JPH079395B2 - Visibility measurement method - Google Patents

Visibility measurement method

Info

Publication number
JPH079395B2
JPH079395B2 JP2153051A JP15305190A JPH079395B2 JP H079395 B2 JPH079395 B2 JP H079395B2 JP 2153051 A JP2153051 A JP 2153051A JP 15305190 A JP15305190 A JP 15305190A JP H079395 B2 JPH079395 B2 JP H079395B2
Authority
JP
Japan
Prior art keywords
light
visibility
axis
receiver
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2153051A
Other languages
Japanese (ja)
Other versions
JPH0450641A (en
Inventor
直樹 石河
浩 韮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP2153051A priority Critical patent/JPH079395B2/en
Publication of JPH0450641A publication Critical patent/JPH0450641A/en
Publication of JPH079395B2 publication Critical patent/JPH079395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気象観測装置に関するもので、特に交通機関
の安全運行に重要な資料となる視程の測定方式に関する
ものである。
TECHNICAL FIELD The present invention relates to a meteorological observation device, and more particularly to a visibility measurement method which is an important material for safe operation of transportation facilities.

[従来の技術] 従来の器械による視程計測の方式としては、投射された
光の大気中の透過率を測定する透過率測定方式および大
気中浮遊物からの反射率(後方散乱光強度)を測定する
反射率測定方式が知られている。以上の2つの方式によ
る従来の視程測定方式を説明すると、透過率測定方式
は、投光器および受光器をPおよびDTのごとく一直線に
相対向配置し、投光器Pからの投射光が受光器DTに至る
までに減衰した比較即ち透過率から視程を求めるもので
ある。
[Prior Art] As a method of measuring the visibility by a conventional instrument, a transmittance measurement method for measuring the transmittance of projected light in the atmosphere and a reflectance (intensity of backscattered light) from a suspended matter in the atmosphere are measured. There is known a reflectance measuring method. The conventional visibility measurement method based on the above two methods will be described. In the transmittance measurement method, the light emitter and the light receiver are arranged in a straight line and face each other like P and D T , and the light projected from the light emitter P is received by the light receiver D T. The visibility is obtained from the comparison, that is, the transmittance, which is attenuated until reaching.

一方、反射率測定方式は投光器および受光器をPおよび
DRごとく両者の光軸が90度以下の角度で交差するように
配置し、投光器Pからの投射光により生ずる後方散乱光
の後方反射光量を受光器DRで受光してその積算値を測定
し、該積算値と視程との関係を表す該知の変換テーブル
より視程に換算する方法である。
On the other hand, the reflectance measurement method uses P and
D R Gotoku both optical axes are arranged to intersect at an angle of 90 degrees or less, measure the accumulated value by receiving the backward reflected light of the backscattered light generated by the projection light from the projector P by the photodetector D R Then, it is a method of converting the visibility into the visibility from the known conversion table showing the relationship between the integrated value and the visibility.

[発明が解決しようとする課題] ところで、視程測定において、前記透過率測定方式にお
ける透過率と視程の変換テーブル及び前記反射率測定方
式における反射光量積算値と視程の変換テーブルは、視
程障害要因が異なると(例えば、地吹雪、霧等)、一般
的にはその変換目盛が異なるので、視程を求める際に、
そのときの視程障害要因を判別してそのデータを入力す
る必要がある等、視程を求める変換処理が複雑になり、
かつ誤差も大きくなる。
[Problems to be Solved by the Invention] In the visibility measurement, the conversion table of the transmittance and the visibility in the transmittance measurement method and the conversion table of the reflected light amount integrated value and the visibility in the reflectance measurement method have a visibility obstacle factor. If it is different (for example, snowstorm, fog, etc.), the conversion scale is generally different.
It is necessary to determine the visibility obstacle factor at that time and input the data, and the conversion process for obtaining visibility becomes complicated,
And the error becomes large.

本発明は以上に述べたごとき従来例における問題点を解
決する視程測定方式に関するものである。
The present invention relates to a visibility measuring method that solves the problems in the conventional example as described above.

