JPH0792006A - Deterioration detecting method for liquid sensor - Google Patents

Deterioration detecting method for liquid sensor

Info

Publication number
JPH0792006A
JPH0792006A JP5203405A JP20340593A JPH0792006A JP H0792006 A JPH0792006 A JP H0792006A JP 5203405 A JP5203405 A JP 5203405A JP 20340593 A JP20340593 A JP 20340593A JP H0792006 A JPH0792006 A JP H0792006A
Authority
JP
Japan
Prior art keywords
light
sensor
liquid
sensor unit
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5203405A
Other languages
Japanese (ja)
Inventor
Naonari Sasano
直成 笹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP5203405A priority Critical patent/JPH0792006A/en
Publication of JPH0792006A publication Critical patent/JPH0792006A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To detect whether measurement by a liquid sensor is carried out normally or not. CONSTITUTION:A current to be supplied to a light transmission module 8 is photoelectrically converted into a light, which is transmitted in a transmission path optical fiber 9, and the light is reflected in a sensor unit 10 on the basis of a refractive index of a contact substance, transmitted in a transmission path optical fiber 11, and photoelectrically converted by the light receiving module 12 so as to detect the substance in contact with the sensor unit 10. A current fed to the light transmission module 8 before the use of the sensor is varied by means of a driving circuit 14, the minimum current value to be fed to the light transmission module 8 at the time of starting output from the light receiving module 12 is measured, a supply current to the light transmission module 8 after the use of the sensor is varied so as to be compared with a supply current value at the time of starting output from the light receiving module 12, and consequently, the deterioration in the sensor unit 10 is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバを用いた液
体センサの劣化を検出する方法に関し、特に液面の位置
等を検出する液体センサのセンサ部の汚れ等により測定
誤差が生じるのを防止するための液体センサの劣化検出
方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting deterioration of a liquid sensor using an optical fiber, and more particularly, to prevent a measurement error due to contamination of the sensor portion of the liquid sensor for detecting the position of the liquid surface. The present invention relates to a liquid sensor deterioration detection method for preventing the deterioration.

【0002】[0002]

【従来の技術】従来から、液体の液面の位置を検知する
センサとして種々のものがあるが、2本の多成分ガラス
ファイバの末端を相互に加熱融着したセンサヘッド構造
を持ち、センサヘッドが接する物質の屈折率によりセン
サヘッドから漏光する光量により物質を検知する液体検
知センサが知られている。この種の液体検知センサは伝
送路及びセンサ自体がガラスファイバを用いたため、安
全性の点から可燃性液体にも適用可能であるため有用で
ある。このような液体検知センサ1として、図4に示す
ように、外部を補強体で被覆された伝送路用光ファイバ
2及び3と、伝送路用光ファイバ2及び3の先端を加熱
融着し球状に形成したセンサ部4と、伝送路用光ファイ
バ2または3の他端にそれぞれ接続される発光部5及び
受光部6とを備えたものである。発光部5から発光され
る光P1は光ファイバ2中を伝播しセンサ部4に達する
と、センサ部4が配置された気体あるいは液体中にセン
サ部4の先端から大部分は漏光P2し、一部の光P3は反
射され光ファイバ3中を伝播し受光部6に受光される。
2. Description of the Related Art Conventionally, there are various types of sensors for detecting the position of the liquid surface of a liquid. However, the sensor head has a sensor head structure in which the ends of two multi-component glass fibers are heated and fused to each other. There is known a liquid detection sensor that detects a substance by the amount of light leaking from the sensor head due to the refractive index of the substance in contact with. This type of liquid detection sensor is useful because it can be applied to a flammable liquid from the viewpoint of safety, since the transmission line and the sensor itself use glass fibers. As such a liquid detection sensor 1, as shown in FIG. 4, the optical fibers 2 and 3 for transmission lines whose outsides are covered with a reinforcing member, and the tips of the optical fibers 2 and 3 for transmission lines are heat-fused to form a spherical shape. And a light emitting section 5 and a light receiving section 6 which are respectively connected to the other ends of the transmission path optical fibers 2 or 3. When the light P 1 emitted from the light emitting section 5 propagates through the optical fiber 2 and reaches the sensor section 4, most of the light leaks P 2 from the tip of the sensor section 4 into the gas or liquid in which the sensor section 4 is arranged. , Part of the light P 3 is reflected, propagates through the optical fiber 3, and is received by the light receiving unit 6.

