JPH0794187A - New negative active material alloy for alkaline storage battery and new negative active material alloy electrode - Google Patents

New negative active material alloy for alkaline storage battery and new negative active material alloy electrode

Info

Publication number
JPH0794187A
JPH0794187A JP5261560A JP26156093A JPH0794187A JP H0794187 A JPH0794187 A JP H0794187A JP 5261560 A JP5261560 A JP 5261560A JP 26156093 A JP26156093 A JP 26156093A JP H0794187 A JPH0794187 A JP H0794187A
Authority
JP
Japan
Prior art keywords
active material
alloy
storage battery
alkaline storage
material alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5261560A
Other languages
Japanese (ja)
Inventor
Yoshiichi Sakamoto
芳一 坂本
Kenichiro Kuruma
健一郎 車
Sadayuki Hirano
貞之 平野
Masahiro Hirata
政博 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP5261560A priority Critical patent/JPH0794187A/en
Publication of JPH0794187A publication Critical patent/JPH0794187A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a new negative active material alloy for an alkaline storage battery and a new negative active material electrode, which is an active material alloy completely different from conventional cadmium, and has high energy density, high discharge capacity, high quick charging capability, and long cycle life. CONSTITUTION:Alloy powder containing 20-50atom.% of a transition metal which is in a transition element series and has unfilled or half-filled (d) orbit and has internal paired (d) electrons, and having a particle size of 100mum or less is used as a new negative active material alloy for an alkaline storage battery. The alloy powder is mixed with 4-10wt.% polytetrafluoroethylene powder based on the weight of the alloy powder, and the mixture is press-molded to form a new negative active material alloy electrode. Boron, silicon, aluminum oxide, or silica may be contained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池用の負極
活物質合金およびそれを用いた電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode active material alloy for alkaline storage batteries and an electrode using the same.

【0002】[0002]

【従来の技術】アルカリ蓄電池は平均電池電圧が 1.2V
で、エネルギー密度、放電容量(出力密度)、急速充放
電性および充放電時のサイクル特性が優れていることが
要求される。現在、実用化されているアルカリ蓄電池は
正極活物質にオキシ水酸化ニッケル(NiOOH)、負
極活物質にカドミウム(Cd)、電解液に水酸化カリウ
ム水溶液を用いている。しかしこのニッケル−カドミウ
ム蓄電池(ニカド蓄電池)は負極活物質にCdを用いて
いるため、環境適合性の面で、問題視されており、しか
も最近、その代替の蓄電池として開発されているアルカ
リ−金属水素化物蓄電池に比べて、放電容量が小さい。
一方、この金属水素化物蓄電池は前者のニカド蓄電池に
比して急速充放電性は劣る。
2. Description of the Related Art Alkaline storage batteries have an average battery voltage of 1.2V.
Therefore, it is required that the energy density, the discharge capacity (output density), the rapid charging / discharging property, and the cycle characteristics during charging / discharging are excellent. Currently, practically used alkaline storage batteries use nickel oxyhydroxide (NiOOH) as a positive electrode active material, cadmium (Cd) as a negative electrode active material, and an aqueous potassium hydroxide solution as an electrolytic solution. However, since this nickel-cadmium storage battery (Nicad storage battery) uses Cd as the negative electrode active material, it is regarded as a problem in terms of environmental compatibility, and moreover, it has recently been developed as an alternative storage battery for the alkali metal. The discharge capacity is smaller than that of hydride storage batteries.
On the other hand, this metal hydride storage battery is inferior to the former NiCd storage battery in rapid charge / discharge performance.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記従来のア
ルカリ蓄電池がもっていた問題を解決し、在来のCdと
は全く別のタイプの活物質合金で、しかも高エネルギー
密度、高放電容量、急速充放電性及び充放電時のサイク
ル特性が優れている、アルカリ蓄電池用新規負極活物質
合金及び新規負極活物質合金電極を提供する。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional alkaline storage battery described above, and is an active material alloy of a type completely different from conventional Cd, and has a high energy density, a high discharge capacity, Provided are a novel negative electrode active material alloy for alkaline storage batteries and a new negative electrode active material alloy electrode, which have excellent rapid charge / discharge characteristics and cycle characteristics during charge / discharge.

