JPH0792110A - Sar measuring equipment and measuring method - Google Patents

Sar measuring equipment and measuring method

Info

Publication number
JPH0792110A
JPH0792110A JP25641893A JP25641893A JPH0792110A JP H0792110 A JPH0792110 A JP H0792110A JP 25641893 A JP25641893 A JP 25641893A JP 25641893 A JP25641893 A JP 25641893A JP H0792110 A JPH0792110 A JP H0792110A
Authority
JP
Japan
Prior art keywords
magnetic field
sar
biological model
detecting means
pseudo biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25641893A
Other languages
Japanese (ja)
Other versions
JP2630222B2 (en
Inventor
Masahiro Fujii
正弘 藤井
Akira Ito
亮 伊藤
Eiji Hangui
英二 半杭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5256418A priority Critical patent/JP2630222B2/en
Publication of JPH0792110A publication Critical patent/JPH0792110A/en
Application granted granted Critical
Publication of JP2630222B2 publication Critical patent/JP2630222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To facilitate measurement of the specific absorptivity (SAR) of radio wave from a radio unit by measuring the strength of magnetic field, in more than two directions not in parallel, of a portable radio unit fixed around a simulated organic model (phantom) having permittivity and permeability equal to those of human head. CONSTITUTION:A portable radio unit 2 is fixed closely to a phantom 1 at an operating position. A magnetic field detection probe 3 comprises field detection elements 3a-3c for detecting the magnetic field in three orthogonal directions and generates electromotive force corresponding to the strength of magnetic field around the phantom 1. The electromotive force is measured by a voltage measuring means through a signal line J and delivered to an SAR calculating means. The SAR calculating means calculates the magnetic field strength from the electromotive force corresponding to the magnetic field in three directions and determines the average field strength. SAR is then determined based on the fact that the square of average magnetic field strength is proportional to the SAR.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はSAR測定装置および測
定方法に関し、特に携帯無線機からの電波のSARを測
定するSAR測定装置および測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SAR measuring device and a measuring method, and more particularly to a SAR measuring device and a measuring method for measuring SAR of a radio wave from a portable wireless device.

【0002】[0002]

【従来の技術】SAR(Specific Absor
ption Rate、比吸収率)は、生体が電波の照
射を受けたことにより生じる単位質量当たりの吸収電力
を示すものであり、生体を電波の影響から防護する郵政
省の電波防護指針の基礎指針として用いられている。
2. Description of the Related Art SAR (Specific Absor)
(ption rate, specific absorption rate) indicates the absorbed power per unit mass generated when the living body is irradiated with radio waves, and serves as a basic guideline of the Ministry of Posts and Telecommunications's radio wave protection guidelines to protect the living body from the effects of radio waves. It is used.

【0003】従来、SARの測定には、人体などの生体
と誘電率および透磁率を等しくしたファントムと呼ばれ
る擬似生体模型を用い、このファントムに電波を照射す
るとファントムが照射電波のエネルギーを吸収して温度
上昇するので、その温度を測定してSARを算出する方
法が知られている。
Conventionally, for the measurement of SAR, a pseudo-biological model called a phantom having the same permittivity and magnetic permeability as that of a living body such as a human body is used. Since the temperature rises, a method of measuring the temperature and calculating the SAR is known.

【0004】この場合、ファントムの温度を測定するの
に、たとえば、ファントムの表面の複数カ所に温度測定
用のプローブを取り付け、各プローブから温度を測定す
る方法が知られている。また、特開昭3−73836号
公報には、赤外線サーモグラフィでファントムの温度を
測定する方法が開示されている。
In this case, in order to measure the temperature of the phantom, for example, a method is known in which temperature measuring probes are attached to a plurality of points on the surface of the phantom and the temperature is measured from each probe. Further, Japanese Patent Laid-Open No. 3-73836 discloses a method of measuring the temperature of a phantom by infrared thermography.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した従来
の方法を用いたSAR測定装置では、携帯無線機のよう
に照射電波の放射電力が小さい場合にはファントムの温
度上昇が少ないため温度測定に困難が伴い測定誤差が大
きくなってしまうという問題がある。
However, in the SAR measuring apparatus using the above-mentioned conventional method, the temperature rise of the phantom is small when the radiated power of the radiated radio wave is small like a portable radio device, so that the temperature measurement is not performed. There is a problem that the measurement error becomes large due to difficulty.

【0006】そこで、携帯無線機の照射電波と同じ周波
数で放射電力がたとえば100倍の電波を照射し、この
場合のファントムの温度上昇を測定してSARを求め、
このSARを100で割って携帯無線機からの電波のS
ARとして求める方法が考えられるが、この場合では、
携帯無線機から通常の100倍の放射電力の電波を出力
することができないため、SARの測定に携帯無線機の
実物を使用することができず、特別に測定用の電波発生
装置を用意しなければならないという問題がある。
Therefore, a radiant power of, for example, 100 times is radiated at the same frequency as the radiated radio wave of the portable radio, and the temperature rise of the phantom in this case is measured to obtain the SAR,
Divide this SAR by 100 to obtain the S of the radio wave from the portable wireless device.
A method of obtaining as AR can be considered, but in this case,
Since it is not possible to output radio waves with radiated power 100 times higher than usual from the portable wireless device, the actual portable wireless device cannot be used for SAR measurement, and a special radio wave generator for measurement must be prepared. There is a problem that it must be.

