JPH079401Y2 - Linearly polarized internal mirror type gas laser tube - Google Patents

Linearly polarized internal mirror type gas laser tube

Info

Publication number
JPH079401Y2
JPH079401Y2 JP11010388U JP11010388U JPH079401Y2 JP H079401 Y2 JPH079401 Y2 JP H079401Y2 JP 11010388 U JP11010388 U JP 11010388U JP 11010388 U JP11010388 U JP 11010388U JP H079401 Y2 JPH079401 Y2 JP H079401Y2
Authority
JP
Japan
Prior art keywords
laser
envelope
metal support
face plate
gas laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11010388U
Other languages
Japanese (ja)
Other versions
JPH0231162U (en
Inventor
皖一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11010388U priority Critical patent/JPH079401Y2/en
Publication of JPH0231162U publication Critical patent/JPH0231162U/ja
Application granted granted Critical
Publication of JPH079401Y2 publication Critical patent/JPH079401Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、直線偏光内部ミラー形ガスレーザ管のブリ
ュースタ窓の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a structure of a Brewster window of a linearly polarized internal mirror type gas laser tube.

〔従来の技術〕[Conventional technology]

内部ミラー形ガスレーザ管は、真空外囲器,レーザ細
管,レーザ細管軸上の両端にレーザ細管に対して直角に
なるように配置された一対のミラー,陽極および陰極に
よって構成されている。ここで前記陽極と陰極に適当な
電圧を印加するとレーザ細管内に放電が起りレーザ媒質
が発生する。レーザ細管軸上の両端に配置された一対の
ミラーは光共振器を構成し、前記放電にて発生したレー
ザ媒質を共振させる。このようにしてレーザ発振が起り
レーザ出力光が得られる。しかしここで得られたレーザ
出力光は無偏光である。直線偏光のレーザ出力光を得る
ためには一対のミラーで構成された光共振器内のレーザ
細管軸上にブリュースタ角にガラス面板を挿入し固定し
なければならない。
The internal mirror type gas laser tube is composed of a vacuum envelope, a laser tube, a pair of mirrors arranged at both ends on the axis of the laser tube at right angles to the laser tube, an anode and a cathode. Here, when an appropriate voltage is applied to the anode and the cathode, electric discharge occurs in the laser capillary and a laser medium is generated. A pair of mirrors arranged at both ends on the axis of the laser tube constitutes an optical resonator, and resonates the laser medium generated by the discharge. In this way, laser oscillation occurs and laser output light is obtained. However, the laser output light obtained here is unpolarized. In order to obtain linearly polarized laser output light, it is necessary to insert and fix a glass face plate at Brewster's angle on the axis of the laser tube in the optical resonator composed of a pair of mirrors.

従来の直線偏光内部ミラー形ガスレーザ管としては、レ
ーザ細管端をブリュースタ角に研磨して、この研磨面に
低融点ガラスによる融着シールや接着剤等を用いてガラ
ス面板を取りつけたものとか、細管軸上に特殊な保持体
を介し、その保持体に機械的にガラス面板をブリュース
タ角に固定したものが用いられていた。しかし前者は一
般にブリュースタ窓が真空気密を兼ねることが多く、精
度の高い研磨面が必要であったり、シールをするための
工程が必要となったり、また後者は構造が複雑であった
りして、いずれも高価となり、ガスレーザ管の量産,低
価格化に不向きであった。
As a conventional linearly polarized internal mirror type gas laser tube, a laser thin tube end is polished to Brewster's angle, and a glass face plate is attached to the polished surface by using a fusion seal or an adhesive agent with a low melting point glass, A special holder was placed on the axis of the thin tube, and a glass plate was mechanically fixed to the holder at Brewster's angle. However, in the former, the Brewster window generally serves as a vacuum seal, which requires a highly accurate polishing surface, a sealing process is required, and the latter has a complicated structure. However, all of them are expensive, and are not suitable for mass production and cost reduction of gas laser tubes.