【0004】[0004]

【課題を解決するための手段】本発明は、遷移元素系列
で内部対d電子を有する遷移金属中に、遷移元素系列で
d軌道が未充填又は半充填の遷移金属を原子%で20乃至
50%含有する合金であり、粒子径が 100μm以下の粉末
であるアルカリ蓄電池用新規負極活物質合金である。ま
た他の一つの発明は、遷移元素系列で内部対d電子を有
する遷移金属中に、遷移元素系列でd軌道が未充填又は
半充填の遷移金属を原子%で20乃至50%含有し、粒子径
が 100μm以下の合金粉末と、当該合金粉末に対し4乃
至10重量%のポリ・テトラ・フルオロエチレン (PTF
E) 粉末とが混合、加圧成形されているアルカリ蓄電池
用新規負極活物質合金電極である。
The present invention is directed to a transition metal having an internal pair of d electrons in the transition element series, the transition metal having an unfilled or semifilled d orbital in the transition element series in an atomic ratio of 20 to 20.
It is an alloy containing 50% and is a new negative electrode active material alloy for alkaline storage batteries, which is a powder with a particle size of 100 μm or less. Another aspect of the present invention is that a transition metal having an internal pair of d electrons in the transition element series contains 20 to 50% by atomic% of a transition metal in which the d orbital is unfilled or semi-filled, and the particles are Alloy powder with a diameter of 100 μm or less, and 4 to 10 wt% of polytetrafluoroethylene (PTF) based on the alloy powder.
E) A new negative electrode active material alloy electrode for alkaline storage batteries, which is mixed with powder and pressure-molded.

【0005】上記遷移元素系列で内部対d電子を有する
遷移金属としては、コバルト(Co)、鉄(Fe)など
が好ましく、また遷移元素系列でd軌導が未充填又は半
充填の遷移金属としてはモリブデン(Mo)、タンブス
テン(W)などが好ましい。さらに上記合金は5原子%
以下のホウ素(B)若しくは10原子%以下のケイ素(S
i)又は粒径 100μm以下の酸化アルミニウム (Al2
3)若しくは二酸化ケイ素 (SiO2)を20重量%含有す
ると良いものである。
Cobalt (Co), iron (Fe), and the like are preferable as the transition metal having an internal pair of d electrons in the above transition element series, and as a transition metal in which the d-rail is unfilled or semi-filled in the transition element series. Is preferably molybdenum (Mo), tambusten (W), or the like. Furthermore, the above alloy is 5 atomic%
The following boron (B) or 10 atomic% or less silicon (S
i) or aluminum oxide (Al 2
It is preferable to contain 20% by weight of O 3 ) or silicon dioxide (SiO 2 ).

【0006】[0006]

【作用】遷移元素系列において、d軌道が未充填あるい
は半充填である左半分側の金属と内部対d電子を有する
右半分側の金属との合金は水素電極反応における電荷移
動時の触媒活性を著しく増大させ、その交換電流密度の
増大に相乗的効果がある。最近、本発明者らは水素発生
反応に対して高活性触媒として考えられるものの中から
特にCo−Mo(W)系およびFe−Mo(W)系の合
金粉末をアルカリ電解液を用いるニッケル−水素化物蓄
電池の負極材としてのZr(Ti)基ラ−ベス相合金粉
末に混合添加して、その蓄電池の充放電特性を検討した
ところ、これからのCo−Mo(W)系およびFe−M
o(W)系合金粉末自身が高放電容量を有し、しかもそ
のニッケル−水素化物蓄電池の負極よりも急速充放電性
能を有することを見出した。このため、本発明ではこの
遷移元素系列の左半分側の金属と右半分側の金属との合
金自身をアルカリ蓄電池の負極活物質としての有効性に
関して検討した結果、従来のニカド蓄電池のCd負極活
物質よりも優れた充放電特性を示す合金組成を得たもの
である。
In the transition element series, the alloy of the metal on the left half side where the d orbital is unfilled or semi-filled and the metal on the right half side having internal pair d electrons shows catalytic activity during charge transfer in the hydrogen electrode reaction. There is a synergistic effect in increasing its exchange current density. Recently, the inventors of the present invention have particularly proposed Co-Mo (W) -based and Fe-Mo (W) -based alloy powders, which are considered as highly active catalysts for hydrogen generation reaction, into nickel-hydrogen using an alkaline electrolyte. When mixed and added to a Zr (Ti) -based Laves phase alloy powder as a negative electrode material of a compound storage battery and the charge and discharge characteristics of the storage battery were examined, a Co-Mo (W) system and Fe-M from now on.
It has been found that the o (W) -based alloy powder itself has a high discharge capacity, and further has a faster charge / discharge performance than the negative electrode of the nickel-hydride storage battery. Therefore, in the present invention, the alloy itself of the metal on the left-half side and the metal on the right-half side of this transition element series was examined for effectiveness as a negative electrode active material of an alkaline storage battery, and as a result, a Cd negative electrode active material of a conventional NiCd storage battery was obtained. It is an alloy composition having a charge / discharge characteristic superior to that of the substance.

