−Yステージ駆動装置 19……音響レンズ 20……出力検出装置 21……V(z)曲線出力解析装置 22……Zステージ駆動装置 23……反射係数極小周波数 24……特異な極小を持たない周波数分布 25……被検体に於いて得られる周波数分布 26……得られた被検体の反射率 27……得られた被検体の反射率の極小をとる周波数 28……被検体の基板 29……被検体の膜 30……超音波伝播用液体 31……中心入射角 32……入射角幅 33……超音波伝播用液体 34……中心入射角θ1 35……中心入射角θ2 36……入射角幅θ3
FIG. 1 is a block diagram of a typical embodiment of the present invention, FIG. 2 is a block diagram of a conventional ultrasonic microscope, and FIG. 3 is a block diagram when the V (z) curve method is performed by an ultrasonic microscope. FIG. 4 is an example of a frequency distribution having an output minimum, FIGS. 5A, 5B and C are explanatory views of how to obtain the reflection coefficient, and FIG. 6 shows a transducer set to a central incident angle θ1 and an incident angle width θ2. FIG. 7 is an explanatory diagram of a transducer having two incident angles θ1 and θ2 and an incident angle width θ3. 1 ... Broadband high frequency pulse oscillator 2 ... Transducer transmitter 3 ... Transducer receiver 4 ... Broadband amplifier 5 ... Frequency analyzer 6 ... Digital operation and storage device 7 ... Image output device 8 …… XY stage drive device 9 …… High frequency oscillator 10 …… Piezoelectric body 11 …… Delay material 12 …… Ultrasonic wave propagation liquid 13 …… Subject 14 …… Circulator 15 …… Amplifier 16 …… Output Detector 17 …… Image output device 18 …… XY stage driver 19 …… Acoustic lens 20 …… Output detector 21 …… V (z) curve output analyzer 22 …… Z stage driver 23 …… Reflector Coefficient minimum frequency 24 …… Frequency distribution that does not have a peculiar minimum 25 …… Frequency distribution obtained in the subject 26 …… Reflectance of the obtained subject 27 …… Minimum reflectance of the obtained subject Frequency 28 ... the basis of the subject 29 …… Subject film 30 …… Ultrasonic wave propagation liquid 31 …… Center incident angle 32 …… Incident angle width 33 …… Ultrasonic wave propagation liquid 34 …… Central incident angle θ1 35 …… Central incident angle θ2 36 ...... Incident angle width θ3

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−183364(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-183364 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】広帯域の高周波パルスを発振する手段と、
発振された電気信号を音波に変換し被検体に一定の入射
角で入射しその反射波を受信するトランスジューサー
と、得られた信号を周波数分析する手段と、その周波数
分布の特徴を定量的に抽出あるいは記憶する手段とを具
備し、さらにこれらの行程と連動する、被検体表面平行
に、被検体に対してトランスジューサーを移動させるか
或いはトランスジューサーに対して被検体を音波の発振
と受信および周波数分析の行程を同期させて二次元的に
移動させる駆動手段を有し、被検体各点に於ける超音波
の試料への入射角に依存した周波数分布の情報或いは其
から求められた定量的な被検体の情報を二次元に出力す
る手段を有する事を特徴とするスペクトラム超音波顕微
鏡。
1. A means for oscillating a wide-band high-frequency pulse,
A transducer that converts an oscillated electrical signal into a sound wave and makes it incident on the subject at a constant angle of incidence and receives the reflected wave, a means for analyzing the frequency of the obtained signal, and the characteristics of its frequency distribution quantitatively. Means for extracting or storing and moving the transducer with respect to the object parallel to the surface of the object, or oscillating and receiving the sound wave with respect to the object, in parallel with these steps. It has a driving means to move the frequency analysis process two-dimensionally in synchronization with each other, and the information of the frequency distribution depending on the incident angle of the ultrasonic wave at each point of the subject to the sample or the quantitative information obtained from it. Spectrum ultrasonic microscope having means for outputting two-dimensional information of various subjects.
【請求項2】広帯域の高周波パルスを発振する手段と、
入射角に依存する周波数分布の特徴を損なわない程度に
入射角に幅を持たせ被検体表面に音波を収束させるか或
いは微小部からの反射波成分のみを受信する等の方法に
よって被検体の微小領域のみからの反射波を受信するト
ランスジューサーと、得られた信号を周波数分析する手
段と、その周波数分布の特徴を定量的に抽出あるいは記
憶する手段とを具備し、さらにこれらの行程と連動す
る、被検体表面平行に、被検体に対してトランスジュー
サーを移動させるか或いはトランスジューサーに対して
被検体を音波の発振と受信および周波数分析の行程を同
期させて二次元的に移動させる駆動手段を有し、被検体
各点に於ける超音波の試料への入射角に依存した周波数
分布の情報或いは其から求められた定量的な被検体の情
報を二次元に出力する手段を有する事を特徴とするスペ
クトラム超音波顕微鏡。
2. A means for oscillating a wide band high frequency pulse,
The angle of incidence is wide enough not to impair the characteristics of the frequency distribution depending on the angle of incidence, and the sound waves are focused on the surface of the object, or only the reflected wave component from the minute part is received. It is equipped with a transducer for receiving a reflected wave from only a region, a means for frequency-analyzing the obtained signal, and a means for quantitatively extracting or storing the characteristics of the frequency distribution thereof, and further interlocking with these steps. Driving means for moving the transducer with respect to the subject parallel to the surface of the subject or for moving the subject two-dimensionally with respect to the transducer by synchronizing the processes of oscillating and receiving sound waves and frequency analysis. It has two-dimensionally output the information of the frequency distribution depending on the incident angle of the ultrasonic wave at each point of the subject to the sample or the quantitative information of the subject obtained from it. Spectrum acoustic microscope, characterized in that it has a means.
JP63202570A 1988-08-12 1988-08-12 Spectrum ultrasound microscope Expired - Fee Related JPH079418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202570A JPH079418B2 (en) 1988-08-12 1988-08-12 Spectrum ultrasound microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202570A JPH079418B2 (en) 1988-08-12 1988-08-12 Spectrum ultrasound microscope

