JPH0793793B2 - Battery power storage system - Google Patents

Battery power storage system

Info

Publication number
JPH0793793B2
JPH0793793B2 JP61288683A JP28868386A JPH0793793B2 JP H0793793 B2 JPH0793793 B2 JP H0793793B2 JP 61288683 A JP61288683 A JP 61288683A JP 28868386 A JP28868386 A JP 28868386A JP H0793793 B2 JPH0793793 B2 JP H0793793B2
Authority
JP
Japan
Prior art keywords
voltage
converter
power
control
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61288683A
Other languages
Japanese (ja)
Other versions
JPS63144725A (en
Inventor
泰伸 家田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61288683A priority Critical patent/JPH0793793B2/en
Publication of JPS63144725A publication Critical patent/JPS63144725A/en
Publication of JPH0793793B2 publication Critical patent/JPH0793793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、二次電池に電力を貯蔵しその電力を放出でき
る電池電力貯蔵システムに関する。
The present invention relates to a battery power storage system capable of storing power in a secondary battery and discharging the power.

(従来の技術) 電池電力貯蔵システムは電力系統から交流電力を受電
し、直流に変換して二次電池に貯蔵する。そして必要な
時にこの電力を交流に変換して系統へ供給するシステム
である。このシステムについての考え方は電気学会雑誌
昭58年8月小特集「新形電池電力貯蔵システム」に詳し
い。電池と系統を接続する交流−直流の変換には最近自
己消孤能力を持つゲートターンオフ(GTO)素子を用い
た自励式の電圧型の変換器が多く用いられている。
(Prior Art) A battery power storage system receives AC power from a power system, converts it to DC, and stores it in a secondary battery. It is a system that converts this electric power into alternating current and supplies it to the grid when necessary. The concept of this system is detailed in the special issue “New Battery Energy Storage System” in August, 1983, which is published by the Institute of Electrical Engineers of Japan. Recently, a self-exciting voltage type converter using a gate turn-off (GTO) element having a self-extinction capability has been widely used for AC-DC conversion connecting a battery and a system.

従来システムについて第8図で説明する。電力を貯蔵す
る時には電力系統1から受電し、系統電圧(VU)と自励
式変換器2の交流側電圧を整合させる変圧器3を介して
変換器2に交流電力を供給する。変換器2はこの交流電
力を直流電力に変換して二次電池4に電力を供給し、貯
蔵する。電力を放出する場合はこの逆を行ない、電池4
の電力を交流に変換し、電力系統1へ供給する。
A conventional system will be described with reference to FIG. When storing electric power, power is received from the power system 1 and AC power is supplied to the converter 2 via a transformer 3 for matching the system voltage (V U ) with the AC side voltage of the self-excited converter 2. The converter 2 converts this AC power into DC power, supplies the power to the secondary battery 4, and stores it. The opposite is done when discharging power, and battery 4
Power is converted into alternating current and supplied to the power system 1.

実際の電力の貯蔵,放出の制御を第4図(a)〜(d)
に示すベクトル図によって説明する。図中では変圧器3
で変換器2の出力電圧を基準とした等価回路とし、イン
ピーダンスXPU5として示している。電力を貯蔵する場合
を第4図(a),(b)に示す。系統電圧VUと180度位
相のずれた交流電流ILを流すことにより、変換器2側へ
電力を供給する。その時必要な変圧器の電圧VINVは変換
器のインピーダンスXPUによる電圧降下分−ILXPUを考慮
してベクトルVINVとなり、その位相は、系統電圧VUに対
し遅れθとなる。逆に電力を放出する場合を第4図
(c),(d)に示す。この時は、交流電流ILは系統電
圧VUと同位相となり、変換器の電圧VINVは貯蔵の時と比
べ大きさは等しく、位相が逆で進みθとなる。
Control of actual storage and discharge of electric power is shown in Figs. 4 (a) to (d).
It will be described with reference to the vector diagram shown in FIG. Transformer 3 in the figure
Is an equivalent circuit based on the output voltage of the converter 2 and is shown as impedance X PU 5. The case of storing electric power is shown in FIGS. 4 (a) and 4 (b). Electric power is supplied to the converter 2 side by passing an AC current I L that is 180 degrees out of phase with the system voltage V U. At that time, the required voltage V INV of the transformer is a vector V INV in consideration of the voltage drop −I L X PU due to the impedance X PU of the converter, and its phase is a delay θ with respect to the system voltage V U. On the contrary, the case of discharging electric power is shown in FIGS. 4 (c) and 4 (d). At this time, the alternating current I L has the same phase as the system voltage V U , the voltage V INV of the converter has the same magnitude as that at the time of storage, and the phase is reversed and leads θ.