【0007】上記の負極活物質合金の組成において、d
軌道が未充填あるいは半充填である遷移金属の量を20〜
50原子%と限定した理由は20原子%未満および50原子%
を超えると放電容量が減少し、しかもサイクル特性が劣
るためである。また、負極作製のための、結着剤PTF
Eの混合割合を4〜10重量%と限定した理由および合金
粉末の粒径を 100μm以下に限定した理由は、PTFE
を4重量%未満では結着性が悪く、10重量%を超える場
合ならびに合金粒子径が 100μmを超える場合は放電容
量が減少し、サイクル特性が劣るためである。
In the above composition of the negative electrode active material alloy, d
The amount of transition metal whose orbital is unfilled or semi-filled is 20 ~
The reason for limiting to 50 atomic% is less than 20 atomic% and 50 atomic%
This is because the discharge capacity is reduced and the cycle characteristics are deteriorated when the value exceeds. In addition, a binder PTF for producing a negative electrode
The reason for limiting the mixing ratio of E to 4 to 10% by weight and the reason for limiting the particle size of the alloy powder to 100 μm or less are PTFE.
This is because if less than 4% by weight, the binding property is poor, and if more than 10% by weight and the alloy particle size exceeds 100 μm, the discharge capacity decreases and the cycle characteristics deteriorate.

【0008】第3添加元素としてB、Siをそれぞれ5
原子%B、10原子%Si以下の範囲に限定した理由およ
び上記合金粉末にSiO2 、Al2 3 を20重量%以下
の範囲に限定した理由も、これら合金添加あるいは混合
添加の割合を超えると放電容量およびサイクル特性が減
少するためである。なおSiO2 、Al2 3 粉末の混
合添加の効力は電解液の合金粒子間への浸透性の向上に
ある。
As the third additive element, B and Si are each 5
The reason for limiting the content to the range of atomic% B, 10 atomic% Si or less and the reason for limiting the content of SiO 2 or Al 2 O 3 to the alloy powder to 20% by weight or less exceeds the ratio of alloy addition or mixed addition. This is because the discharge capacity and cycle characteristics are reduced. The effect of mixing and adding SiO 2 and Al 2 O 3 powder is to improve the permeability of the electrolyte solution between the alloy particles.