Publications (2)

Publication Number Publication Date
JPH0251060A JPH0251060A (en) 1990-02-21
JPH079418B2 true JPH079418B2 (en) 1995-02-01

Family

ID=16459688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202570A Expired - Fee Related JPH079418B2 (en) 1988-08-12 1988-08-12 Spectrum ultrasound microscope

Country Status (1)

Country Link
JP (1) JPH079418B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864940B2 (en) 2003-08-21 2007-01-10 株式会社村田製作所 Method for measuring film strength, method for determining pass / fail of measured object having film
CN113624845A (en) * 2020-05-06 2021-11-09 明格(上海)信息技术有限公司 Ultrasonic color imaging method, system, device, computing equipment and readable medium

Also Published As

Publication number Publication date
JPH0251060A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
US6684701B2 (en) System and method of determining porosity in composite materials using ultrasound
US6494098B1 (en) Method of ultrasonic on-line texture characterization
JP2018084416A (en) Ultrasonic inspection device and ultrasonic inspection method
Weaver et al. A quantitative acoustic microscope with multiple detection modes
JP2007003197A (en) Ultrasonic material diagnosis method and apparatus
JP2011047763A (en) Ultrasonic diagnostic device
JPH079418B2 (en) Spectrum ultrasound microscope
US4596142A (en) Ultrasonic resonance for detecting changes in elastic properties
JP2545974B2 (en) Spectrum ultrasound microscope
JP2002214204A (en) Ultrasonic flaw detector and method using the same
KR101963820B1 (en) Reflection mode nonlinear ultrasonic diagnosis apparatus
Alers et al. Visualization of surface elastic waves on structural materials
JPH0658917A (en) Ultrasonic inspection method and device therefor
JP2002323481A (en) Ultrasonic flaw detection method and device
JPH06242086A (en) Ultrasonic inspection system
US4620443A (en) Low frequency acoustic microscope
KR20200011835A (en) Pulse-echo nonlinear nondestructive inspection device using array type ultrasonic transducers
JP2001124746A (en) Ultrasonic inspection method
JP3271994B2 (en) Dimension measurement method
KR101964758B1 (en) Non-contact nonlinear ultrasonic diagnosis apparatus
GB2139757A (en) Method of ultrasonic non-destructive testing
Biagi et al. Ultrasonic high resolution images for defect detection in ceramic materials
JP2000129434A (en) Testing method of target for sputtering
Kessler Acoustic microscopy-an industrial view
JPS6333167Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees