JPH0791813B2 - How to build a synthetic slab bridge - Google Patents

How to build a synthetic slab bridge

Info

Publication number
JPH0791813B2
JPH0791813B2 JP63222840A JP22284088A JPH0791813B2 JP H0791813 B2 JPH0791813 B2 JP H0791813B2 JP 63222840 A JP63222840 A JP 63222840A JP 22284088 A JP22284088 A JP 22284088A JP H0791813 B2 JPH0791813 B2 JP H0791813B2
Authority
JP
Japan
Prior art keywords
section steel
web
strip
steel
projections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63222840A
Other languages
Japanese (ja)
Other versions
JPH0270807A (en
Inventor
政勝 佐藤
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63222840A priority Critical patent/JPH0791813B2/en
Publication of JPH0270807A publication Critical patent/JPH0270807A/en
Publication of JPH0791813B2 publication Critical patent/JPH0791813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、合成床版橋の構築方法に関するものである。TECHNICAL FIELD The present invention relates to a method for constructing a synthetic slab bridge.

「従来の技術」 本出願人は、第5図、第6図に示す如く、フランジ22の
表面に突起22aを有するCT形鋼21を所要等間隔に並列配
置し、この各突起付きCT形鋼21のウェブ23の下端面間に
わたって底鋼板24を溶接し、各突起付きCT形鋼21のフラ
ンジ22よりも若干上部位置に、各突起付きCT形鋼21と直
交して上配力鉄筋25を配設し、前記底鋼板24の上面から
上配力鉄筋25の若干上方位置までのいわゆる並列開断面
鋼箱桁内にコンクリート26を打設して、例えば道路橋等
の合成床版橋を構築することを既に出願した(特開昭58
-33611号公報参照)。
"Prior Art" As shown in FIGS. 5 and 6, the present applicant arranges CT section steels 21 having projections 22a on the surface of a flange 22 in parallel at required equal intervals, and the CT section steels with respective projections. The bottom steel plate 24 is welded between the lower end faces of the webs 23 of 21 and the upper distribution reinforcing bars 25 are provided at a position slightly higher than the flange 22 of each CT-shaped steel 21 with protrusions, at a position orthogonal to each CT-shaped steel 21 with protrusions. Arranged, and placing concrete 26 in the so-called parallel open-section steel box girder from the upper surface of the bottom steel plate 24 to a position slightly above the upper distribution reinforcing bar 25, for example, constructing a composite slab bridge such as a road bridge. Already filed (Japanese Patent Laid-Open No. 58-58
-33611 reference).

「発明が解決しようとする課題」 ところで、前記突起付きCT形鋼は、上下のフランジ表面
に突起を有する圧延H形鋼を、そのウェブの長手方向中
心線において半截したものであるが、この突起付きCT形
鋼の寸法は、一般的なH形鋼のJIS規格に準拠して定め
られており、その最大寸法は、高さが459mm,フランジ幅
が303mm,ウェブ厚が19mm,フランジ厚が37mm,断面二次モ
ーメントが36800cm4であるため、現行の合成床版橋の適
用支間長は24m以下に制約されている。
[Problems to be Solved by the Invention] The CT-section steel with protrusions is a rolled H-section steel having protrusions on the upper and lower flange surfaces, which is half-cut at the center line in the longitudinal direction of the web. The dimensions of the attached CT section steel are determined in accordance with the JIS standard for general H section steel, and the maximum dimensions are 459 mm in height, 303 mm in flange width, 19 mm in web thickness, and 37 mm in flange thickness. Since the second moment of area is 36,800 cm 4 , the applicable span length of the current composite deck slab is restricted to 24 m or less.

本発明は、かくの如き従来の突起付きCT形鋼を用いた合
成床版橋の不都合を解決すべくなした合成床版橋の構築
方法を開発したものである。
The present invention has developed a method for constructing a composite slab bridge that solves the disadvantages of the conventional composite slab bridge using the CT-section steel with protrusions.

「課題を解決するための手段」 本発明に係る合成床版橋の構築方法の要旨とするところ
は、上下のフランジ表面に突起を有するH形鋼のウェブ
を、その長手方向に波形線に沿って二等分切断してなる
フランジ表面に突起を有するCT形鋼における波形ウェブ
の波底部下端面長手方向全長にわたり、所要板幅のウェ
ブ高さ補足用帯鋼板の一側端面を溶接し、このウェブ高
さ補足用帯鋼板を有する突起付きCT形鋼を所要等間隔に
並列配置し、上記各突起付きCT形鋼におけるウェブ高さ
補足用帯鋼板の下端面間にわたり底鋼板を溶接して、並
列開断面鋼箱桁を形成し、この並列開断面鋼箱桁内に膨
張コンクリートを打設することにある。
[Means for Solving the Problems] The gist of the method for constructing a composite deck slab according to the present invention is that an H-shaped steel web having projections on the upper and lower flange surfaces is formed along a corrugated line in its longitudinal direction. Of the corrugated web in the CT section steel with protrusions on the flange surface formed by cutting into two equal parts is welded to one side end surface of the corrugated web bottom end surface along the longitudinal entire length in the longitudinal direction. The CT shaped steels with projections having web height supplementing strip steel plates are arranged in parallel at required equal intervals, and the bottom steel plate is welded across the lower end faces of the web height supplementing strip steel plates in the above-mentioned projection CT strip steels, A parallel open-section steel box girder is formed, and expansive concrete is placed in the parallel open-section steel box girder.