【0007】ところで、近年ファントムの外部磁界を測
定することによりSARを求める方法が提案されてお
り、たとえば、電子情報通信学会技術研究報告「EMC
J93−5、マイクロ波被曝の近傍磁界を用いた顔面S
ARの推定」には、ファントムの外部磁界の磁界強度の
二乗値がSARに比例することが報告されている。この
方法によるとファントムの温度測定が不要なため、簡易
な測定手法で且つ小さな測定誤差でSARを測定するこ
とが可能となる。
By the way, in recent years, a method of obtaining the SAR by measuring the external magnetic field of the phantom has been proposed.
J93-5, Face S using near magnetic field of microwave exposure
It has been reported in "estimation of AR" that the square value of the magnetic field strength of the external magnetic field of the phantom is proportional to SAR. According to this method, since it is not necessary to measure the temperature of the phantom, it is possible to measure the SAR with a simple measurement method and with a small measurement error.

【0008】本発明は上記の点にかんがみてなされたも
ので、ファントムの外部磁界を測定する方法を用い、携
帯無線機からの電波のSARの測定を容易に行えるSA
R測定装置を提供することを目的とする。
The present invention has been made in view of the above points, and SA which can easily measure the SAR of the radio wave from the portable radio device by using the method of measuring the external magnetic field of the phantom.
An object is to provide an R measuring device.

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的を達
成するために、人体などの生体と誘電率および透磁率が
等しい擬似生体模型と、この擬似生体模型に固定された
電磁波発生手段と、前記擬似生体模型の周囲における前
記電磁波発生手段による磁界のうち互いに平行でない3
以上の方向の磁界の強度を測定する磁界検出手段と、前
記擬似生体模型と前記磁界検出手段との相対位置を互い
に平行でない3以上の方向に移動する移動手段と、前記
磁界検出手段により得られた磁界強度に基づいて前記擬
似生体模型の電磁波の吸収量を算出するSAR算出手段
とからSAR測定装置を構成した。
In order to achieve the above object, the present invention provides a pseudo biological model having the same permittivity and magnetic permeability as that of a living body such as a human body, and an electromagnetic wave generating means fixed to the pseudo biological model. , The magnetic fields generated by the electromagnetic wave generating means around the pseudo biological model are not parallel to each other 3
The magnetic field detecting means for measuring the strength of the magnetic field in the above directions, the moving means for moving the relative positions of the pseudo biological model and the magnetic field detecting means in three or more directions which are not parallel to each other, and the magnetic field detecting means are provided. The SAR measuring device is composed of the SAR calculating means for calculating the electromagnetic wave absorption amount of the pseudo biological model based on the magnetic field strength.

【0010】[0010]

【作用】本発明は以上の構成によって、移動手段で擬似
生体模型と磁界検出手段との相対位置を互いに平行でな
い3以上の方向に移動しながら、擬似生体模型に固定さ
れた電磁波発生手段からの電磁波による磁界の強度を磁
界検出手段により検出し、この磁界強度に基づきSAR
算出手段が擬似生体模型の電磁波の吸収量を算出する。
According to the present invention, the moving means moves the relative positions of the pseudo biological model and the magnetic field detecting means in three or more directions which are not parallel to each other, and the electromagnetic wave generating means fixed to the pseudo biological model is used. The magnetic field strength due to the electromagnetic wave is detected by the magnetic field detecting means, and based on this magnetic field strength, the SAR
The calculation means calculates the amount of electromagnetic waves absorbed by the pseudo biological model.

【0011】[0011]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0012】図1は本発明によるSAR測定装置の一実
施例の斜視図である。
FIG. 1 is a perspective view of an embodiment of the SAR measuring apparatus according to the present invention.

【0013】1は、人体の頭部と誘電率および透磁率を
等しくしたファントムであり、人体の頭部を模した形状
にしテーブル10上で円柱形枠8の中央に固定されてい
る。2は携帯無線機であり、ファントム1の近傍の携帯
無線機2を使用する場合の位置に取付けられている。本
実施例において、ファントム1は人体の頭部を模した形
状にしたが、より簡易な測定を行う場合には円柱形や球
形などのファントムを用いてもよい。3は磁界検出プロ
ーブであり、合成樹脂等の絶縁体で覆われて球形になっ
ており、棒状のアーム4の先端に固定されている。
Reference numeral 1 denotes a phantom having a permittivity and magnetic permeability equal to those of the human body head, which is shaped like the human head and is fixed to the center of a cylindrical frame 8 on a table 10. Reference numeral 2 denotes a portable wireless device, which is mounted in a position near the phantom 1 when using the portable wireless device 2. In this embodiment, the phantom 1 has a shape imitating the head of a human body, but a columnar or spherical phantom may be used for more simple measurement. A magnetic field detection probe 3 is covered with an insulating material such as synthetic resin and has a spherical shape, and is fixed to the tip of a rod-shaped arm 4.

【0014】アーム4は、歯車5を回転させることによ
り上下方向(z軸方向)に動かすことができるようにな
っている。また、アーム4と歯車5とは、歯車6を回転
させることにより円柱形枠8の上面の円の直径方向(r
軸方向)に張り渡されたレール7に沿って動かすことが
できるようになっている。歯車9はその回転軸がテーブ
ル10に固定されており、歯車9を回転させることによ
り円柱形枠8をファントム1のまわり(θ軸方向)で回
転させられるようになっている。
The arm 4 can be moved in the vertical direction (z-axis direction) by rotating the gear 5. Further, the arm 4 and the gear 5 are arranged such that when the gear 6 is rotated, a diameter direction (r
It can be moved along the rail 7 stretched in the axial direction). The rotation axis of the gear 9 is fixed to the table 10, and by rotating the gear 9, the cylindrical frame 8 can be rotated around the phantom 1 (in the θ axis direction).