以上の説明では、変換器の交流出力より交流側について
説明したが、一般に二次電池の端子電圧は電力を貯蔵す
ると上昇し、放出すると低下する。その為、変換器2は
電池電圧VDの変動する範囲にわたって、電力の制御に必
要な、交流電圧VINVを出力することが必要とされる。こ
の制御は通常変換器2のパルス幅制御を用いて行なって
いる。ここでは第6図に従来例として6相ブリッジを用
いた3パルス方式の変換器について説明する。
In the above description, the AC side of the AC output of the converter has been described, but in general, the terminal voltage of the secondary battery increases when electric power is stored and decreases when the electric power is discharged. Therefore, the converter 2 is required to output the AC voltage V INV necessary for controlling the power over the range where the battery voltage V D fluctuates. This control is usually performed by using the pulse width control of the converter 2. Here, a 3-pulse type converter using a 6-phase bridge will be described as a conventional example in FIG.

この回路ではGTO素子6はダイオード素子7と逆並列に
接続されている。直流側8は電池に接続され、交流側9
は変圧器に接続される。この回路での出力電圧の制御は
第7図に示すようにU−X,V−Y,W−Z分枝のそれぞれの
アームの通電期間の中央に2α度のオン−オフ反転期間
22を挿入することにより行なう(図中20,21にα=0の
場合のUアーム,Xアームの通電期間を示す)。この結
果、交流側電圧(線間)23は第6図図中VRS,VST,VTR
如く、3つのパルスにより半周期波形が形成される。
In this circuit, the GTO element 6 is connected in antiparallel with the diode element 7. DC side 8 is connected to the battery, AC side 9
Is connected to the transformer. As shown in FIG. 7, the output voltage control in this circuit is controlled by a 2α-degree on-off reversal period at the center of the energization period of each arm of the U-X, V-Y, and W-Z branches.
This is done by inserting 22 (in the figure, 20 and 21 indicate the energization period of the U arm and X arm when α = 0). As a result, the AC-side voltage (line-to-line) 23 forms a half-cycle waveform by three pulses, as V RS , V ST , and V TR in FIG.

この時の直流電圧EDと変換器出力電圧V1NVとの関係は次
式で与えられることが知られている。
It is known that the relationship between the DC voltage E D and the converter output voltage V 1NV at this time is given by the following equation.

この(1)式で、直流電圧EDが変化することに対し、変
換器出力電圧VINVを一定に保つためには制御角αを変化
させる。ここで、この制御角αのとりうる範囲は次の2
つの理由により制限される。αの最小値は、GTO素子
のターンオフに必要な時間が決まっているためそれ以下
にはできない。αの最大値は、αが大きくなる程、高
調波成分が増大し、制御精度が保てなくなるためあまり
大きくできない。
In the equation (1), while the DC voltage E D changes, the control angle α is changed in order to keep the converter output voltage V INV constant. Here, the range that the control angle α can take is the following 2
Limited for one reason. The minimum value of α cannot be set lower than that because the time required to turn off the GTO element is fixed. The maximum value of α cannot be increased so much as α increases, because the harmonic component increases and the control accuracy cannot be maintained.

(発明が解決しようとする問題点) 一般にの条件から、変換器出力電圧VINVの値は直流電
圧EDが最小の時に、αの最小値とした時の値とする。と
ころが、電池の電圧変動幅が広く直流電圧の最大値が、
非常に大きい場合、VINVの値を一定に保つためのαの値
が大きくなりの条件を越えてしまうことがあり、この
ため、高調波対策設備の容量増加をまねいたり、制御精
度が保てなくなることがあった。
(Problems to be Solved by the Invention) From the general condition, the value of the converter output voltage V INV is the value when the DC voltage E D is the minimum and α is the minimum value. However, the voltage fluctuation range of the battery is wide and the maximum value of the DC voltage is
If the value is very large, the value of α for keeping the value of V INV constant may exceed the condition of increasing, so this may increase the capacity of harmonic countermeasure equipment and maintain control accuracy. It was sometimes gone.