【0003】ここでセンサ部4で漏光する光P2の光量
はセンサ部4が配置される物質の屈折率に依存し、屈折
率が大きい程漏光P2の光量は増大し、反射光P3の光量
は減少する。この反射光量の変化によりセンサ部4の接
する物質を判別することができる。特に、屈折率に差の
ある物質、例えば空気と水等では、空気の反射光量を1
00として表した図5に示すように、反射光量に明確な
差があり、センサ部4が何れの物質に接しているかを容
易に判別することができる。
The amount of light P 2 leaked by the sensor unit 4 depends on the refractive index of the substance on which the sensor unit 4 is arranged. The greater the refractive index, the greater the amount of leaked light P 2 and the reflected light P 3 The light intensity of is reduced. The substance in contact with the sensor unit 4 can be identified by the change in the reflected light amount. Especially for substances with different refractive indices, such as air and water,
As shown in FIG. 5 represented by 00, there is a clear difference in the amount of reflected light, and it is possible to easily determine which substance the sensor unit 4 is in contact with.

【0004】[0004]

【発明が解決すべき課題】このような液体検知センサ1
の発光部5はLED等に一定の電力を供給し、一定の光
量の光を発光させ、センサ部4で反射された光を受光す
る。液体センサ1の受光部6で受光する光量は、図6に
示すように、発光部5で発光された光量a1が光ファイ
バ2を伝播中に損失しa2となり、センサ部4でセンサ
部4が接する物質の屈折率により漏光し残りの光量a3
が光ファイバ3中に伝播され、更に光ファイバ3の伝播
損失によりa4の光量となる。センサ部4が検出できる
範囲は受光部6に受光した光を光電変換して出力されな
くなるまでの範囲が検出可能であり、これはセンサ部4
において反射光量がa5になるまで漏光される物質を検
知できることである。
Such a liquid detection sensor 1
The light emitting unit 5 supplies a constant electric power to the LED or the like, emits a constant amount of light, and receives the light reflected by the sensor unit 4. As shown in FIG. 6, the amount of light received by the light receiving unit 6 of the liquid sensor 1 is a 2 of the amount of light emitted from the light emitting unit 5 during propagation through the optical fiber 2 and becomes a 2 , and the sensor unit 4 uses the sensor unit 4 the remaining amount a 3 to light leak by refraction index of the material is in contact
Is propagated in the optical fiber 3, and the amount of light is a 4 due to the propagation loss of the optical fiber 3. The range that can be detected by the sensor unit 4 can be detected until the light received by the light receiving unit 6 is photoelectrically converted and is no longer output.
In, the substance that leaks light can be detected until the amount of reflected light reaches a 5 .

【0005】しかしながら、センサ部4からの漏光、即
ちセンサ部4の光量損失はセンサヘッドの汚れ等により
変化する。そのため、センサヘッドの汚れに気が付かず
に検出を行っていると、誤った検出がされてしまうこと
になった。現状ではセンサヘッドの汚れを検出する方法
はなく、このため、検出の正誤を判断する手段はなく、
しばしばメンテナンスを行わなければならないという欠
点があった。
However, the leakage of light from the sensor unit 4, that is, the loss of the light amount of the sensor unit 4 changes due to dirt on the sensor head. Therefore, if the detection is performed without noticing the dirt on the sensor head, the detection will be erroneously performed. At present, there is no method to detect the dirt of the sensor head, and therefore, there is no means to judge the correctness of the detection.
The drawback was that maintenance was often required.