【0015】図2は本発明によるSAR測定装置のブロ
ック図である。
FIG. 2 is a block diagram of the SAR measuring apparatus according to the present invention.

【0016】磁界検出プローブ3はファントム1の周囲
の磁界強度に応じて起電力を生じる。11は、磁界検出
プローブ3に接続された電圧測定手段であり、たとえば
スペクトラムアナライザが用いられる。SAR算出手段
12は、電圧測定手段11で測定した電圧に基づいて磁
界強度を算出し、この磁界強度に基づいてSARを算出
する。このSAR算出手段12はたとえばマイクロコン
ピュータで構成される。
The magnetic field detection probe 3 produces an electromotive force according to the magnetic field strength around the phantom 1. Reference numeral 11 is a voltage measuring means connected to the magnetic field detection probe 3, and for example, a spectrum analyzer is used. The SAR calculating means 12 calculates the magnetic field strength based on the voltage measured by the voltage measuring means 11, and calculates the SAR based on the magnetic field strength. The SAR calculating means 12 is composed of, for example, a microcomputer.

【0017】磁界検出プローブ3は、互いに直交する3
方向の磁界強度を検出するために3つの磁界検出素子か
ら成る。
The magnetic field detection probes 3 are orthogonal to each other 3
It is composed of three magnetic field detecting elements for detecting the magnetic field strength in the direction.

【0018】図3は、図1に示した磁界検出プローブ3
内の磁界検出素子を示し、(a)は1つの磁界検出素子
の断面図であり、(b)は磁界検出素子の(a)に示し
たC−C′断面図である。
FIG. 3 shows the magnetic field detection probe 3 shown in FIG.
2A is a cross-sectional view of one magnetic field detection element, and FIG. 6B is a cross-sectional view taken along line CC ′ of FIG.

【0019】磁界検出素子30は、銅線などの導線31
と、導線31のまわりを円柱状に覆う絶縁体34と、銅
線などをメッシュにして絶縁体34の周囲を覆った導体
32と、円筒状の導体32の円の部分の直径と同じ太さ
の銅棒などの導体33とから成り、導線31と導体33
とは点Gで接続され全体が円形に形成されおり、磁界検
出素子30のC−C′断面は、図3(b)に示すよう
に、導線31のまわりに絶縁体34が設けられ、そのま
わりを導体32が覆うように構成されている。
The magnetic field detecting element 30 includes a conducting wire 31 such as a copper wire.
And an insulator 34 that covers the conductor 31 in a cylindrical shape, a conductor 32 that covers the periphery of the insulator 34 with a mesh of copper wire, and the same thickness as the diameter of the circle portion of the cylindrical conductor 32. And a conductor 33 such as a copper rod of
Are connected to each other at a point G and are formed in a circular shape as a whole. In the CC ′ cross section of the magnetic field detecting element 30, as shown in FIG. The conductor 32 is configured to cover the surroundings.

【0020】導線31、導体32および導体33の材質
は導電率が互いに等しいものであればよく、銅の代りに
すべての導体の材質をたとえば真鍮にしてもよい。ま
た、導体32の長さnと導体33の長さmとは等しくな
るように構成されている。
The materials of the conductor 31, the conductor 32 and the conductor 33 may be those having the same conductivity, and all the conductors may be made of brass instead of copper. Further, the length n of the conductor 32 and the length m of the conductor 33 are configured to be equal.

【0021】この磁界検出素子30は、導線31、導体
32および導体33が形成する円に対して垂直方向の磁
束の変化が生じると、それに応じて導線31と導体33
に電流が発生し、端子Dと端子Fとの間に電位差を生じ
る。
In the magnetic field detecting element 30, when the magnetic flux changes in the direction perpendicular to the circle formed by the conductor 31, the conductor 32, and the conductor 33, the conductor 31 and the conductor 33 respond accordingly.
An electric current is generated in the terminal, and a potential difference is generated between the terminals D and F.

【0022】図4は磁界検出素子30の導線31、導体
32および導体33が形成する円に対して電界が垂直方
向に存在する場合の電界による影響を説明する図であ
る。
FIG. 4 is a diagram for explaining the influence of the electric field when the electric field exists in the direction perpendicular to the circle formed by the conductor 31, the conductor 32 and the conductor 33 of the magnetic field detecting element 30.

【0023】図5は磁界検出素子30の導線31、導体
32および導体33が形成する円に対して磁界が垂直方
向に存在する場合の磁界による影響を説明する図であ
る。
FIG. 5 is a view for explaining the influence of the magnetic field when the magnetic field exists in the direction perpendicular to the circle formed by the conductor 31, the conductor 32 and the conductor 33 of the magnetic field detecting element 30.

【0024】図4に示すように、紙面の表から裏に向か
って電界Eが生じた場合には、導線31には電流I3
矢印の方向に流れ、導体32には電流I2 が矢印の方向
に流れ、導体33には電流I1 が矢印の方向に流れる。
この場合には、電流I1 の大きさと電流I3 の大きさと
が等しいため、互いに打ち消しあって端子Dと端子Fと
の間には電位差を生じない。
As shown in FIG. 4, when an electric field E is generated from the front side to the back side of the paper, a current I 3 flows in the conductor 31 in the direction of the arrow, and a current I 2 flows in the conductor 32 in the arrow direction. , And a current I 1 flows through the conductor 33 in the direction of the arrow.
In this case, since the magnitude of the current I 1 and the magnitude of the current I 3 are equal to each other, they cancel each other out and no potential difference is generated between the terminals D and F.