上述の欠点を解決する構造として、物質の熱膨張差を利
用し、ガスレーザ管が通常使用される雰囲気温度より高
いある固有の温度のもとで、ブリュースタ窓となるガラ
ス面板を機械的寸法精度の範囲内で何ら力を加えること
なく保持固定し、これがガスレーザ管の使用温度付近ま
で温度が下ると、ガラス面板及びこれをブリュースタ角
に設置する内部保持体と、これらを合成したものの位置
関係を固定するための外部保持体との間に熱膨張差を生
じ、ガラス面板に圧縮力が加わり、ガラス面板は機械的
に強固に固定されるブリュースタ窓の保持構造がある。
As a structure that solves the above-mentioned drawbacks, by utilizing the difference in thermal expansion of substances, the glass face plate that will be the Brewster window is mechanically dimensioned accurately at a specific temperature higher than the ambient temperature where gas laser tubes are normally used. Hold and fix without applying any force within the range of, and when this temperature drops to around the operating temperature of the gas laser tube, the glass face plate and the internal holder that installs it at Brewster's angle, and the positional relationship of the composite of these There is a Brewster window holding structure in which a difference in thermal expansion is generated between the glass face plate and an external holder for fixing the glass face plate, a compressive force is applied to the glass face plate, and the glass face plate is mechanically firmly fixed.

これは量産,低価格化に適したものであるが、ミラーに
機械的な応力が加わることは避けられず、レーザのモー
ドを複雑化させたり、レーザ出力が低くなるという問題
が発生することもある。
This is suitable for mass production and cost reduction, but mechanical stress is inevitably applied to the mirror, which may cause problems such as complicated laser modes and low laser output. is there.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上述した従来の直線偏光内部ミラー型ガスレーザ管に対
し、本考案は量産性に優れ、コストも低く、かつブリュ
ースタ窓がミラーに応力を加えることもなく、モードに
優れパワー低下もないというガスレーザ管とすることを
目的としている。
In contrast to the conventional linearly polarized internal mirror type gas laser tube described above, the present invention has excellent mass productivity, low cost, and the Brewster window does not apply stress to the mirror. The purpose is to

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案のガスレーザ管は、少くとも外囲器の一端または
レーザ細管の一端に金属支持体を備え、この金属支持体
端部に封入皿を備え、この封入皿の内部に、一方の端面
がブリュースタ角に加工された2つの円筒状内部保持体
に挟まれてレーザ発振光の光軸に対してブリュースタ角
に設置されたガラス面板を備え、さらに、円筒状内部保
持体とガラス面板とを押圧する状態で封入皿端部に固着
された中心に開孔を有する金属板とこの金属板に固着さ
れたミラーとを備えてレーザ管端部構造を構成した構造
を備えている。
The gas laser tube of the present invention comprises a metal support at least at one end of the envelope or at one end of the laser capillary, and at the end of the metal support, a sealing tray is provided, and one end face is brewed inside the sealing tray. A glass face plate sandwiched between two cylindrical inner holders processed to have a star angle and installed at Brewster's angle with respect to the optical axis of the laser oscillation light is provided, and the cylindrical inner holder and the glass face plate are provided. The laser tube end structure is provided with a metal plate having an opening in the center fixed to the end of the enclosing dish in a pressed state and a mirror fixed to the metal plate.

〔実施例1〕 以下本考案について実施例を用いて詳細に説明する。第
1図は、本考案の実施例を示すレーザ管の断面図で、第
2図は第1図のA部であるガラス面板取付部の拡大図で
ある。両図において、1は屈曲変形出来る円筒状の金属
支持体、2は1の金属支持体にロー付等により一体に取
り付きブリュースタ窓部の外部保持体となる封入皿、3
は2の封入皿に4のミラーおよび中心に開孔を有する金
属板5を真空気密で融着固定するための低融点ガラス、
6および8は7のガラス面板をブリュースタ角で保持固
定するために片側がブリュースタ角に切られた金属,ガ
ラス等の内部保持体、9は真空を保つための外囲器、10
は陰極、11はレーザ細管、12は陰極導入棒、13は陽極で
ある。
[Embodiment 1] Hereinafter, the present invention will be described in detail with reference to embodiments. FIG. 1 is a sectional view of a laser tube showing an embodiment of the present invention, and FIG. 2 is an enlarged view of a glass face plate mounting portion which is a portion A in FIG. In both figures, 1 is a cylindrical metal support which can be bent and deformed, 2 is a metal support which is integrally attached to the metal support by brazing or the like, and is an enclosing plate which serves as an external holder for the Brewster window.
Is a low-melting glass for vacuum-tightly fixing and fixing the metal plate 5 having the mirror of 4 and the opening at the center to the enclosure plate of 2;
6 and 8 are internal holders such as metal and glass whose one side is cut at Brewster's angle for holding and fixing the glass face plate of 7 at Brewster's angle, 9 is an envelope for maintaining vacuum, 10
Is a cathode, 11 is a laser capillary, 12 is a cathode introducing rod, and 13 is an anode.