以上の説明では、電池電力貯蔵システムで有効電力の制
御のみを行なう場合を説明したが、さらに無効電力を制
御する場合を第5図(a)〜(d)で説明する。おくれ
無効電力を系統に供給する場合を第5図(a),(b)
に示す。交流電流ILは系統電圧VUに対し90゜位相の遅れ
た電流となる。そのため、変換器の出力電圧VINVは変圧
器のインピーダンスによる電圧降下分ILXPUだけ、系統
電圧VUより高くする必要がある。逆におくれ無効電力を
系統から吸収する場合(第5図(c),(d)参照)、
変換器出力電圧VINVを系統電圧VUに対し、低くする必要
がある。ここで説明したように無効電力の制御を行なう
場合には、必要とされるVINVの変化の幅が広がるため、
制御角αの制御範囲を、ますます拡げることが必要とな
る。このため従来のシステムでは無効電力の制御に制限
をつけたり、場合によっては無効電力制御をあきらめて
いた。
In the above description, the case where only the active power is controlled in the battery power storage system has been described, but the case where the reactive power is further controlled will be described with reference to FIGS. 5 (a) to 5 (d). Fig. 5 (a), (b) shows the case of supplying bald reactive power to the grid.
Shown in. The alternating current I L becomes a current with a 90 ° phase delay with respect to the system voltage V U. Therefore, the output voltage V INV of the converter needs to be higher than the system voltage V U by the voltage drop I L X PU due to the impedance of the transformer. On the contrary, when absorbing the reactive power from the grid (see FIGS. 5 (c) and 5 (d)),
The converter output voltage V INV needs to be lower than the system voltage V U. When the reactive power is controlled as described here, the required range of change in V INV is widened.
It is necessary to further expand the control range of the control angle α. For this reason, in the conventional system, the reactive power control is limited, or the reactive power control is given up in some cases.

本発明の目的は、上記従来技術の持つ二次電池の電圧の
変動に対する変換器の出力電圧制御の困難さを解決する
電池電力貯蔵システムを提供することにある。
An object of the present invention is to provide a battery power storage system that solves the difficulty of controlling the output voltage of the converter with respect to the fluctuation of the voltage of the secondary battery, which the above-mentioned conventional technology has.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 上記目的を達成するために本発明では第1図に示すよう
に電力系統1と二次電池4及びパルス幅制御を行なう自
励式の変換器2,変圧器3から成る電池電力貯蔵システム
の交流側に系統電圧と変換器の出力電圧との変圧比を変
える手段10を有し、二次電池4の端子電圧の値を検出す
る手段11と、その検出した値を入力する制御装置12によ
り、この変圧比を変える手段10を制御する様に構成した
ことを特徴とする。
(Means for Solving Problems) In order to achieve the above object, according to the present invention, as shown in FIG. 1, a power system 1, a secondary battery 4, a self-excited converter 2 and a transformer for controlling pulse width, and a transformer. A means 10 for changing the transformation ratio between the system voltage and the output voltage of the converter is provided on the AC side of the battery power storage system consisting of 3, and means 11 for detecting the value of the terminal voltage of the secondary battery 4 and the means 11 for detecting the value. The control device 12 for inputting a value is configured to control the means 10 for changing the transformation ratio.

(作用) 二次電池の端子電圧EDを検出し、その値に従って交流側
の最適な変圧比を制御装置12により求め、その最適な変
圧比になるように交流側の変圧比を変える。このことに
より変換器のパルス幅制御範囲を所定に限定でき、その
制御を制御精度の確保及び、高調波成分の少ない領域に
保つことができる。
(Operation) The terminal voltage E D of the secondary battery is detected, the optimum AC-side transformation ratio is obtained by the control device 12 according to the value, and the AC-side transformation ratio is changed so as to obtain the optimum transformation ratio. As a result, the pulse width control range of the converter can be limited to a predetermined range, and the control can be ensured in the control accuracy and can be maintained in the region where the harmonic component is small.