【0025】一方、図5に示すように、紙面の表から裏
に向かって磁界Hが生じた場合には、導線31には電流
6 が矢印の方向に流れ、導体32には電流I5 が矢印
の方向に流れ、導体33には電流I4 が矢印の方向に流
れる。この場合には、端子Dと端子Fとの間に磁界Hの
強度に応じた電位差を生じる。
On the other hand, as shown in FIG. 5, when a magnetic field H is generated from the front side to the back side of the paper, a current I 6 flows in the conductor 31 in the direction of the arrow and a current I 5 flows in the conductor 32. Flows in the direction of the arrow, and a current I 4 flows in the conductor 33 in the direction of the arrow. In this case, a potential difference corresponding to the strength of the magnetic field H is generated between the terminals D and F.

【0026】すなわち、磁界検出素子30を図3(a)
に示すように構成することにより、電界を検出すること
なく磁界のみを検出することができる。
That is, the magnetic field detecting element 30 is shown in FIG.
With the configuration as shown in, it is possible to detect only the magnetic field without detecting the electric field.

【0027】図6は、磁界検出プローブ3内の磁界検出
素子の配置を説明する図である。
FIG. 6 is a diagram for explaining the arrangement of the magnetic field detecting elements in the magnetic field detecting probe 3.

【0028】本実施例では、磁界検出プローブ3は3つ
の磁界検出素子から成り、30a、30b、30cが、
それぞれ図3(a)に示した磁界検出素子30と同様の
磁界検出素子である。磁界検出素子30a、30b、3
0cは、それぞれの導体が形成する円の面どうしが互い
に直交し、それぞれの円の中心どうしがほぼ一致するよ
うに配置され、図6に示すように球形の骨格を形成す
る。
In this embodiment, the magnetic field detection probe 3 is composed of three magnetic field detection elements, and 30a, 30b and 30c are
Each is a magnetic field detection element similar to the magnetic field detection element 30 shown in FIG. Magnetic field detection elements 30a, 30b, 3
0c is arranged so that the planes of the circles formed by the conductors are orthogonal to each other and the centers of the circles are substantially coincident with each other, forming a spherical skeleton as shown in FIG.

【0029】磁界検出プローブ3は、各磁界検出素子の
導体どうしが接触することがないように球形の骨格の周
囲を絶縁体で全体が球形となるように包んで形成され
る。磁界検出素子30a、30b、30cの各端子(図
3(a)の端子DおよびFに相当する端子)からは信号
線が出ており、これらの信号線は一束にして信号線Jと
して引き出される。この信号線Jは、図1に示したアー
ム4に沿って引き出され電圧測定手段11に接続され
る。
The magnetic field detection probe 3 is formed by wrapping a spherical skeleton with an insulating material so that the conductors of the respective magnetic field detection elements are not in contact with each other. Signal lines are output from the respective terminals of the magnetic field detection elements 30a, 30b, 30c (terminals corresponding to the terminals D and F in FIG. 3A), and these signal lines are bundled and led out as a signal line J. Be done. The signal line J is drawn out along the arm 4 shown in FIG. 1 and connected to the voltage measuring means 11.

【0030】図7は、図3(a)に示した磁界検出プロ
ーブ3を用いて図1に示したファントム1の外部磁界を
測定する様子を説明する図である。図1および図6と同
じ構成部分には同じ参照番号を付してある。
FIG. 7 is a diagram for explaining how to measure the external magnetic field of the phantom 1 shown in FIG. 1 using the magnetic field detection probe 3 shown in FIG. 3 (a). The same components as those in FIGS. 1 and 6 are designated by the same reference numerals.

【0031】3aは、図6に示したように球形の骨格を
形成する磁界検出素子30a、30b、30cの周囲を
包む絶縁体である。
Reference numeral 3a is an insulator which surrounds the magnetic field detecting elements 30a, 30b and 30c forming a spherical skeleton as shown in FIG.

【0032】ファントム1の表面の磁界の測定は、磁界
検出プローブ3をファントム1の表面に接するように表
面に沿って移動させながら行う。この移動は、図1に示
した歯車5、6、9を回転させることにより行う。
The magnetic field on the surface of the phantom 1 is measured while moving the magnetic field detecting probe 3 along the surface of the phantom 1 so as to be in contact with the surface of the phantom 1. This movement is performed by rotating the gears 5, 6, 9 shown in FIG.

【0033】このとき、ファントム1の存在による電磁
場の信号線Jへの影響があるので、ファントム1と磁界
検出プローブ3の接する点の反対側の対向する位置に信
号線Jが常にくるようにすることが望ましい。こうする
ことで、ファントム1の存在による電磁場の影響を少な
くするとともにこの影響を常に一定にすることができ
る。このように、常にファントム1と磁界検出プローブ
3の接する点の反対側に信号線Jがくるようにするため
にはアーム4に可撓性があることが望ましい。
At this time, the presence of the phantom 1 affects the signal line J of the electromagnetic field, so that the signal line J is always located at the opposite position on the opposite side of the contact point between the phantom 1 and the magnetic field detection probe 3. Is desirable. By doing so, the influence of the electromagnetic field due to the existence of the phantom 1 can be reduced and the influence can be made constant at all times. In this way, it is desirable that the arm 4 be flexible so that the signal line J always comes to the opposite side of the point where the phantom 1 and the magnetic field detection probe 3 are in contact with each other.