【0009】代表的な例としてCo又はFeとMo又は
Wとの合金を使用して充放電サイクル後の負極をX線回
析、EDX−SEMで表面解析した結果、放電後にはC
o−Mo(W)系合金ではCo(OH)2の結晶が、Fe
−Mo(W)系合金ではFe(OH)2の結晶が生成して
おり、また充電後にはCo(OH)2およびFe(OH)2
との他に、金属Co、Feが観察された。従って高pH
値の電解液であるため、Co−Mo(W)およびFe−
Mo(W)系合金中のCo、Feが溶出し、在来のニカ
ド蓄電池と同様にそれらの充放電機構はアルカリ蓄電池
のそれと同一であることがわかった。したがって、負極
の全充放電反応はCo+2OH- ⇔Co (OH)2+2e
- およびFe+2OH- ⇔Fe (OH)2+2e- であ
る。なお残存しているMo、Wは生成したCo (O
H)2、Fe (OH)2層中およびその層の下部に分散して
おり、充放電反応の触媒活性として作用していると考え
られた。
As a typical example, an alloy of Co or Fe and Mo or W was used, and the negative electrode after charge and discharge cycles was subjected to X-ray diffraction and surface analysis by EDX-SEM.
In the o-Mo (W) -based alloy, Co (OH) 2 crystals are
In the —Mo (W) -based alloy, Fe (OH) 2 crystals are generated, and after charging, Co (OH) 2 and Fe (OH) 2
In addition to, the metals Co and Fe were observed. Therefore high pH
Value electrolyte solution, so Co-Mo (W) and Fe-
It was found that Co and Fe in the Mo (W) -based alloy were eluted, and their charging / discharging mechanism was the same as that of the alkaline storage battery as in the conventional NiCd storage battery. Therefore, the total charge / discharge reaction of the negative electrode is Co + 2OH ⇔ Co (OH) 2 + 2e
− And Fe + 2OH ⇔ Fe (OH) 2 + 2e . The remaining Mo and W are generated Co (O
It was considered that they were dispersed in the H) 2 and Fe (OH) 2 layers and in the lower part of the layer, and acted as a catalytic activity of the charge / discharge reaction.

【0010】[0010]

【実施例】所定の組成のCo−Mo合金をアルゴン雰囲
気下で、アーク溶解によって作製した。このボタン状試
料合金を温度 850℃、10h眞空焼鈍後、ダイヤモンド・
ホイール工具で切削粉末化した。蓄電池の充放電試験は
開放型電解セルを用い、所定組成のCo−Mo合金粉末
と結着剤PTFEとを200kgfcm-2で加圧成形した電極を
負極とし、正極には焼結式NiOOH/Ni(OH)
2極、電解液として6MKOHを用い、温度30℃で行っ
た。その充放電試験の手順は次の通りである。所定の定
電流で 450mAhg-1まで充電→10分休止→所定の定電流で
終止電圧 1.0Vまで放電→10分休止の順に各10サイクル
以上行った。
Example A Co-Mo alloy having a predetermined composition was produced by arc melting in an argon atmosphere. This button-shaped sample alloy was annealed at a temperature of 850 ° C for 10 h in a vacuum and then diamond
Cutting powder was made with a wheel tool. For the charge / discharge test of the storage battery, an open type electrolytic cell was used, and an electrode obtained by press - molding Co—Mo alloy powder having a predetermined composition and a binder PTFE at 200 kgfcm −2 was used as a negative electrode, and a positive electrode was sintered NiOOH / Ni. (OH)
It was performed at a temperature of 30 ° C. using 6 electrodes of 6 MKOH as an electrolyte. The procedure of the charge / discharge test is as follows. Charging was performed up to 450 mAhg -1 at a predetermined constant current, resting for 10 minutes, discharging to a final voltage of 1.0 V at a predetermined constant current, and resting for 10 minutes.

【0011】本発明によるアルカリ蓄電池用新規負極活
物質合金を用いた充放電試験の実施例を以下に説明す
る。図1に粒径53μm以下のCo−25原子%Mo合金粉
末に4重量%PTFEを混合結着した負極電極を用いた
電池の放電容量に及ぼすサイクル数と充電流密度の影響
を示す。ここで放電流電密度は 32mAg-1である。図2に
は同一合金負極電極を用いた電池の放電容量に及ぼすサ
イクル数と放電流密度の影響を示す。ここで充電電流密
度は 64mAg-1である。
An example of a charge / discharge test using the novel negative electrode active material alloy for alkaline storage batteries according to the present invention will be described below. FIG. 1 shows the effects of the number of cycles and the charge flow density on the discharge capacity of a battery using a negative electrode in which 4 wt% PTFE was mixed and bound to Co-25 atomic% Mo alloy powder having a particle size of 53 μm or less. Here, the discharge current density is 32 mAg -1 . FIG. 2 shows the influence of the number of cycles and the discharge current density on the discharge capacity of the battery using the same alloy negative electrode. Here, the charging current density is 64 mAg -1 .