(実施例) 本発明の一実施例を第2図に示す。図において、電力系
統1と二次電池4を負荷時タップ切換器付変圧器13,6相
ブリッジ構成のGTO変換器2で接続する。又、二次電池
の直流電圧EDを測定する分圧器14を直流回路にそなえ、
その検出した値によって、タップ切換器付変圧器13のタ
ップを制御する制御装置12を有する。
(Example) An example of the present invention is shown in FIG. In the figure, the power system 1 and the secondary battery 4 are connected by a transformer 13 with a tap changer at load and a GTO converter 2 having a 6-phase bridge configuration. In addition, the voltage divider 14 for measuring the DC voltage E D of the secondary battery is provided in the DC circuit,
The controller 12 controls the tap of the transformer 13 with a tap changer according to the detected value.

次にこの実施例について作用を説明する。6相ブリッジ
構成のGTO変換器を3パルス方式でパルス幅制御を行な
った場合の変換器出力電圧VINVと直流電圧EDの関係は先
に示した(1)式、 で表わされる。この制御角αは、GTO素子のターンオフ
時間により、その最小値が制限される。
Next, the operation of this embodiment will be described. The relationship between the converter output voltage V INV and the DC voltage E D when the GTO converter with the 6-phase bridge structure is subjected to the pulse width control by the 3-pulse method is the equation (1), It is represented by. The minimum value of the control angle α is limited by the turn-off time of the GTO element.

また、最大値は制御精度を保ち、高調波成分を抑えるた
めにあまり大きくできない。そのため、二次電池4の直
流電圧EDが電力の貯蔵,放出で大きく変動する場合に
は、αの制御のみでは、系統電圧VUとの整合がとれなく
なり、電力の制御に必要な出力電圧が得られない。
Also, the maximum value cannot be made too large in order to maintain control accuracy and suppress harmonic components. Therefore, when the DC voltage E D of the secondary battery 4 fluctuates significantly due to the storage and release of electric power, it is not possible to match the system voltage V U with only the control of α, and the output voltage required for power control is lost. Can't get

そこで本発明では、分圧器14で電池4の電圧EDを検出
し、その値を制御装置12に入力し、その値に応じて制御
装置からタップ切換器付変圧器13のタップを自動的に変
えて、αの所定の制御範囲で系統電圧VUとの整合がとれ
るようにする。すなわち、電池の電圧EDが小さい時に
は、タップを切換えて変圧比を大きくし、変換器に要求
される交流出力電圧VINVを小さくする。
Therefore, in the present invention, the voltage divider 14 detects the voltage E D of the battery 4, inputs the value to the control device 12, and the control device automatically taps the tap of the transformer 13 with tap changer according to the value. In other words, the voltage is matched with the system voltage V U within a predetermined control range of α. That is, when the battery voltage E D is small, the tap is switched to increase the transformation ratio and reduce the AC output voltage V INV required for the converter.

逆に電池の電圧EDが大きい時には、タップを切換えて変
圧比を小さくし、変換器に要求される交流出力電圧INV
を大きくする。この時、切換えるタップの数とタップの
幅は変換器のパルス幅制御の範囲を有効に利用すること
により、通常の負荷時切替器ほど細くする必要はない。
また、タップ切換に伴なう制御上の動揺は、変換器のパ
ルス幅制御の応答が早いため、特に問題とならない。
Conversely, when the battery voltage E D is large, taps are switched to reduce the transformation ratio, and the AC output voltage INV required for the converter is reduced.
To increase. At this time, the number of taps to be switched and the width of the taps do not have to be made as thin as those in a normal load switch by effectively utilizing the range of pulse width control of the converter.
Further, fluctuations in control associated with tap switching do not pose a particular problem because the pulse width control response of the converter is fast.