[課題を解決するための手段] 本発明は従来例の光軸配置で使用されていない角度範囲
中の特定角度を投/受光軸の交差角度として用いること
により、問題点を解決せんとするものである。即ち透過
率測定方式における投/受光軸の直線上の配置(両者の
光軸がなす角度は180度)および反射率測定方式におけ
る投/受光軸の後側方反射の角度配置(両者の光軸がな
す角度が0度周辺から90度側方まで)を使用せずに、投
光軸と受光軸のなす角度が90度以上且つ直接光が入射し
ない前側方角度までの範囲中の更にごく一部の特定角度
を利用するものである。
[Means for Solving the Problem] The present invention solves the problem by using a specific angle in an angle range that is not used in the conventional arrangement of the optical axes as the intersection angle of the light emitting / receiving axes. Is. That is, the linear arrangement of the projection / reception axis in the transmittance measurement method (the angle formed by the two optical axes is 180 degrees) and the rear side reflection angle arrangement of the projection / reception axis in the reflectance measurement method (both optical axes Angle from 0 degree to 90 degrees laterally) is not used, and the angle between the light emitting axis and the light receiving axis is 90 degrees or more, and the angle is more than one in the front side angle where no light is directly incident. It utilizes a specific angle of the part.

即ち、本願の発明者は、多くの測定データから、投光軸
と受光軸の交差角度を変えると受光器の信号出力対視程
を示す特性が変化し、また、上記交差角度が特定の角度
において、異なった視程障害要因に対して同一の視程に
おける受光器の信号出力が同一となることを見出した。
この特性を利用して、視程障害要因の種類に無関係に同
一処理により視程測定可能な視程測定方式を得たもので
ある。
That is, the inventor of the present application shows that, from a large amount of measurement data, when the crossing angle between the light projecting axis and the light receiving axis is changed, the characteristic indicating the signal output of the light receiver versus the visibility changes, and the crossing angle at a specific angle is changed. , It was found that the signal output of the photodetector in the same visibility is the same for different visibility obstacle factors.
By utilizing this characteristic, a visibility measuring method capable of measuring the visibility by the same process regardless of the type of the visibility obstacle factor is obtained.

[実 施 例] 本発明に係る投光器と受光器の配置関係は第6図に示す
PとDFの位置関係に設定される。なお第6図は、実際に
は立体角により表現するのが好ましいが、図面を簡略化
するため本願においては図面上、上下および前後に対称
と考え角度表示を0度〜90度〜180度を用いて説明を行
なう。
[Example] The positional relationship between the projector and the receiver according to the present invention is set to the positional relationship between P and DF shown in FIG. Although FIG. 6 is actually preferably represented by a solid angle, in order to simplify the drawing, in the present application, it is considered that the drawing is symmetrical in the vertical and forward / backward directions, and the angle display is 0 ° to 90 ° to 180 °. Use to explain.

第1図に本発明の光軸配置を説明する。投光ビームはビ
ーム口径およびビームの広がりにより作り出される計測
空間を限定し、さらに受光視野は受光口径および視野角
によりこれをさらに限定する。即ち測定対象空間は限定
された平面上の四角形ABCDの領域の各光軸に対し360度
積分された容積となる。
The arrangement of the optical axes of the present invention will be described with reference to FIG. The projection beam limits the measurement space created by the beam aperture and the beam spread, and the light receiving field is further limited by the light receiving aperture and the viewing angle. That is, the measurement target space is a volume that is integrated 360 degrees with respect to each optical axis of the rectangular ABCD area on the limited plane.

第2図は本発明の実施列を説明する図である。投光器P
は白熱電球、キセノンフラッシュ、LED,レーザダイオー
ド等の光源を有し、ビーム光を投光する構造とし、受光
器Dはそれぞれの光源の波長特性、変調特性に適合した
感度を有する光電変換素子と受光視野を限定するための
光学系により構成され、そのぞれ必要な電気回路を具備
したものである。
FIG. 2 is a diagram for explaining an implementation sequence of the present invention. Floodlight P
Has a light source such as an incandescent light bulb, a xenon flash, an LED, a laser diode, etc., and has a structure for projecting a beam of light. The photodetector D is a photoelectric conversion element having a sensitivity adapted to the wavelength characteristics and modulation characteristics of each light source. It is composed of an optical system for limiting the light-receiving field, and is equipped with necessary electric circuits.