【0012】高放電電流密度での場合(図2)を除き、
いずれの場合も、放電容量は初期の1〜3サイクルで非
常に大きく、その後サイクル数と共に減少し、約10サイ
クル後には充電電流密度128mAg-1までは約 240mAhg-1
なる。(図1)。図2からわかるように放電電流密度の
影響も約128mAg-1までは、約10サイクル後においても放
電容量は約 240〜 260mAhg-1と高く、急速充放電性能が
優れている。ここで放電容量はCo−25原子%Mo合金
の単位質量当りで計算したが、上述のように充放電反応
は結果的にはCo+2OH- ⇔Co (OH)2+2e-
あるので、Coの単位質量当りの放電容量に換算すると
さらに約1.54倍大きい放電容量となる。それゆえ 240mA
hg-1の放電容量は 370mAhg-1となり、従来のニカド蓄電
池のCd負極活物質のそれ、約 180mAhg-1の約2倍に相
当する。
Except in the case of high discharge current density (FIG. 2),
In each case, the discharge capacity was very large in the first 1 to 3 cycles, and then decreased with the number of cycles, and after about 10 cycles, the charging current density was about 240 mAhg -1 up to 128 mAg -1 . (Figure 1). Until the discharge current density of influence about 128MAg -1 As can be seen from Figure 2, the discharge capacity even after about 10 cycles is as high as about 240~ 260mAhg -1, has excellent rapid charge and discharge performance. Here, the discharge capacity was calculated per unit mass of the Co-25 atomic% Mo alloy, but as described above, the charge / discharge reaction resulted in Co + 2OH ⇔ Co (OH) 2 + 2e , so the unit of Co is When converted to the discharge capacity per mass, the discharge capacity is about 1.54 times larger. Therefore 240mA
The discharge capacity of hg -1 is 370 mAhg -1 , which is about twice that of the conventional Cd negative electrode active material of NiCd storage battery, which is about 180 mAhg -1 .

【0013】図3にはCo−25原子%Mo合金に第3添
加元素としてB、Siを所定量添加した合金電極の放電
容量とサイクル数との関係を示す。図4にはCo−25原
子%Mo合金粉末にSiO2 、Al2 3 粒子を添加し
た影響ならびに充放電反応に何らかの影響を及ぼすと考
えられる無機化合物添加の影響の結果を示す。ここで充
放電電流密度は共に 32mAg-1である。
FIG. 3 shows the relationship between the discharge capacity and the cycle number of an alloy electrode obtained by adding a predetermined amount of B and Si as a third additive element to a Co-25 atomic% Mo alloy. FIG. 4 shows the results of the effect of adding SiO 2 and Al 2 O 3 particles to the Co-25 atomic% Mo alloy powder and the effect of adding an inorganic compound which is considered to have some influence on the charge / discharge reaction. Here, the charge and discharge current densities are both 32 mAg -1 .

【0014】図3からわかるようにBおよびSiを10原
子%以下の範囲で合金添加しても放電容量に大差はない
が、3原子%B添加の合金が比較的優れている。また図
4からわかるように、SiO2 及びAl2 3 を10重量
%混合添加した合金電極は比較的充放電特性が優れてい
る。逆にCo3 4 、Co(OH)2の混合添加は充放電
特性に悪影響を及ぼすように見える。なお上記実施例は
Co−Mo合金について述べたが、本発明はこれに限定
されるものではない。
As can be seen from FIG. 3, even if alloys of B and Si are added in the range of 10 atomic% or less, there is no great difference in discharge capacity, but the alloy of 3 atomic% B is relatively excellent. Further, as can be seen from FIG. 4, the alloy electrode to which SiO 2 and Al 2 O 3 are mixed and added by 10 wt% has relatively excellent charge and discharge characteristics. On the contrary, the mixed addition of Co 3 O 4 and Co (OH) 2 seems to adversely affect the charge and discharge characteristics. In addition, although the said Example described Co-Mo alloy, this invention is not limited to this.