【0006】本発明は上記の欠点を解消するためになさ
れたものであって、液体センサの検出が正しくなされて
いるか簡単に判断することができ、従って、常に液体セ
ンサにより正しい検出を行うことができ、不要のメンテ
ンスを行う必要がなく、効率よく液体センサの劣化を検
出することができる液体センサの劣化検出方法を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned drawbacks, and it is possible to easily judge whether or not the detection of the liquid sensor is correct, and therefore, the correct detection can always be performed by the liquid sensor. An object of the present invention is to provide a liquid sensor deterioration detection method capable of efficiently detecting deterioration of the liquid sensor without performing unnecessary maintenance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の液体センサの劣化検出方法は、光電変換を
行う発光部からの光をセンサ部から照射し、センサ部が
接する物質の屈折率に対応して光量が変化されて反射さ
れた光を受光部で受光することによりセンサ部が接する
物質を検出する液体センサの劣化を検出する方法であっ
て、液体センサの使用に先立ち発光部へ供給する電流を
変化させて受光部で光電変換された出力が得られる最小
の供給電流値を予め測定し、液体センサの使用後に発光
部へ供給する電流を変化させ受光部で光電変換された出
力が得られる最小の供給電流値と、使用前の最小の供給
電流値とを比較して前記センサ部の劣化を検出するもの
である。
In order to achieve the above object, a method for detecting deterioration of a liquid sensor according to the present invention comprises irradiating light from a light emitting section for photoelectric conversion from the sensor section and refracting a substance in contact with the sensor section. A method for detecting deterioration of a liquid sensor that detects a substance in contact with the sensor unit by receiving light reflected by the light amount that is changed in accordance with the rate, and a light emitting unit prior to using the liquid sensor. The minimum supply current value at which the photoelectrically converted output is obtained by changing the current supplied to the light receiving part is measured in advance, and the current supplied to the light emitting part is changed after the liquid sensor is used and photoelectrically converted by the light receiving part. The deterioration of the sensor unit is detected by comparing the minimum supply current value at which an output is obtained and the minimum supply current value before use.

【0008】[0008]

【作用】発光部に供給される電流を変化させることがで
きるようにする。発光部で光電変換されて発光される光
量が伝送路の光ファイバ、センサ部で損失され受光部で
光受信され光電変換されて出力される際、受光部から出
力が得られる時の発光部への最小の供給電流値を使用に
先立ち予め測定しておく。センサ部が劣化しているか検
出する時は、受光部の出力が得られる時の発光部への最
小供給電流値を測定し、使用に先立ちセンサ部が正常に
作動している時に予め測定した最小供給電流値と比較す
る。発光部への供給電流値が予め測定した供給電流値よ
り大きい場合、センサ部で異常な漏光が生じていること
がわかり、センサ部が劣化していることを検出できる。
Function: The current supplied to the light emitting portion can be changed. When the amount of light emitted by photoelectric conversion in the light emitting unit is lost in the optical fiber of the transmission line, the sensor unit and received by the light receiving unit, photoelectrically converted and output, to the light emitting unit when output is obtained from the light receiving unit The minimum supply current value of is measured in advance before use. When detecting whether the sensor unit is deteriorated, measure the minimum supply current value to the light emitting unit when the output of the light receiving unit is obtained, and measure the minimum value previously measured when the sensor unit is operating normally before use. Compare with the supply current value. When the value of the supply current to the light emitting unit is larger than the value of the supply current measured in advance, it can be known that abnormal light leakage has occurred in the sensor unit, and it can be detected that the sensor unit is deteriorated.

【0009】[0009]

【実施例】本発明の液体センサの劣化検出方法を適用し
た一実施例を図面を参照して説明する。図1に示すよう
に、液体センサ7は発光部である光送信モジュール8、
光送信モジュール8に一端を接続され光送信モジュール
8から発光された光を伝播する伝送路用光ファイバ9、
伝送路用光ファイバ9の他端と共に一端が熱融着され球
状のセンサ部10を形成する伝送路用光ファイバ11、
伝送路用光ファイバ11の他端に接続される受光部であ
る光受信モジュール12を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment to which the liquid sensor deterioration detecting method of the present invention is applied will be described with reference to the drawings. As shown in FIG. 1, the liquid sensor 7 includes an optical transmitter module 8 which is a light emitting unit,
An optical fiber 9 for a transmission line, one end of which is connected to the optical transmission module 8 and which propagates light emitted from the optical transmission module 8,
One end of the optical fiber 9 for transmission path is fused with the other end of the optical fiber 9 for transmission path to form a spherical sensor section 10.
An optical receiving module 12 which is a light receiving unit connected to the other end of the transmission path optical fiber 11 is provided.