【0034】磁界検出プローブ3は、磁界検出素子30
a、30b、30cのそれぞれの導体が形成する円の中
心から表面までの長さが一定値dとなるように半径dの
球形になっているので、磁界検出プローブ3をファント
ム1の表面に沿って移動させることにより、磁界強度測
定点をファントム1から等距離dに保持することが容易
になる。
The magnetic field detection probe 3 includes a magnetic field detection element 30.
Since the lengths from the center of the circle formed by the conductors a, 30b, and 30c to the surface have a constant value d, they are spherical with a radius d, so that the magnetic field detection probe 3 is placed along the surface of the phantom 1. By moving the phantom 1 with the phantom 1, it becomes easy to hold the magnetic field strength measurement point at an equal distance d.

【0035】磁界検出素子30a、30b、30cは3
方向の磁界強度に応じた起電力を生じる。この起電力は
信号線Jを介して図1に示した電圧測定手段11で測定
され、SAR算出手段12に入力される。
The magnetic field detecting elements 30a, 30b, 30c are 3
An electromotive force corresponding to the magnetic field strength in the direction is generated. This electromotive force is measured by the voltage measuring means 11 shown in FIG. 1 via the signal line J and input to the SAR calculating means 12.

【0036】SAR算出手段12では、入力された3方
向の磁界に応じた起電力から磁界強度を算出した後、磁
界強度平均値を算出し、磁界強度平均値の二乗値がSA
Rに比例するということに基づいてSARを算出する。
The SAR calculating means 12 calculates the magnetic field strength from the electromotive forces corresponding to the input magnetic fields in the three directions, then calculates the magnetic field strength average value, and the square value of the magnetic field strength average value is SA.
SAR is calculated based on being proportional to R.

【0037】図8は本発明によるSAR測定装置の別の
実施例の斜視図である。図1と同じ構成部分には同じ参
照番号を付してある。
FIG. 8 is a perspective view of another embodiment of the SAR measuring device according to the present invention. The same components as those in FIG. 1 are designated by the same reference numerals.

【0038】磁界検出プローブ3とアーム4とは歯車5
を回転させることにより上下方向(z軸方向)に動かす
ことができる。支柱13と支柱14とにはレール15が
渡してあり、歯車6を回転させることにより磁界検出プ
ローブ3とアーム4と歯車5とを左右方向(r軸方向)
に動かすことができる。支柱13と支柱14との間には
ターンテーブル16が設けられており、その上にファン
トム1が固定されており、このターンテーブル16が回
転することによりファントム1が回転(θ軸方向)でき
るようになっている。
The magnetic field detection probe 3 and the arm 4 have a gear 5
Can be moved in the vertical direction (z-axis direction) by rotating. A rail 15 is passed between the columns 13 and 14, and the magnetic field detection probe 3, the arm 4, and the gear 5 are moved in the left-right direction (r-axis direction) by rotating the gear 6.
Can be moved to. A turntable 16 is provided between the columns 13 and 14, and the phantom 1 is fixed on the turntable 16 so that the phantom 1 can rotate (in the θ-axis direction) by rotating the turntable 16. It has become.

【0039】本実施例においてSARを測定する手順
は、図1および図2に示した実施例の場合と同様なので
説明は省略する。
The procedure for measuring the SAR in this embodiment is the same as that in the embodiment shown in FIGS. 1 and 2, and the description thereof is omitted.

【0040】ところで、上記の実施例では磁界検出手段
として図3(a)に示した磁界検出素子を用いたが、本
発明はこれに限らず、ホール素子等の半導体素子を用い
て互いに直交する3方向の磁界強度を検出するようにし
てもよい。
By the way, in the above embodiment, the magnetic field detecting element shown in FIG. 3A was used as the magnetic field detecting means, but the present invention is not limited to this, and semiconductor elements such as Hall elements are used to make them orthogonal to each other. The magnetic field strength in three directions may be detected.

【0041】また、上記の実施例ではファントム1を固
定して磁界検出プローブ3を移動させたが、磁界検出プ
ローブ3を固定し、ファントム1を移動させてもよい。
Although the phantom 1 is fixed and the magnetic field detection probe 3 is moved in the above embodiment, the magnetic field detection probe 3 may be fixed and the phantom 1 may be moved.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
ファントムの上昇温度ではなく外部磁界の強度からSA
Rを算出するので、携帯無線機の何倍もの放射電力の電
波を出力する測定用の電波発生装置などを特別に設ける
必要もなく、簡易な測定手法で且つ小さな測定誤差でS
ARを測定することが可能となる。
As described above, according to the present invention,
SA from the strength of the external magnetic field rather than the rising temperature of the phantom
Since R is calculated, there is no need to specially install a radio wave generator for measurement that outputs radio waves with radiated power many times that of a portable wireless device, and a simple measurement method with a small measurement error is used.
It becomes possible to measure AR.

【0043】また、本発明によれば、互いに直交する3
方向の磁界強度を同時に測定することができるので、磁
界の測定を1回ですますことができ、測定が容易になる
とともに測定にかかる時間を短縮することができる。
Further, according to the present invention, the three orthogonal
Since the magnetic field strengths in the directions can be measured at the same time, the magnetic field can be measured only once, facilitating the measurement and reducing the time required for the measurement.