【0015】[0015]

【発明の効果】以上の通り、本発明のアルカリ蓄電池用
新規負極活物質合金はエネルギー密度、放電容量(出力
密度)、急速充放電性および充放電時のサイクル特性が
優れており、従来のニッケル−カドミウム(ニカド)蓄
電池のCd負極活物質にとって代わることのできる画期
的なものと言える。
As described above, the novel negative electrode active material alloy for alkaline storage batteries of the present invention is excellent in energy density, discharge capacity (output density), rapid charge / discharge characteristics and cycle characteristics at the time of charge / discharge. -It is a revolutionary alternative to the Cd negative electrode active material of cadmium (nicad) batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極を負極電極として用いた電池の、
放電容量におよびすサイクル数と充電電流密度の影響を
示すグラフである。
FIG. 1 shows a battery using the electrode of the present invention as a negative electrode,
It is a graph which shows the influence of the number of cycles and charging current density which affect discharge capacity.

【図2】本発明の電極を負極電極として用いた電池の、
放電容量に及ぼすサイクル数と放電電流密度の影響を示
すグラフである。
FIG. 2 shows a battery using the electrode of the present invention as a negative electrode,
It is a graph which shows the influence of the number of cycles and discharge current density which affect discharge capacity.

【図3】Co−Mo合金に第3添加元素としてBまたは
Siを所定量添加した電極の、放電容量とサイクル数の
関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a discharge capacity and a cycle number of an electrode obtained by adding a predetermined amount of B or Si as a third additive element to a Co—Mo alloy.

【図4】Co−Mo合金にSiO2 、Al2 3 又はそ
の他無機化合物粒子を加えた電極の、放電容量とサイク
ル数の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the discharge capacity and the cycle number of an electrode obtained by adding SiO 2 , Al 2 O 3 or other inorganic compound particles to a Co—Mo alloy.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 遷移元素系列で内部対d電子を有する遷
移金属中に、遷移元素系列でd軌道が未充填又は半充填
の遷移金属を原子%で20乃至50%含有する合金であり、
粒子径が 100μm以下の粉末であるアルカリ蓄電池用新
規負極活物質合金。
1. An alloy containing 20 to 50% by atomic% of a transition metal having a d-orbital unfilled or semi-filled in a transition metal having an internal pair of d electrons.
A new negative electrode active material alloy for alkaline storage batteries, which is a powder with a particle size of 100 μm or less.
【請求項2】 上記内部対d電子を有する遷移金属が、
コバルト又は鉄である請求項1に記載のアルカリ蓄電池
用新規負極活物質合金。
2. The transition metal having an internal pair of d electrons is
The novel negative electrode active material alloy for alkaline storage batteries according to claim 1, which is cobalt or iron.
【請求項3】 上記d軌道が未充填又は半充填の遷移金
属が、モリブデン又はタングステンである請求項1又は
請求項2に記載のアルカリ蓄電池用新規負極活物質合
金。
3. The novel negative electrode active material alloy for an alkaline storage battery according to claim 1 or 2, wherein the transition metal having unfilled or semi-filled d-orbitals is molybdenum or tungsten.
【請求項4】 上記組成の合金にさらに原子%で硼素
(ボロン)を5%以下又はケイ素10%以下を含有する合
金である請求項1、請求項2又は請求項3に記載のアル
カリ蓄電池用新規負極活物質合金。
4. The alkaline storage battery according to claim 1, wherein the alloy having the above composition further contains 5% or less of boron in atomic% or 10% or less of silicon. New negative electrode active material alloy.
【請求項5】 上記組成の合金粉末にさらに粒径 100μ
m以下の酸化アルミニウム (Al2 3)又は二酸化ケイ
素 (SiO2)の粉末を20重量%以下含有する混合粉末で
ある請求項1、請求項2又は請求項3に記載のアルカリ
蓄電池用新規負極活物質合金。
5. The alloy powder having the above composition further has a particle size of 100 μm.
The novel negative electrode for an alkaline storage battery according to claim 1, 2 or 3, which is a mixed powder containing 20% by weight or less of a powder of aluminum oxide (Al 2 O 3 ) or silicon dioxide (SiO 2 ) of m or less. Active material alloy.
【請求項6】 遷移元素系列で内部対d電子を有する遷
移金属中に、遷移元素系列でd軌道が未充填又は半充填
の遷移金属を原子%で20乃至50%含有し、その粒子径が
100μm以下の合金粉末と、当該合金粉末に対し4乃至
10重量%のポリ・テトラ・フルオロエチレン(PTF
E)粉末とが混合加圧成形されているアルカリ蓄電池用
新規負極活物質合金電極。
6. A transition metal having an internal pair of d electrons in the transition element series, containing 20 to 50% by atomic% of a transition metal in which the d orbital is unfilled or semi-filled, and the particle diameter is
Alloy powder of 100 μm or less and 4 to 4 to the alloy powder
10% by weight of polytetrafluoroethylene (PTF
E) A new negative electrode active material alloy electrode for an alkaline storage battery, which is mixed with a powder and molded.
【請求項7】 上記内部対d電子を有する遷移金属が、
コバルト又は鉄である請求項6に記載のアルカリ蓄電池
用新規負極活物質合金電極。
7. The transition metal having an internal pair of d electrons is
The novel negative electrode active material alloy electrode for an alkaline storage battery according to claim 6, which is cobalt or iron.
【請求項8】 上記d軌道が未充填又は半充填の遷移金
属が、モリブデン又はタングステンである請求項6又は
請求項7に記載のアルカリ蓄電池用新規負極活物質合金
電極。
8. The novel negative electrode active material alloy electrode for an alkaline storage battery according to claim 6 or 7, wherein the transition metal whose d-orbital is unfilled or semi-filled is molybdenum or tungsten.
【請求項9】 上記組成の合金粉末がさらに原子%でホ
ウ素を5%以下又はケイ素10%以下を含有する合金粉末
である請求項6、請求項7又は請求項8に記載のアルカ
リ蓄電池用新規負極活物質合金電極。
9. The novel alkaline storage battery according to claim 6, 7 or 8, wherein the alloy powder having the above composition further contains 5% or less of boron or 10% or less of silicon in atomic%. Negative electrode active material alloy electrode.
【請求項10】 上記組成の合金粉末が、さらに粒径 100
μm以下の酸化アルミニウム (Al2 3)又は二酸化ケ
イ素 (SiO2)の粉末を20重量%以下含有する混合合金
粉末である請求項6、請求項7又は請求項8に記載のア
ルカリ蓄電池用新規負極活物質合金電極。
10. The alloy powder having the above composition further has a particle size of 100.
A novel alloy for alkaline storage battery according to claim 6, 7 or 8, which is a mixed alloy powder containing 20% by weight or less of aluminum oxide (Al 2 O 3 ) or silicon dioxide (SiO 2 ) powder having a size of less than or equal to μm. Negative electrode active material alloy electrode.
JP5261560A 1993-09-24 1993-09-24 New negative active material alloy for alkaline storage battery and new negative active material alloy electrode Pending JPH0794187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5261560A JPH0794187A (en) 1993-09-24 1993-09-24 New negative active material alloy for alkaline storage battery and new negative active material alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261560A JPH0794187A (en) 1993-09-24 1993-09-24 New negative active material alloy for alkaline storage battery and new negative active material alloy electrode