以上説明したようにこの実施例においてはパルス幅制御
の6相ブリッジ構成のGTO変換器を用いた電池電力貯蔵
システムを負荷時タップ切換器付き変圧器を用いて系統
と接続したシステムにおいて、電池電圧を測定し、その
電圧に対応し、制御装置により変圧器のタップを制御す
ることにより、GTO変換器を電圧制御の最適な範囲で運
転することができることになる。このことにより、シス
テムの発生する高調波を低い値に抑え、電圧制御精度を
良好に保つことができる。
As described above, in this embodiment, in the system in which the battery power storage system using the GTO converter of the pulse width controlled 6-phase bridge configuration is connected to the grid using the transformer with the tap switch during load, the battery voltage is The GTO converter can be operated in the optimum range of voltage control by measuring the voltage and controlling the tap of the transformer by the controller according to the voltage. As a result, the harmonics generated by the system can be suppressed to a low value, and the voltage control accuracy can be kept good.

以上の説明では6相ブリッジ構成のパルス幅制御のGTO
変換器を用いた一実施例を示したが、これは単相ブリッ
ジを3相使用するパルス幅制御の変換器でも適用でき
る。次にタップ切換えをインバータ変圧器14で実施した
実施例を第3図に示す。本発明はパルス幅制御のGTO変
換器を用いたシステムで直流側の電圧の条件によって、
交流側の電圧の整合のための変圧器の変圧比を変えるこ
とを特徴とするためのその方法をどのようにとろうと本
発明の精神を逸脱しない範囲で種々変形しても含まれる
ことは言うまでもない。
In the above explanation, the GTO with pulse width control of 6-phase bridge configuration
Although one embodiment using a converter is shown, this can also be applied to a pulse width control converter using three phases of a single-phase bridge. Next, FIG. 3 shows an embodiment in which tap switching is performed by the inverter transformer 14. The present invention is a system using a pulse width control GTO converter, depending on the condition of the voltage on the DC side,
It goes without saying that the method for characterizing changing the transformation ratio of the transformer for matching the voltage on the AC side is included in various modifications without departing from the spirit of the present invention. Yes.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は以下の効果を奏する。 As described above, the present invention has the following effects.

(1) 変動する電池の電圧に対し、系統電圧と変換器
の出力電圧の電圧比を変えることにより、自励式GTO変
換器を制御精度が良好な、高調波発生の低い状態で運転
できることになる。
(1) By changing the voltage ratio between the system voltage and the output voltage of the converter with respect to the fluctuating battery voltage, the self-excited GTO converter can be operated with good control accuracy and low harmonic generation. .

(2) 発生高調波を低い状態に保てるため、高調波対
策の設備が不要または容量の軽減化が図れる。
(2) Since the generated harmonics can be kept in a low state, no equipment for harmonics is required or the capacity can be reduced.

(3) 変換器の出力できる電圧範囲が拡がるため、無
効電力制御の可能な範囲が拡がり、システムとしての有
効性が増加する。
(3) Since the voltage range that the converter can output is expanded, the range in which the reactive power can be controlled is expanded, and the effectiveness of the system is increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を示す構成図を示す。第2図は本発明の
一実施例を示す構成図、第3図は本発明の他の一実施例
を示す構成図である。第4図(a),(b)および
(c),(d)はそれぞれ電池電力貯蔵システムにおけ
る有効電力制御の原理を示す単線系統図およびベクトル
図、第5図(a),(b)および(c),(d)はそれ
ぞれ無効電力制御の原理を示す単線結線図及びベクトル
図、第6図は6相ブリッジ構成のGTO変換器の構成を示
す3線結線図、第7図は3パルス方式のパルス幅制御の
原理を説明するためのグラフ、第8図は従来のシステム
を示す構成図である。 1……電力系統、2……直流−交流変換器 3……変圧器、4……二次電池 10……変圧比を変える手段 11……二次電池端子電圧測定手段 12……制御装置 13……負荷時タップ切換器付変圧器 14……分圧器 15……負荷時タップ切換器付インバータ変圧器
FIG. 1 is a block diagram showing the present invention. FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a block diagram showing another embodiment of the present invention. 4 (a), (b) and (c), (d) are a single line system diagram and a vector diagram showing the principle of active power control in a battery power storage system, respectively, and FIGS. 5 (a), (b) and (C) and (d) are single-line connection diagrams and vector diagrams showing the principle of reactive power control, FIG. 6 is a three-line connection diagram showing the configuration of a GTO converter with a six-phase bridge configuration, and FIG. 7 is three pulses. FIG. 8 is a graph for explaining the principle of the system pulse width control, and FIG. 8 is a configuration diagram showing a conventional system. 1 ... Power system, 2 ... DC-AC converter 3 ... Transformer, 4 ... Secondary battery 10 ... Means for changing transformation ratio 11 ... Secondary battery terminal voltage measuring means 12 ... Control device 13 ...... Transformer with tap changer under load 14 ...... Voltage divider 15 …… Inverter transformer with tap changer under load