次に本考案によるガラス面板の保持固定方法について説
明する。まず、陰極10に接続された陰極導入棒12を溶着
した外囲器9に、陽極13を溶着した細管11を融着し、そ
の両端に金属支持体1と封入皿2とをロー付等により固
着したものをつくる。次に、これを封入皿2が上向きに
なるように垂直に設置し、この中へ内部保持体8、ガラ
ス面板7、内部保持体6、金属板5、ミラー4、低融点
ガラス3の順序でこれらを組み込む。なおこの場合、封
入皿2の材質としては熱膨張率が、内部保持体6および
8と7のガラス面板を加え合せたものの熱膨張率より大
きいものを使用し、ミラー4は金属板5の上に置かれて
いる。
Next, a method of holding and fixing the glass face plate according to the present invention will be described. First, a thin tube 11 having an anode 13 welded thereto is fused to an envelope 9 having a cathode introduction rod 12 connected to a cathode 10 welded thereto, and the metal support 1 and the enclosure tray 2 are brazed at both ends thereof by brazing or the like. Make a sticky thing. Next, this is placed vertically so that the enclosing dish 2 faces upward, and the inner holder 8, the glass face plate 7, the inner holder 6, the metal plate 5, the mirror 4, and the low melting point glass 3 are placed in this order in this order. Incorporate these. In this case, as the material of the enclosing tray 2, a material having a thermal expansion coefficient larger than that of the glass plates of the internal holders 6 and 8 and 7 is used, and the mirror 4 is placed on the metal plate 5. It is located in

前記順序にて、第2図のとおり組み込んだ後、第1図に
示したA部を規定の温度約500℃まで加熱して低融点ガ
ラス3を溶かす。そして、これを冷却し溶解した低融点
ガラス3が凝固する温度における内部保持体6および8
とガラス面板7の軸方向の長さの和に等しい位置にその
片面を接してミラー4と金属板5と封入皿2は融着固定
される。さらにガスレーザ管が通常使用される常温付近
まで冷却されると、ガラス面板7はミラーによって軸方
向に封入皿2と内部保持体6、ガラス面板7、内部保持
体8の合成体の熱膨張率の差により圧縮力を受ける。こ
の圧縮力によりガラス面板7は内部保持体6及び8によ
って両側から各内部保持体のもつブリュースタ角の端面
に強くはさみ込まれ、その位置が動くことなく強固に固
定される。
After assembling in the above order as shown in FIG. 2, the low melting glass 3 is melted by heating the part A shown in FIG. 1 to a specified temperature of about 500 ° C. Then, the internal holding bodies 6 and 8 at a temperature at which the low melting point glass 3 which is cooled and melted solidifies
The mirror 4, the metal plate 5, and the enclosing tray 2 are fusion-bonded to each other with one surface thereof in contact with a position equal to the sum of the axial lengths of the glass face plate 7. Further, when the gas laser tube is cooled to around the normal temperature where it is normally used, the glass face plate 7 is axially moved by the mirror so that the thermal expansion coefficient of the composite of the enclosing tray 2, the inner holder 6, the glass face plate 7 and the inner holder 8 is increased. It receives compressive force due to the difference. Due to this compressive force, the glass face plate 7 is strongly sandwiched from both sides by the inner holders 6 and 8 to the end face of Brewster angle of each inner holder, and the position is firmly fixed without moving.