実施例に係る視程計は、地上に建てられた支柱Sおよび
アームAに固定された投光器Pおよび受光軸Dを共に前
下方に向け、その交差する空間SAの領域内に存在する浮
遊粒子からの前方散乱光を測定せんとするものである。
In the visibility meter according to the embodiment, the projector S and the light receiving axis D fixed to the pillar S and the arm A built on the ground are both directed forward and downward, and the suspended particles existing in the area of the intersecting space SA are separated from each other. It measures forward scattered light.

交差空間内の浮遊粒子の径および個数が大なるほど受光
器Dにおける受光量は増大する。従って受光量が大なる
ほど視程が低い関係を示す事になる。
The larger the diameter and the number of suspended particles in the intersecting space, the larger the amount of light received by the light receiver D. Therefore, the larger the amount of received light, the lower the visibility.

第4図は出力対視程の関係を両対数座標により示した一
例である。本図は粒子が同一の状態においてのカーブで
あり、先の第1図における光軸の挟角θをかえた場合の
受光器出力の変化を示している。
FIG. 4 shows an example of the relationship between the output and the visibility in the bilogarithmic coordinates. This figure is a curve in the case where the particles are the same, and shows the change in the photodetector output when the included angle θ of the optical axis in FIG.

次に、粒子の種類が異なる場合を第5図に示す。縦軸
(受光器出力)のみが対数である。実線は地吹雪のとき
の特性を示し、破線は霧のときの特性を示している。θ
が90度に近く比較的小さい場合、出力は低いが変化の度
合いは大きく従って狭い範囲の視程対応値が一定の受光
器出力範囲内で拡大して得られることが分かる。逆にθ
を大きくして直射光が受光されない範囲内で180度方向
に近づけたとき、出力レベルは増大するが視程に対する
変化の度合いは小さくなり、広い範囲の視程が一定の出
力範囲内で得られることが分かる。
Next, FIG. 5 shows the case where the types of particles are different. Only the vertical axis (receiver output) is logarithmic. The solid line shows the characteristics in case of snowstorm, and the broken line shows the characteristics in case of fog. θ
It can be seen that when is close to 90 degrees and is relatively small, the output is low but the degree of change is large, and therefore the visibility-corresponding value in a narrow range can be obtained by enlarging it within the constant receiver output range. Conversely, θ
When the value is increased to approach 180 degrees in the range where direct light is not received, the output level increases but the degree of change with respect to visibility decreases, and a wide range of visibility can be obtained within a certain output range. I understand.

また、第5図から明らかなように、地吹雪の場合の特性
と霧の場合の特性とは、特定の角度θで交わってお
り、このことは、投受光軸の挟角をθを当該特定角度θ
に設定することにより、例えば霧および地吹雪の両現
象に共通に使用できる単一の視程目盛りを得ることがで
きる。
Further, as is clear from FIG. 5, the characteristics in the case of snowstorm and the characteristics in the case of fog intersect at a specific angle θ C, which means that the included angle of the light emitting / receiving axis is θ Specific angle θ
By setting to C , it is possible to obtain a single visibility scale that can be commonly used for both fog and snowstorm phenomena.