【0010】伝送路用光ファイバ9、11は多成分ガラ
スファイバからなり、先端を相互に熱融着され、図4に
示すセンサ部4と同様の球状に形成されてセンサ部10
を構成するものである。センサ部10は接する物質によ
り球状の先端から伝送路用光ファイバ9中を伝送された
光を漏光させ、漏光しない光を反射させ伝送路用光ファ
イバ11に導くものである。反射光量は接する物質の屈
折率により変化される。
The optical fibers 9 and 11 for the transmission line are composed of multi-component glass fibers, and their tips are heat-sealed to each other and formed into a spherical shape similar to the sensor section 4 shown in FIG.
It is what constitutes. The sensor unit 10 causes the light transmitted through the optical fiber 9 for transmission path from the spherical tip to leak through the contacting substance, and reflects the light that does not leak to guide it to the optical fiber 11 for transmission path. The amount of reflected light is changed by the refractive index of the substance in contact.

【0011】このようなセンサ部10に伝送路用光ファ
イバ9を伝播して送られる光を発光する光送信モジュー
ル8は、発光ダイオード(LED)13と、端子Ta
介してLED13に電源を供給する駆動回路14を有す
る。駆動回路14は抵抗R1、〜Rnが直列に接続される
ネットワーク15及び各抵抗R1、〜Rnの接続を切換え
る端子T1、〜Tnを備え、CPU20により選択された
抵抗R1、〜Rnに対応した端子T1、〜Tnが電源Vcc
に接続される。そのため、端子T1、〜Tnの接続を切換
えられることによりLED13に所望の電流を供給でき
るようになっている。
The optical transmission module 8 which emits the light transmitted through the optical fiber 9 for the transmission path to the sensor unit 10 as described above, supplies power to the LED 13 via the light emitting diode (LED) 13 and the terminal T a. It has a drive circuit 14 for supplying. The drive circuit 14 is provided with a network 15 in which resistors R 1 and ˜R n are connected in series and terminals T 1 and ˜T n for switching the connection of the resistors R 1 and ˜R n , and the resistor R 1 selected by the CPU 20. , the terminal T 1 corresponding to to R n, through T n is the power supply Vcc
Connected to. Therefore, a desired current can be supplied to the LED 13 by switching the connection of the terminals T 1 to T n .