〔実施例2〕 第3図は本考案の実施例2の縦断面図である。この図で
は第1図の実施例1のA部のみ描かれている。第1図の
実施例1との相異は金属支持体21が外囲器9に直接溶着
されている。また、実施例1の封入皿2は実施例2では
ストレートなパイプ状の封入パイプ22となり、金属支持
体21とはかん合により位置決めされ、ロー付け等により
一体に取りつけられている。封入パイプ22のミラー側端
面は金属板5の表面とほぼ同一平面にあり、低融点ガラ
ス3はミラー4,封入パイプ22,金属板5を同時に封入で
きる構造となっている。実施例2では構造が単純であり
また部品点数も少ないため、安価に作れるという利点が
ある。
[Embodiment 2] FIG. 3 is a longitudinal sectional view of Embodiment 2 of the present invention. In this figure, only part A of Example 1 in FIG. 1 is drawn. The difference from the first embodiment shown in FIG. 1 is that the metal support 21 is directly welded to the envelope 9. In addition, the enclosure tray 2 of the first embodiment is a straight pipe-shaped enclosure pipe 22 in the second embodiment, which is positioned by mating with the metal support 21 and is integrally attached by brazing or the like. The end surface of the enclosing pipe 22 on the mirror side is substantially flush with the surface of the metal plate 5, and the low melting point glass 3 has a structure capable of enclosing the mirror 4, the enclosing pipe 22, and the metal plate 5 at the same time. Since the second embodiment has a simple structure and a small number of parts, it has an advantage that it can be manufactured at low cost.

〔考案の効果〕[Effect of device]

この考案によれば、内部保持体5および7は金属のプレ
ス加工やガラスの型成型等により、安価に製作でき、ま
た、ガラス面板も楕円形や円形などの特殊形状は必要な
く、長方形に切断したものでよい。また、ミラーを気密
シールするための低融点ガラス付け時に同時にブリュー
スタ角にガラス面板を固定できるので、工程も省略で
き、量産に適する。
According to this invention, the internal holders 5 and 7 can be manufactured at low cost by pressing metal or molding glass, and the glass face plate does not need to have a special shape such as an ellipse or a circle, and can be cut into a rectangle. You can use what you did. Further, since the glass face plate can be fixed to the Brewster's angle at the same time when the low melting point glass is attached to hermetically seal the mirror, the steps can be omitted, which is suitable for mass production.