【0044】さらに、本発明によれば、磁界検出手段と
しての磁界検出プローブは、磁界検出素子の導体が形成
する円の中心、すなわち磁界測定点から磁界検出プロー
ブの表面までの長さが一定になるように、絶縁体で覆わ
れているので、ファントムからの距離が一定の点におけ
る磁界強度の測定が容易に行える。
Further, according to the present invention, in the magnetic field detecting probe as the magnetic field detecting means, the center of the circle formed by the conductor of the magnetic field detecting element, that is, the length from the magnetic field measuring point to the surface of the magnetic field detecting probe is constant. As described above, since it is covered with an insulator, it is possible to easily measure the magnetic field strength at a point where the distance from the phantom is constant.

【0045】さらにまた、本発明によれば、磁界検出プ
ローブからの信号線が常にファントムと磁界検出プロー
ブの接する点の反対側の対向する位置にくるように磁界
検出プローブを移動させることができるので、ファント
ムの存在による電磁場の磁界検出プローブからの信号線
への影響を少なくするとともに、この影響を常に一定に
することができ、測定値のばらつきを少なくすることが
できる。
Furthermore, according to the present invention, the magnetic field detection probe can be moved so that the signal line from the magnetic field detection probe is always located at the opposite position on the opposite side of the contact point between the phantom and the magnetic field detection probe. The influence of the electromagnetic field on the signal line from the magnetic field detection probe due to the presence of the phantom can be reduced, and this influence can be made constant at all times, and the dispersion of the measured values can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるSAR測定装置の一実施例の斜視
図である。
FIG. 1 is a perspective view of an embodiment of a SAR measuring device according to the present invention.

【図2】本発明によるSAR測定装置のブロック図であ
る。
FIG. 2 is a block diagram of a SAR measurement device according to the present invention.

【図3】図1に示した磁界検出プローブ内の磁界検出素
子を示し、(a)は1つの磁界検出素子の断面図であ
り、(b)は磁界検出素子の(a)に示したC−C′断
面図である。
3 shows a magnetic field detecting element in the magnetic field detecting probe shown in FIG. 1, (a) is a sectional view of one magnetic field detecting element, and (b) is a C shown in (a) of the magnetic field detecting element. It is a C'cross section.

【図4】磁界検出素子の導体が形成する円に対して垂直
方向に存在する電界の影響の説明図である。
FIG. 4 is an explanatory diagram of an influence of an electric field existing in a direction perpendicular to a circle formed by a conductor of a magnetic field detection element.

【図5】磁界検出素子の導体が形成する円に対して垂直
方向に存在する磁界の影響の説明図である。
FIG. 5 is an explanatory diagram of an influence of a magnetic field existing in a direction perpendicular to a circle formed by a conductor of a magnetic field detection element.

【図6】磁界検出プローブ内の磁界検出素子の配置の説
明図である。
FIG. 6 is an explanatory diagram of the arrangement of magnetic field detection elements in the magnetic field detection probe.

【図7】図3(a)に示した磁界検出プローブを用いて
図1に示したファントムの外部磁界を測定する様子の説
明図である。
7 is an explanatory diagram showing how the external magnetic field of the phantom shown in FIG. 1 is measured using the magnetic field detection probe shown in FIG.

【図8】本発明によるSAR測定装置の別の実施例の斜
視図である。
FIG. 8 is a perspective view of another embodiment of the SAR measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1 ファントム 2 携帯無線機 3 磁界検出プローブ 4 アーム 5、6、9 歯車 7 レール 8 円柱形枠 10 テーブル 11 電圧測定手段 12 SAR算出手段 1 Phantom 2 Portable Radio Device 3 Magnetic Field Detection Probe 4 Arms 5, 6, 9 Gears 7 Rails 8 Cylindrical Frame 10 Table 11 Voltage Measuring Means 12 SAR Calculating Means