第3図に、遮光体BP,BDの配置例を示す。BP,BDは投受光
軸軸上の前方且つ交差測定空間SAよりもさらに先に配置
する。BP,BDの表面は反射の度合いの低い黒色つや消し
または相手の光軸方向への反射が少ない角度に設定され
たルーバー状の構造等とする。地面、雪面または水面か
らの反射光による障害が予想される場合は、遮光体BP,B
Dを配置することによりこれらの障害を除去することが
できる。なお障害の状況に応じてBP,BDのどちらか一方
だけを配置してもよい。なお、後方散乱光を利用する従
来例の反射率測定方式においてはこのような遮光体を器
材に一体に配置することは原理的に不能であった。
FIG. 3 shows an arrangement example of the light shields B P and B D. B P and B D are arranged in front of the light emitting / receiving axis and further ahead of the intersecting measurement space SA. The surfaces of B P and B D have a frosted black matte with a low degree of reflection or a louver-like structure set at an angle such that reflection in the optical axis direction of the other party is small. If obstacles due to light reflected from the ground, snow, or water are expected, the light shield B P , B
By placing D , these obstacles can be eliminated. Either one of B P and B D may be placed depending on the condition of the failure. In the prior art reflectance measuring method using backscattered light, it was impossible in principle to dispose such a light shield integrally with the equipment.

[発明の効果] 以上説明した通り本発明による視程計測方式は、視程障
害要因が異なっていても同一目盛の視程変換テーブルが
使用できるのであり、視程算出処理が極めて容易とな
り、いくつかの視程障害要因の発生が予測される環境下
における視程値の測定値の測定を一段と容易ならしめる
ことが可能となった。
[Effects of the Invention] As described above, the visibility measuring method according to the present invention can use the visibility conversion table having the same scale even if the factors causing the visibility are different. It has become possible to measure the visibility value more easily in an environment where factors are predicted to occur.

本発明によれば気象計測上および交通運輸上特に必要さ
れる地点(例えば道路近傍)における有用な資料を収集
できることが期待される。
According to the present invention, it is expected that useful data can be collected at points (for example, near roads) that are particularly required for meteorological measurement and transportation.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第5図はいずれも本発明の実施例を説明する図
であり、第1図は光軸配置を示す図、第2図は構造図、
第3図は遮光体の配置を説明する図、第4図は受光出力
とと視程の関係を示すグラフ、第5図は受光器出力と投
受光軸挟角の関係を示すグラフ、また第6図は投光器と
受光器の配置関係を従来例と本発明とを対比させて示し
た図である。 (主な記号) P……投光器,D……受光器 B……遮光体,S……支柱 A……アーム,SA……交差測定空間 θ……投受光光軸の挟角
1 to 5 are views for explaining an embodiment of the present invention, FIG. 1 is a view showing an optical axis arrangement, FIG. 2 is a structural view,
FIG. 3 is a view for explaining the arrangement of the light shield, FIG. 4 is a graph showing the relationship between the light receiving output and the visibility, FIG. 5 is a graph showing the relationship between the light receiving output and the angle between the light emitting and receiving axis, and the sixth. The figure shows the positional relationship between the light projector and the light receiver by comparing the conventional example with the present invention. (Main symbols) P …… Sender, D …… Receiver B …… Shadow, S …… Stand A …… Arm, SA …… Intersection measurement space θ …… Inclusion angle of the sender and receiver optical axes