またミラーの面には応力がかからないため、ミラー面の
平面度等精度を悪くすることもなく、レーザの出力は良
質なモードが得られ、出力パワーも高いものが得られる
という効果がある。
Further, since no stress is applied to the surface of the mirror, the precision of the flatness of the mirror surface is not deteriorated, and the laser output has a good mode and the output power is high.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例を示す直線偏光内部ミラー形
ガスレーザ管の断面図であり、第2図は第1図のA部の
拡大図である。第3図は本考案の実施例2の一部を示す
縦断面図である。 1……金属支持体、2……封入皿、3……低融点ガラ
ス、4……ミラー、5……金属板、6……内部保持体、
7……ガラス面板、8……内部保持体、9……外囲器、
10……陰極、11……レーザ細管、12……陰極導入棒、13
……陽極、13……ミラー、21……金属支持体、22……封
入パイプ。
FIG. 1 is a sectional view of a linearly polarized internal mirror type gas laser tube showing an embodiment of the present invention, and FIG. 2 is an enlarged view of a portion A in FIG. FIG. 3 is a vertical sectional view showing a part of the second embodiment of the present invention. 1 ... Metal support, 2 ... Encapsulation dish, 3 ... Low melting glass, 4 ... Mirror, 5 ... Metal plate, 6 ... Internal holder,
7 ... glass face plate, 8 ... internal holder, 9 ... envelope,
10 …… Cathode, 11 …… Laser capillary, 12 …… Cathode introduction rod, 13
…… Anode, 13 …… Mirror, 21 …… Metal support, 22 …… Enclosed pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】外囲器と、一部または全体が前記外囲器内
に設置されたレーザ細管と、前記外囲器内、レーザ細管
端部に設置された陰極と、前記レーザ細管に設けた陽極
と、前記外囲器の両端または外囲器端部及びレーザ細管
端部にそれぞれ設けたミーラーとを少くとも具備したガ
スレーザ管において、少くとも前記外囲器の一端または
レーザ細管の一端に金属支持体を備え、この金属支持体
の端部に封入皿が固着され、この封入皿の内部には、前
記金属支持体側に、一方の端面がブリュースタ角に切断
された2つの円筒状内部保持体に挟まれたガラス面板が
ブリュースタ角にて設置され、前記金属支持体に対し遠
い側に、前記の円筒状内部保持体とガラス面板とを押圧
する状態にて、中心に開孔を有する金属板が封入皿内面
端部に固着され、該金属板の前記金属支持体に対し遠い
側に、ミラーが固着されている直線偏光内部ミラー型ガ
スレーザ管。
1. An envelope, a laser thin tube which is partially or wholly installed inside the envelope, a cathode which is installed inside the envelope at an end of the laser thin tube, and provided on the laser thin tube. A gas laser tube having at least one anode and a miller provided at both ends of the envelope or at the end of the envelope and at the end of the laser capillary, respectively, at least at one end of the envelope or at one end of the laser capillary. A metal support is provided, and an enclosing dish is fixed to an end portion of the metal support, and inside the enclosing dish, two cylindrical inner parts, one end surface of which is cut to Brewster's angle, on the metal support side. The glass face plate sandwiched between the holders is installed at Brewster's angle, and on the side far from the metal support, in the state of pressing the cylindrical inner holder and the glass face plate, an opening is made in the center. The metal plate it has is fixed to the inner end of the enclosing tray, Farther relative to the metal support of the metal plate, linearly polarized internal mirror type gas laser tube mirror is fixed.
JP11010388U 1988-08-22 1988-08-22 Linearly polarized internal mirror type gas laser tube Expired - Lifetime JPH079401Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11010388U JPH079401Y2 (en) 1988-08-22 1988-08-22 Linearly polarized internal mirror type gas laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11010388U JPH079401Y2 (en) 1988-08-22 1988-08-22 Linearly polarized internal mirror type gas laser tube

Publications (2)

Publication Number Publication Date
JPH0231162U JPH0231162U (en) 1990-02-27
JPH079401Y2 true JPH079401Y2 (en) 1995-03-06

Family

ID=31346958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11010388U Expired - Lifetime JPH079401Y2 (en) 1988-08-22 1988-08-22 Linearly polarized internal mirror type gas laser tube

Country Status (1)

Country Link
JP (1) JPH079401Y2 (en)

Also Published As

Publication number Publication date
JPH0231162U (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US4064466A (en) Linearly polarizing internal mirror type gas laser tube
US4233568A (en) Laser tube mirror assembly
US6406578B1 (en) Seal and method of making same for gas laser
US20030010420A1 (en) Monolithic ceramic laser structure and method of making same
US3889207A (en) Frequency stabilized gas laser
US3784927A (en) Gas laser
US4713825A (en) Gas laser and method of making a gas laser
JPH04259271A (en) Slab or strip waveguide laser
JPH079401Y2 (en) Linearly polarized internal mirror type gas laser tube
US3771066A (en) Gas laser
US4352185A (en) Gas laser having improved stability against environmental conditions
US3955152A (en) Tubular laser
US4216438A (en) Internal mirror type gas laser tube
US4349908A (en) Gas laser tube comprising a channel-shaped holder pair for compressively holding a brewster plate at plate corners
US4854987A (en) Method of making a gas laser
JPH0711477Y2 (en) Gas laser tube
CA1255380A (en) Laser cathode
JP2543739Y2 (en) Linearly polarized gas laser tube
US4342117A (en) Mirror mounting arrangement for a laser
JP3553281B2 (en) Lens parts
JPS5917985B2 (en) gas laser tube
US4326177A (en) Gas laser tube
US3976956A (en) Laser device and a method of fabrication
US3978425A (en) Laser components and fabrication methods
JP2586123B2 (en) Semiconductor laser module