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 人体などの生体と誘電率および透磁率が
等しい擬似生体模型と、 該擬似生体模型に固定された電磁波発生手段と、 前記擬似生体模型の周囲における前記電磁波発生手段に
よる磁界のうち互いに平行でない3以上の方向の磁界の
強度を測定する磁界検出手段と、 前記擬似生体模型と前記磁界検出手段との相対位置を互
いに平行でない3以上の方向に移動する移動手段とを備
えたことを特徴とするSAR測定装置。
1. A pseudo biological model having the same permittivity and magnetic permeability as that of a living body such as a human body, an electromagnetic wave generating means fixed to the pseudo biological model, and a magnetic field generated by the electromagnetic wave generating means around the pseudo biological model. Magnetic field detecting means for measuring magnetic field strength in three or more directions not parallel to each other; and moving means for moving relative positions of the pseudo biological model and the magnetic field detecting means in three or more directions not parallel to each other. A SAR measuring device characterized by:
【請求項2】 前記磁界検出手段により得られた磁界強
度に基づいて前記擬似生体模型の電磁波の吸収量を算出
するSAR算出手段をさらに備えたことを特徴とする請
求項1に記載のSAR測定装置。
2. The SAR measurement device according to claim 1, further comprising SAR calculation means for calculating an electromagnetic wave absorption amount of the pseudo biological model based on the magnetic field strength obtained by the magnetic field detection means. apparatus.
【請求項3】 前記磁界検出手段が、互いに直交する3
方向の磁界強度を同時に測定するものであることを特徴
とする請求項1に記載のSAR測定装置。
3. The magnetic field detecting means are orthogonal to each other.
The SAR measuring device according to claim 1, wherein the magnetic field strengths in the directions are simultaneously measured.
【請求項4】 前記磁界検出手段が、棒状の絶縁体に固
定されていることを特徴とする請求項1に記載のSAR
測定装置。
4. The SAR according to claim 1, wherein the magnetic field detecting means is fixed to a rod-shaped insulator.
measuring device.
【請求項5】 前記棒状の絶縁体が可撓性を有すること
を特徴とする請求項4に記載のSAR測定装置。
5. The SAR measuring device according to claim 4, wherein the rod-shaped insulator has flexibility.
【請求項6】 前記磁界検出手段が絶縁物で覆われてい
ることを特徴とする請求項1に記載のSAR測定装置。
6. The SAR measuring device according to claim 1, wherein the magnetic field detecting means is covered with an insulator.
【請求項7】 前記移動手段が、前記磁界検出手段の信
号出力端子側が前記擬似生体模型と常に反対の位置にく
るように前記擬似生体模型または前記磁界検出手段を移
動するものであることを特徴とする請求項1に記載のS
AR測定装置。
7. The moving means moves the pseudo biological model or the magnetic field detecting means such that a signal output terminal side of the magnetic field detecting means is always at a position opposite to the pseudo biological model. And S according to claim 1.
AR measuring device.
【請求項8】 前記移動手段が、前記擬似生体模型と前
記磁界検出手段との相対位置を互いに直交する3方向に
移動するものであることを特徴とする請求項1に記載の
SAR測定装置。
8. The SAR measuring device according to claim 1, wherein the moving means moves the relative positions of the pseudo biological model and the magnetic field detecting means in three directions orthogonal to each other.
【請求項9】 前記擬似生体模型が、円柱形、球形また
は人体の頭部を模した形状のいずれかであることを特徴
とする請求項1に記載のSAR測定装置。
9. The SAR measuring device according to claim 1, wherein the pseudo biological model has any one of a cylindrical shape, a spherical shape, and a shape imitating a head of a human body.
【請求項10】 前記移動手段が、前記擬似生体模型を
載置し回転するターンテーブルを有することを特徴とす
る請求項1に記載のSAR測定装置。
10. The SAR measuring apparatus according to claim 1, wherein the moving unit has a turntable on which the pseudo biological model is placed and rotated.
【請求項11】 人体などの生体と誘電率および透磁率
が等しい擬似生体模型と、 該擬似生体模型に固定された電磁波発生手段と、 前記擬似生体模型の周囲における前記電磁波発生手段に
よる磁界のうち互いに平行でない3以上の方向の磁界の
強度を測定する磁界検出手段と、 前記擬似生体模型と前記磁界検出手段との相対位置を互
いに平行でない3以上の方向に移動する移動手段とを用
いて、 前記磁界検出手段からの磁界強度に基づいて前記擬似生
体模型の電磁波の吸収量を算出するSAR測定方法。
11. A pseudo biological model having the same permittivity and magnetic permeability as that of a living body such as a human body, an electromagnetic wave generating means fixed to the pseudo biological model, and a magnetic field generated by the electromagnetic wave generating means around the pseudo biological model. Using magnetic field detecting means for measuring magnetic field strengths in three or more directions that are not parallel to each other, and moving means for moving relative positions of the pseudo biological model and the magnetic field detecting means in three or more directions that are not parallel to each other, A SAR measuring method for calculating an electromagnetic wave absorption amount of the pseudo biological model based on the magnetic field intensity from the magnetic field detecting means.
【請求項12】 前記磁界検出手段が、互いに直交する
3方向の磁界強度を同時に測定するものであることを特
徴とする請求項11に記載のSAR測定方法。
12. The SAR measuring method according to claim 11, wherein the magnetic field detecting means simultaneously measures magnetic field strengths in three directions orthogonal to each other.
JP5256418A 1993-09-20 1993-09-20 SAR measuring device and measuring method Expired - Lifetime JP2630222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5256418A JP2630222B2 (en) 1993-09-20 1993-09-20 SAR measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5256418A JP2630222B2 (en) 1993-09-20 1993-09-20 SAR measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPH0792110A true JPH0792110A (en) 1995-04-07
JP2630222B2 JP2630222B2 (en) 1997-07-16

Family

ID=17292398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5256418A Expired - Lifetime JP2630222B2 (en) 1993-09-20 1993-09-20 SAR measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2630222B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004399A3 (en) * 1998-07-14 2001-11-08 Deutsche Telekom Ag Device for measuring the specific absorption rate
KR20030002957A (en) * 2001-07-03 2003-01-09 한국전자통신연구원 Algorithm For Evaluating Localized SAR In Human Body Exposed To Electromagnetic Fields
WO2003098238A1 (en) * 2002-05-17 2003-11-27 Matsushita Electric Industrial Co., Ltd. Local sar measurement device and method
WO2004048949A1 (en) * 2002-11-22 2004-06-10 The Education & Research Foundation For Industry, University, And Research Institute In Chungnam National University Sar measurement system and method of operating the same
JP2008134218A (en) * 2006-10-23 2008-06-12 Ntt Docomo Inc System and method for measuring specific absorption rate
WO2011149258A3 (en) * 2010-05-25 2012-03-01 한국전자통신연구원 Method and device for evaluating influence of electromagnetic waves of base station on human body
KR101313305B1 (en) * 2011-12-28 2013-09-30 한국원자력의학원 Rotation type Dual Window Phantom
WO2015186160A1 (en) * 2014-06-06 2015-12-10 東芝三菱電機産業システム株式会社 A device for measuring 3d surface potential distribution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247205A (en) * 1986-04-19 1987-10-28 Toyo Seikan Kaisha Ltd Detecting method of buckled can and apparatus therefor
JPH0285785A (en) * 1988-09-22 1990-03-27 Ube Ind Ltd Device and method for automatically measuring magnetic flux density
JPH0324990A (en) * 1989-06-23 1991-02-01 Giken Saamoratsukusu:Kk Formation of solid image
JPH0373836A (en) * 1989-08-14 1991-03-28 Nippon Telegr & Teleph Corp <Ntt> Biophantom
JPH04114631A (en) * 1990-09-04 1992-04-15 Murata Mfg Co Ltd Manufacture of solid fanthom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247205A (en) * 1986-04-19 1987-10-28 Toyo Seikan Kaisha Ltd Detecting method of buckled can and apparatus therefor
JPH0285785A (en) * 1988-09-22 1990-03-27 Ube Ind Ltd Device and method for automatically measuring magnetic flux density
JPH0324990A (en) * 1989-06-23 1991-02-01 Giken Saamoratsukusu:Kk Formation of solid image
JPH0373836A (en) * 1989-08-14 1991-03-28 Nippon Telegr & Teleph Corp <Ntt> Biophantom
JPH04114631A (en) * 1990-09-04 1992-04-15 Murata Mfg Co Ltd Manufacture of solid fanthom