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電力系統と二次電池を接続し、電力の変換
を行なうパルス幅制御方式の自励式直流−交流変換器
と、この変換器と電力系統の間に設けられた変圧器とか
ら成る電池電力貯蔵システムにおいて、二次電池の端子
電圧を検出する手段と、変圧器の変圧比を変える手段
と、検出した端子電圧により変換器のパルス幅制御を行
なうとともに、変圧器の変圧比を制御する制御装置とを
備えてなることを特徴とする電池電力貯蔵システム。
1. A self-excited DC / AC converter of a pulse width control system for connecting a power system and a secondary battery to convert power, and a transformer provided between the converter and the power system. In the battery power storage system consisting of, the means for detecting the terminal voltage of the secondary battery, the means for changing the transformer transformation ratio, the pulse width control of the converter by the detected terminal voltage, and the transformer transformation ratio. A battery power storage system comprising a control device for controlling.
JP61288683A 1986-12-05 1986-12-05 Battery power storage system Expired - Lifetime JPH0793793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288683A JPH0793793B2 (en) 1986-12-05 1986-12-05 Battery power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288683A JPH0793793B2 (en) 1986-12-05 1986-12-05 Battery power storage system

Publications (2)

Publication Number Publication Date
JPS63144725A JPS63144725A (en) 1988-06-16
JPH0793793B2 true JPH0793793B2 (en) 1995-10-09

Family

ID=17733336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288683A Expired - Lifetime JPH0793793B2 (en) 1986-12-05 1986-12-05 Battery power storage system

Country Status (1)

Country Link
JP (1) JPH0793793B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852779B2 (en) * 2009-11-26 2016-02-03 映二 白石 Power supply
JP7268102B2 (en) * 2021-09-08 2023-05-02 西芝電機株式会社 power storage system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172933A (en) * 1983-03-22 1984-09-29 株式会社東芝 Battery power storage system

Also Published As

Publication number Publication date
JPS63144725A (en) 1988-06-16

Similar Documents

Publication Publication Date Title
US6847531B2 (en) System and method for regenerative PWM AC power conversion
US6542390B2 (en) System and method for regenerative PWM AC power conversion
US20050099829A1 (en) Dual bridge matrix converter
US4489371A (en) Synthesized sine-wave static generator
US9678519B1 (en) Voltage control modes for microgrid applications
KR20110135126A (en) Rush current prevention apparatus for cascade multi level high voltage inverter
JP3237719B2 (en) Power regeneration controller
JPH0793793B2 (en) Battery power storage system
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
JP2568271B2 (en) DC uninterruptible power supply
JPH04334977A (en) Power converter
JP2618931B2 (en) Power converter
JP2002320390A (en) Power storage apparatus
JPH0669316B2 (en) Power regeneration control circuit for power converter
JPH07108092B2 (en) AC power supply
JPH09163751A (en) Pwm controlled self-excited rectifier
JP2628059B2 (en) DC power supply
JP2663535B2 (en) Power supply for arc machining
JPS58151879A (en) Control circuit for alternating current/direct current converting circuit
JPH0515638U (en) Parallel operation protection device
JPH06197541A (en) Inverter device
JPS6268023A (en) Controller for system interlock inverter
JP2000125575A (en) Constant sampling type pwm device for sine wave input- output single-phase voltage doubler ac-dc converting circuit
JPH10164845A (en) Pwm rectifier
JP2728682B2 (en) Uninterruptible power supply for computer