【0012】LED13は端子Tbを介してグランドに
接続され、端子Taからの電流を光電変換し供給電流に
正比例した光量を発光する。抵抗とLED13の発光量
は反比例関係であり、抵抗R1、〜Rnの接点が切換えら
れることにより発光量を変化させることができるもので
ある。また、光受信モジュール12は受光素子16及び
光電変換回路17を有する。受光素子16はセンサ部1
0で反射され伝送路用光ファイバ11を伝播した光を受
光し、光電変換回路17で光量に対応した電流に光電変
換して出力されるようになっている。光電変換された電
流を増幅するアンプ18が備えられ、増幅された電流は
CPU20に入力される。CPU20にはLED13に
供給される一定電流に対してセンサ部10が検知する物
質により受光素子16から出力される電流値e1が予め
入力されており、アンプ18から送出される電流値と電
流値e1とを比較し、電流値e1以上の場合、リレー回路
21を作動させるようになっている。リレー回路21
は、図示しない警告を発する警告音や、ランプの点滅等
の警告発生装置、あるいは、液面の位置の低下を検知し
てバルブの開閉等を行う装置との接続を切換えて作動さ
せるために備えられる。更に、CPU20には、液体セ
ンサ7のセンサ部10が正常に作動しているか検出する
ため、アンプ18で増幅された電流値を表示する表示部
22が設けられる。
The LED 13 is connected to the ground through a terminal T b , photoelectrically converts the current from the terminal T a, and emits a light amount directly proportional to the supply current. The resistance and the light emission amount of the LED 13 are in inverse proportion to each other, and the light emission amount can be changed by switching the contacts of the resistors R 1 to R n . The light receiving module 12 also includes a light receiving element 16 and a photoelectric conversion circuit 17. The light receiving element 16 is the sensor unit 1.
The light reflected at 0 and propagated through the transmission line optical fiber 11 is received, and is photoelectrically converted by the photoelectric conversion circuit 17 into a current corresponding to the amount of light and output. An amplifier 18 that amplifies the photoelectrically converted current is provided, and the amplified current is input to the CPU 20. The current value e 1 output from the light receiving element 16 by the substance detected by the sensor unit 10 with respect to the constant current supplied to the LED 13 is previously input to the CPU 20, and the current value and the current value sent from the amplifier 18 comparing the e 1, if the current value e 1 or more, so as to actuate the relay circuit 21. Relay circuit 21
Is provided for switching the connection with a warning sound (not shown), a warning device such as a blinking lamp, or a device that detects a decrease in the position of the liquid level and opens and closes the valve. To be Further, the CPU 20 is provided with a display unit 22 for displaying the current value amplified by the amplifier 18 in order to detect whether the sensor unit 10 of the liquid sensor 7 is operating normally.

【0013】このような構成の液体センサ7を用いて液
体の検知を行う場合、例えば、図2に示すように、空気
23、液体24が収納される容器25中の液面が下降す
るのを検知する場合、下降する界面が許容される最下位
に位置するようにセンサ部10を設置する。今、図にお
いては、センサ部10は液体24中にある。このように
センサ部10を設置された液体センサ7の、端子T1
〜Tnから選択された端子を接続された駆動回路14か
ら所定の電流がLED13に供給される。LED13で
所定の電流が所定の光量に光電変換され、伝送路用光フ
ァイバ9を通って伝送される。センサ部10では先端か
ら液体24の屈折率に応じて漏光し、屈折率に応じて反
射した光が伝送路用光ファイバ11を通って、受光素子
16に受光される。受光素子16で光電変換され、アン
プ18で増幅された電流がCPU20に入力される。C
PU20には、センサ部10が液体中にある場合、LE
D13に供給される一定電流に対してセンサ部10から
の漏光により受光素子16に受光された光が光電変換さ
れて出力される電流値e2を予め入力しておく。
When the liquid sensor 7 having such a structure is used to detect a liquid, for example, as shown in FIG. 2, the liquid level in the container 25 in which the air 23 and the liquid 24 are stored is lowered. When detecting, the sensor unit 10 is installed so that the descending interface is located at the lowest allowed position. Now, in the figure, the sensor portion 10 is in the liquid 24. In this way, the terminal T 1 of the liquid sensor 7 in which the sensor unit 10 is installed,
From the drive circuit 14 connected to the selected terminal from the through T n predetermined current is supplied to the LED 13. A predetermined current is photoelectrically converted into a predetermined amount of light by the LED 13, and is transmitted through the transmission line optical fiber 9. In the sensor section 10, light leaking from the tip according to the refractive index of the liquid 24 and reflected according to the refractive index passes through the transmission line optical fiber 11 and is received by the light receiving element 16. The current photoelectrically converted by the light receiving element 16 and amplified by the amplifier 18 is input to the CPU 20. C
When the sensor unit 10 is in the liquid, the PU 20 has LE
A current value e 2 output by photoelectrically converting the light received by the light receiving element 16 due to light leakage from the sensor unit 10 with respect to a constant current supplied to D13 is input in advance.