Publications (1)

Publication Number Publication Date
JPH0794187A true JPH0794187A (en) 1995-04-07

Family

ID=17363602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261560A Pending JPH0794187A (en) 1993-09-24 1993-09-24 New negative active material alloy for alkaline storage battery and new negative active material alloy electrode

Country Status (1)

Country Link
JP (1) JPH0794187A (en)

Similar Documents

Publication Publication Date Title
JP5448340B2 (en) Hydrogen storage alloy with reduced PCT hysteresis
EP0293660A2 (en) Hydrogen storage electrodes
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
EP0450590B1 (en) Hydrogen storage alloy electrode and process for producing the electrode
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
EP1936719A1 (en) Alkaline storage battery
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JP2004235088A (en) Nickel-hydrogen storage battery
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0794187A (en) New negative active material alloy for alkaline storage battery and new negative active material alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JPH04301045A (en) Hydrogen storage alloy electrode
JPH0613077A (en) Hydrogen storage electrode
JPH04109556A (en) Closed-type secondary battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP4366729B2 (en) Cathode active material for alkaline storage battery
JP3583837B2 (en) Method for producing hydrogen storage alloy electrode
JP3614567B2 (en) Sealed nickel metal hydride battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP2000054042A (en) Production of hydrogen storage alloy
JPH08236111A (en) Nickel-hydrogen storage battery
JPH0949039A (en) Production of hydrogen storage alloy particles