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004399A3 (en) * 1998-07-14 2001-11-08 Deutsche Telekom Ag Device for measuring the specific absorption rate
US6587677B1 (en) 1998-07-14 2003-07-01 Deutsche Telekom Ag Apparatus for measuring specific absorption rates
KR20030002957A (en) * 2001-07-03 2003-01-09 한국전자통신연구원 Algorithm For Evaluating Localized SAR In Human Body Exposed To Electromagnetic Fields
WO2003098238A1 (en) * 2002-05-17 2003-11-27 Matsushita Electric Industrial Co., Ltd. Local sar measurement device and method
CN100360946C (en) * 2002-05-17 2008-01-09 松下电器产业株式会社 Apparatus for and method of measuring local specific absorption range SAR
WO2004048949A1 (en) * 2002-11-22 2004-06-10 The Education & Research Foundation For Industry, University, And Research Institute In Chungnam National University Sar measurement system and method of operating the same
KR100600476B1 (en) * 2002-11-22 2006-07-13 충남대학교산학협력단 SAR Measurement System and Method of Electron Wave
JP2008134218A (en) * 2006-10-23 2008-06-12 Ntt Docomo Inc System and method for measuring specific absorption rate
WO2011149258A3 (en) * 2010-05-25 2012-03-01 한국전자통신연구원 Method and device for evaluating influence of electromagnetic waves of base station on human body
US8886129B2 (en) 2010-05-25 2014-11-11 Electronics And Telecommunications Research Institute Method and device for evaluating influence of electromagnetic waves of base station on human body
KR101313305B1 (en) * 2011-12-28 2013-09-30 한국원자력의학원 Rotation type Dual Window Phantom
WO2015186160A1 (en) * 2014-06-06 2015-12-10 東芝三菱電機産業システム株式会社 A device for measuring 3d surface potential distribution
CN106461707A (en) * 2014-06-06 2017-02-22 东芝三菱电机产业系统株式会社 A device for measuring 3D surface potential distribution
JPWO2015186160A1 (en) * 2014-06-06 2017-04-20 東芝三菱電機産業システム株式会社 3D surface potential distribution measuring device
US10041980B2 (en) 2014-06-06 2018-08-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Three-dimensional surface potential distribution measurement apparatus
CN106461707B (en) * 2014-06-06 2019-03-05 东芝三菱电机产业系统株式会社 Three-dimensional surface Potential distribution measuring device

Also Published As

Publication number Publication date
JP2630222B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
TWI518348B (en) Magnetfeldsensor
US7006046B2 (en) Low cost electronic probe devices manufactured from conductive loaded resin-based materials
O’Donoghue et al. Catheter position tracking system using planar magnetics and closed loop current control
JPH06500031A (en) probe system
JP2790103B2 (en) Specific absorption rate measuring device and specific absorption rate measuring method
JPH0792110A (en) Sar measuring equipment and measuring method
US6483304B1 (en) Magnetic field probe having a shielding and isolating layers to protect lead wires extending between a coil and pads
CN202995013U (en) Three-dimensional intermediate frequency high-intensity magnetic field measuring probe
Shibuya et al. Electromagnetic waves from partial discharges in windings and their detection by patch antenna
JP6803974B2 (en) Devices and methods for measuring the current strength of one individual conductor in a multi-conductor system
JP2956718B2 (en) Electromagnetic field distribution measuring device, electromagnetic wave source analysis system, and electromagnetic field analysis system
WO2020103031A1 (en) Probe, array probe, detector, and method
JPH0658970A (en) Both side jamming measuring apparatus
JP2002526949A (en) Apparatus for measuring specific absorption rate
JP3817469B2 (en) Current distribution measuring device
JPS61112923A (en) Apparatus for detecting displacement
Reticcioli et al. An automated scanning system for the acquisition of nonuniform time-varying magnetic fields
US9329207B2 (en) Surface current probe
KR100653931B1 (en) 3-axes magnetic field measurement probe
JP2001228227A (en) Magnetic-field measuring device
Bréard et al. Overview on the evolution of near magnetic field coupling prediction using equivalent multipole spherical harmonic sources
JPH09304457A (en) Probe apparatus
JP7351951B2 (en) How to measure the magnetic field of a railway vehicle body
JPH041307B2 (en)
JP6383972B2 (en) Temperature measurement probe and temperature measurement system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970304