【0014】ここで、容器25中の液面が下降し、セン
サ部10が空気23中になった場合、CPU20にはe
2以上の電流値が入力され、リレー回路21が動作され
警報音を発したりあるいはバルブの開閉等を行う等の装
置等に接続が切換えられ、所望の操作がなされる。この
ように液面等の位置の検出を行う場合、使用に伴いセン
サ部10が正常に動作しているか、表面に液体に分散さ
れる物質等が付着してセンサ部10における反射光量が
センサ部10の接する物質に対応せずに劣化を生じてい
るか、検出を行う必要がある。劣化の検出を行う場合
は、センサ部10の使用に先立ち汚れ等の付着がなく正
常に作動している時に、予め液体センサ7の損失光量を
測定する。液体センサ7の損失光量は、図3に示すよう
に、光送信モジュール8において光電変換された光量c
1の光が伝送路用光ファイバ9を伝送され光量c2として
センサ部10に受光され、センサ部10において漏光し
て光量c3が反射光として伝送路用光ファイバ11を通
って(損失光量c3)光受信モジュール12に伝送さ
れ、この時のc1が液体センサ7の損失光量である。損
失光量を測定するには、LED13への供給電流を変化
させ、光受信モジュール12から出力が得られる時のL
ED13に供給される最小の電流値e3を測定すればよ
い。電流値e3の電流を光電変換された光量が損失光量
であり、電流値e3に相当するものとして把握できる。
この電流値e3をCPU20に記憶させておく。
Here, when the liquid level in the container 25 is lowered and the sensor unit 10 is in the air 23, the CPU 20 e
When a current value of 2 or more is input, the relay circuit 21 is operated and the connection is switched to a device or the like for issuing an alarm sound or opening / closing a valve, and a desired operation is performed. When the position of the liquid surface or the like is detected in this way, the sensor unit 10 is normally operating with use, or a substance or the like dispersed in the liquid adheres to the surface and the amount of reflected light at the sensor unit 10 is It is necessary to detect whether deterioration has occurred without corresponding to 10 contacting substances. In the case of detecting the deterioration, the amount of light loss of the liquid sensor 7 is measured in advance before the use of the sensor unit 10 and when the sensor unit 10 is operating normally without any dirt or the like. As shown in FIG. 3, the loss light amount of the liquid sensor 7 is the light amount c photoelectrically converted in the optical transmission module 8.
The light of 1 is transmitted through the transmission line optical fiber 9 and is received by the sensor unit 10 as the light amount c 2 , and leaks at the sensor unit 10 and the light amount c 3 passes through the transmission line optical fiber 11 as reflected light (loss light amount). c 3 ) It is transmitted to the light receiving module 12, and c 1 at this time is the amount of light loss of the liquid sensor 7. To measure the amount of lost light, change the supply current to the LED 13 and set L when the output is obtained from the optical receiver module 12.
The minimum current value e 3 supplied to the ED 13 may be measured. It can be understood that the amount of light obtained by photoelectrically converting the current of the current value e 3 is the lost light amount and corresponds to the current value e 3 .
This current value e 3 is stored in the CPU 20.

【0015】センサ部10の劣化を検出する際、CPU
20により駆動回路14を制御させ、LED13への供
給電流を変化させる。光受信モジュール11から出力が
得られる時のLED13への供給電流を測定する。測定
値と電流値e3とを比較する。測定値がe3であればセン
サ部10は正常に作動していることがわかる。測定値が
電流値e3より大きい場合、例えばLED13からは供
給電流に対応した光量c5が発光されているにも拘わら
ず、この時初めて光受信モジュール12から出力が開始
される場合、センサ部10でc6−c3の光量が損失され
ていることがわかる。このため、センサ部10から異常
な漏光があることがわかり、センサ部の劣化が検出され
る。劣化の検知はCPU20に入力された電流値e3
測定電流を比較して、大きい場合は警告音等を鳴動させ
たり、表示部22に表示するようにしてもよい。
When the deterioration of the sensor unit 10 is detected, the CPU
The drive circuit 14 is controlled by 20 and the supply current to the LED 13 is changed. The current supplied to the LED 13 when the output is obtained from the light receiving module 11 is measured. The measured value and the current value e 3 are compared. If the measured value is e 3, it can be seen that the sensor unit 10 is operating normally. When the measured value is larger than the current value e 3 , for example, when the light receiving module 12 starts the output for the first time at this time even though the light amount c 5 corresponding to the supply current is emitted from the LED 13, the sensor unit It can be seen that at 10, the light amount of c 6 -c 3 is lost. Therefore, the sensor unit 10 knows that there is abnormal light leakage, and the deterioration of the sensor unit is detected. For the detection of deterioration, the current value e 3 input to the CPU 20 may be compared with the measured current, and if the value is large, a warning sound or the like may be sounded or displayed on the display unit 22.