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−51647(JP,A) 特開 昭62−9256(JP,A) 実開 平1−66058(JP,U) 特公 昭49−48794(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-56-51647 (JP, A) JP-A-62-9256 (JP, A) Actual Kaihei 1-66058 (JP, U) JP-B-49- 48794 (JP, B1)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】可視または可視に近い波長のビーム光を投
射する投光器と、上記ビーム光の受信に十分な感度を有
し、かつ限定された視野を有する受光器を、両者の光軸
が角度θで交差するように配置し、投光器の上記ビーム
光投射範囲と上記受光器の受光視野の重畳する空間領域
内に存在する浮流粒子からの散乱光の光量を測定するこ
とにより視程を求めるようにした視程測定方式におい
て、上記投光器の投光軸と上記受光器の受光軸との交差
角度θを、90度以上から上記ビーム光が上記受光器に直
接入射しない角度以下の範囲内にあって、受光器出力か
ら視程を求める変換目盛りが、異なる視程障害現象に対
して同一目盛りとなる特定の角度θに設定した視程測
定方式。
1. A light projector for projecting a light beam having a visible wavelength or a wavelength close to a visible light and a light receiver having a sensitivity sufficient for receiving the light beam and having a limited field of view. It is arranged so that it intersects at θ, and the visibility is obtained by measuring the light quantity of scattered light from floating particles existing in the spatial region where the beam light projection range of the projector and the light receiving visual field of the light receiver overlap. In the visibility measurement method, the intersection angle θ between the projection axis of the projector and the reception axis of the receiver is within the range of 90 degrees or more and the angle at which the beam light does not directly enter the receiver, A visibility measuring method in which the conversion scale for obtaining visibility from the output of the light receiver is set to a specific angle θ C that provides the same scale for different visibility disturbance phenomena.
【請求項2】投光軸の軸上、受光軸の軸上のいずれか一
方又は双方で、ビーム光の投射範囲と受光視野との重畳
空間領域より遠方に遮光体を配置した請求項1に記載の
視程測定方式。
2. A light-shielding member is arranged on either one or both of the axis of the light-projecting axis and the axis of the light-receiving axis farther from the overlapping space area between the projection range of the light beam and the light-receiving field of view. Visibility measurement method described.
JP2153051A 1990-06-12 1990-06-12 Visibility measurement method Expired - Lifetime JPH079395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153051A JPH079395B2 (en) 1990-06-12 1990-06-12 Visibility measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153051A JPH079395B2 (en) 1990-06-12 1990-06-12 Visibility measurement method

Publications (2)

Publication Number Publication Date
JPH0450641A JPH0450641A (en) 1992-02-19
JPH079395B2 true JPH079395B2 (en) 1995-02-01

Family

ID=15553909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153051A Expired - Lifetime JPH079395B2 (en) 1990-06-12 1990-06-12 Visibility measurement method

Country Status (1)

Country Link
JP (1) JPH079395B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337431A (en) * 2020-03-16 2020-06-26 中国人民解放军国防科技大学 Shutter type double-layer target board for measuring atmospheric visibility by camera

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH639769A5 (en) * 1979-10-02 1983-11-30 Fruengel Frank Sichtweitenmessgeraet according to the principle of vorwaertsstreuung and use thereof.
JPS629256A (en) * 1985-07-06 1987-01-17 Oki Electric Ind Co Ltd Measuring method for diffuse reflection brightness
JPH0613481Y2 (en) * 1987-10-20 1994-04-06 ヤマト消火器株式会社 Smoke detectors

Also Published As

Publication number Publication date
JPH0450641A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
AU2005100959A4 (en) Laser Distance Measuring Device
US5880836A (en) Apparatus and method for measuring visibility and present weather
EP0183240A2 (en) Surface position sensor
GB1332419A (en) Electro-optical feeler of probe devices
US4307516A (en) Directional two-axis differential optical inclinometer
US4441816A (en) Optical double-slit particle measuring system
Horvath The university of Vienna telephotometer
CN100357726C (en) Method and apparatus for testing low visibility of at mosphere
KR101311312B1 (en) Measuring apparatus for present visibility and weather equipped with different light
JPS586886B2 (en) distance measuring device
CN105928881B (en) A kind of the window mirror delustring detection method and detection device of transmission-type visual range visibility meter
JPH079395B2 (en) Visibility measurement method
JPH06331543A (en) Floating-particle-concentration measuring apparatus
JPH0423740B2 (en)
RU2672188C1 (en) Method of measuring concentration of aerosol particles in the atmosphere
JPH04175687A (en) Method and device for discriminating rain, snow and mist
RU160748U1 (en) SMOK ALARM
SU1591054A1 (en) Fire detector
US3412253A (en) Arrangement for measuring hydrometeors
SU1578475A1 (en) Apparatus for checking position of objects
JPH02300692A (en) Method for measuring amount of precipitation
JP2668948B2 (en) Light sensor
JPH0543997B2 (en)
US20210373166A1 (en) Three-dimensional (3d) scanner with 3d aperture and tilted optical bandpass filter
EP0876597B1 (en) A retro-reflective measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 16