【0016】このようにLEDへの供給電流を変化させ
て、光受信モジュールからの出力を開始させ、この時の
供給電流を測定することにより簡単にセンサ部の劣化を
検出できる。以上の説明は本発明の一実施例の説明であ
って、本発明はこれに限定されない。即ち、電源の供給
量を変化させるのはCPUに限らず、ボリュームボタン
等を手動で変化させることにより行うようにしてもよ
い。また、測定値の比較を行うのもコンパレータを用い
て行うこともできる。
In this way, the supply current to the LED is changed, the output from the light receiving module is started, and the supply current at this time is measured, so that the deterioration of the sensor portion can be easily detected. The above description is one example of the present invention, and the present invention is not limited to this. That is, the amount of power supply is not limited to being changed by the CPU, but may be changed by manually changing the volume button or the like. Further, the comparison of the measured values can also be performed using a comparator.

【0017】[0017]

【発明の効果】以上の説明からも明らかなように、本発
明の液体センサの劣化検出方法によれば、伝送等による
損失光量を予め測定しこの時の発光部への供給電流を予
め測定し、発光部への供給電流を変化させることによ
り、受光部から出力が得られる時の発光部への供給電流
値を予め測定した値と比較することにより、簡単にセン
サ部の劣化を検出することができる。
As is clear from the above description, according to the liquid sensor deterioration detection method of the present invention, the amount of light lost due to transmission or the like is measured in advance, and the current supplied to the light emitting portion at this time is measured in advance. , It is possible to easily detect the deterioration of the sensor unit by changing the supply current to the light emitting unit and comparing the value of the current supplied to the light emitting unit when the output is obtained from the light receiving unit with a previously measured value. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を適用した液体センサを示す
構成図。
FIG. 1 is a configuration diagram showing a liquid sensor to which an embodiment of the present invention is applied.

【図2】図1に示す液体センサを液面の検出に適用した
図。
FIG. 2 is a diagram in which the liquid sensor shown in FIG. 1 is applied to detection of a liquid surface.

【図3】図1に示す液面センサの劣化を検出する説明
図。
FIG. 3 is an explanatory diagram for detecting deterioration of the liquid level sensor shown in FIG.

【図4】図1に示す液面センサの一部及び従来例を示す
図。
FIG. 4 is a diagram showing a part of the liquid level sensor shown in FIG. 1 and a conventional example.

【図5】反射光量と屈折率の関係を示す図。FIG. 5 is a diagram showing the relationship between the amount of reflected light and the refractive index.

【図6】液体センサの損失光量を示す図。FIG. 6 is a diagram showing the amount of light loss of the liquid sensor.

【符号の説明】[Explanation of symbols]

7‥‥‥液体センサ 8‥‥‥光送信モジュール(発光部) 10‥‥‥センサ部 12‥‥‥光受信モジュール(受光部) 7 Liquid sensor 8 Light transmitting module (light emitting section) 10 Sensor section 12 Light receiving module (light receiving section)

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/00 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G02B 6/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光電変換を行う発光部からの光をセンサ部
から照射し、前記センサ部が接する物質の屈折率に対応
して光量が変化されて反射された光を受光部で受光する
ことにより前記センサ部が接する物質を検出する液体セ
ンサの劣化を検出する方法であって、前記液体センサの
使用に先立ち前記発光部へ供給する電流を変化させて前
記受光部で光電変換された出力が得られる最小の供給電
流値を予め測定し、前記液体センサの使用後に前記発光
部へ供給する電流を変化させ前記受光部で光電変換され
た出力が得られる最小の供給電流値と、使用前の最小の
供給電流値とを比較して前記センサ部の劣化を検出する
ことを特徴とする液体センサの劣化検出方法。
1. A light-receiving portion for irradiating light from a light-emitting portion that performs photoelectric conversion, and a light-receiving portion receiving the reflected light whose light amount is changed corresponding to the refractive index of a substance in contact with the sensor portion. According to the method of detecting deterioration of a liquid sensor that detects a substance in contact with the sensor unit, the output photoelectrically converted by the light receiving unit by changing the current supplied to the light emitting unit prior to use of the liquid sensor is The minimum supply current value obtained is measured in advance, the minimum supply current value at which the output photoelectrically converted by the light receiving unit is obtained by changing the current supplied to the light emitting unit after the use of the liquid sensor, and before use. A method for detecting deterioration of a liquid sensor, characterized by detecting deterioration of the sensor section by comparing with a minimum supply current value.
JP5203405A 1993-08-17 1993-08-17 Deterioration detecting method for liquid sensor Withdrawn JPH0792006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5203405A JPH0792006A (en) 1993-08-17 1993-08-17 Deterioration detecting method for liquid sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5203405A JPH0792006A (en) 1993-08-17 1993-08-17 Deterioration detecting method for liquid sensor

Publications (1)

Publication Number Publication Date
JPH0792006A true JPH0792006A (en) 1995-04-07

Family

ID=16473519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5203405A Withdrawn JPH0792006A (en) 1993-08-17 1993-08-17 Deterioration detecting method for liquid sensor

Country Status (1)

Country Link
JP (1) JPH0792006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6868928B1 (en) * 2020-12-24 2021-05-12 東横化学株式会社 Liquid type discrimination sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6868928B1 (en) * 2020-12-24 2021-05-12 東横化学株式会社 Liquid type discrimination sensor
WO2022137590A1 (en) * 2020-12-24 2022-06-30 東横化学株式会社 Liquid type identification sensor
JP7112143B1 (en) * 2020-12-24 2022-08-03 東横化学株式会社 Liquid type discrimination sensor
US11892398B2 (en) 2020-12-24 2024-02-06 Toyoko Kagaku Co., Ltd. Sensor for determining liquid types

Similar Documents

Publication Publication Date Title
US5362971A (en) Fiber optic detection system
WO1997048972A1 (en) Fiber optic liquid sensing system
US7008795B2 (en) Multi-way LED-based chemochromic sensor
JPS63103920A (en) Optical fiber fluid sensor
US20090296770A1 (en) Fluorescent temperature sensor
US5497009A (en) Photoelectric smoke sensor and fire detecting system, and sensitivity testing method therefor
SE514744C2 (en) Method and apparatus for optical measurement systems
US4082959A (en) Liquid level detector
US7684695B1 (en) Optical diagnostic indicator
JPH0792006A (en) Deterioration detecting method for liquid sensor
WO2001018519A1 (en) Optical time domain reflectometer
KR101210465B1 (en) One body type optical power meter having fault position finder
JPH11223630A (en) Chemical or biological species sensing device with opticl fiber utilized, and remote monitoring system using the same
JPH05223733A (en) Optical alcohol concentration measuring device
JP4321890B2 (en) Color detection device
CN111912810A (en) Strong-interference-resistant optical fiber methane gas concentration measuring device and measuring method
JP4103111B2 (en) Photoelectric sensor device
JPH1151808A (en) Measuring apparatus
JPH0514216B2 (en)
SE514745C2 (en) Method and apparatus for bending compensation in intensity-based optical measurement systems
KR102623962B1 (en) Fiber optic sensor probe for diagnosis of transformer insuation oil aging
KR100411579B1 (en) Apparatus for testing glass transmission rate using light
KR100811397B1 (en) Apparatus for measuring optical signal
EP1752743A1 (en) An improved liquid level sensor
JPH09292309A (en) Optical pulse tester

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031