「作用」 前記の如く、上下のフランジ表面に突起を有するH形鋼
のウェブを、その長手方向に波形線に沿って二等分切断
してなるフランジ表面に突起を有するCT形鋼の高さは、
従来の最大寸法の突起付きCT形鋼の高さ459mmよりも350
mm増加して809mmとなり、さらに前記突起付きCT形鋼に
おける波形ウェブの波底部下端面長手方向全長にわた
り、所要板幅のウェブ高さ補足用帯鋼板の一側端面を溶
接して、ウェブ高さを一層増加させ、このウェブ高さ補
足用帯鋼板を有する突起付きCT形鋼を所要等間隔に並列
配置し、上記各突起付きCT形鋼におけるウェブ高さ補足
用帯鋼板の下端面間にわたり底鋼板を溶接して、並列開
断面鋼箱桁を形成し、この並列開断面鋼箱桁内に膨張コ
ンクリートを打設して、合成床版橋を構築することによ
り、合成床版橋の最大適用支間長を38m以上に拡大する
ことが可能となる。
[Operation] As described above, the height of the CT section steel having projections on the flange surface formed by cutting the web of H-section steel having projections on the upper and lower flange surfaces in half along the corrugated line in the longitudinal direction. Is
350 more than the height of conventional 459 mm height CT section steel with protrusions
mm is increased to 809 mm, and further, the one side end face of the web height supplemental strip steel plate of the required plate width is welded over the entire length in the longitudinal direction of the corrugated bottom end face of the corrugated web in the above-mentioned protrusion with the web height. , The CT section steels with projections having this web height supplementing strip steel plate are arranged in parallel at the required equal intervals, and the bottom is spanned between the lower end faces of the web height supplementing strip steel sheet in each of the above projections CT section steels. Welding steel plates to form parallel open-section steel box girders, placing expansive concrete in the parallel open-section steel box girders, and constructing a composite floor slab bridge, thereby maximizing the application of the composite floor slab bridge. It is possible to extend the span length to 38m or more.

しかも並列開断面鋼箱桁内に打設した膨張コンクリート
が、各突起付きCT形鋼における波形ウェブの切欠き部を
経て、並列開断面鋼箱桁の全体に均一に廻込み、打設膨
張コンクリートの分散性が良好になる。
Moreover, the expansive concrete placed in the parallel open-section steel box girder is uniformly wound around the entire parallel open-section steel box girder through the cutouts of the corrugated web in the CT section steel with protrusions, and the expansive concrete is poured. Dispersibility is improved.

「実施例」 次に本発明に係る合成床版橋の構築方法の実施例を図面
に基づき以下に説明する。
[Example] Next, an example of a method for constructing a composite slab bridge according to the present invention will be described below with reference to the drawings.

先ず第1図に示す如く、上下のフランジ2の表面に突起
2aを有するH形鋼1のウェブ3を、その長手方向に例え
ば台形波形線イに沿って二等分切断し、一本の突起付き
H形鋼1から、第2図に示す如く、フランジ12の表面に
突起12aを有すると共に、台形波形ウェブ13を有する2
本のCT形鋼11を製作し、同要領にて所要数の突起付きCT
形鋼11を製作しておく。
First, as shown in FIG. 1, protrusions are formed on the surfaces of the upper and lower flanges 2.
The web 3 of the H-section steel 1 having 2a is cut in half in the longitudinal direction thereof along, for example, a trapezoidal corrugated line (i), and from one H-section steel 1 with protrusions, as shown in FIG. 2 has a projection 12a on the surface of and a trapezoidal corrugated web 13
Manufactured a set of CT shaped steel 11, and in the same way, CT with the required number of protrusions
Shaped steel 11 is manufactured.

そして各突起付きCT形鋼11のウェブ高さをさらに高くす
べく、第3図、第4図に示す如く、各突起付きCT形鋼11
における台形波形ウェブ13の波底部下端面長手方向全長
にわたり、所要板幅のウェブ高さ補足用帯鋼板17の一側
端面を溶接し、このウェブ高さ補足用帯鋼板17を有する
突起付きCT形鋼11を所要等間隔に並列配置し、この各突
起付きCT形鋼11におけるウェブ高さ補足用帯鋼板17の下
端面間にわたって底鋼板14を溶接し、各突起付きCT形鋼
11のフランジ12よりも若干上部位置に、各突起付きCT形
鋼11と直交して上配力鉄筋15を配設し、前記底鋼板14の
上面から上配力鉄筋15の若干上方位置までの並列開断面
鋼箱桁内に膨張コンクリート16を打設して、合成床版橋
を構築するのである。
Then, in order to further increase the web height of the CT section steel 11 with protrusions, as shown in FIGS. 3 and 4, the CT section steel 11 with protrusions 11
Of the trapezoidal corrugated web 13 over the entire length in the longitudinal direction of the bottom surface of the corrugated bottom, one side end face of the web height supplementing strip steel plate 17 having a required strip width is welded, and the CT type with projection having the web height supplementing strip steel plate 17 is formed. Steels 11 are arranged in parallel at required equal intervals, and a bottom steel plate 14 is welded across the lower end faces of the strip steel plates 17 for supplementing the web height in each of these projections with CT projections, and each projection with CT projections.
At a position slightly higher than the flange 12 of 11, the upper distribution reinforcing bar 15 is arranged orthogonally to the CT section steel 11 with each protrusion, from the upper surface of the bottom steel plate 14 to a position slightly above the upper distribution reinforcing bar 15. Expansive concrete 16 is placed in the parallel open-section steel box girder to construct a composite slab bridge.

また第3図、第4図に示す如く、前記上配力鉄筋15の外
に、必要に応じて、各突起付きCT形鋼11の間で、かつ前
記上配力鉄筋15上に直交して鉄筋18を配設すること、お
よびまたは各突起付きCT形鋼11における台形波形ウェブ
13とウェブ高さ補足用帯鋼板17との合計高さのほぼ1/2
部位の長手方向所要間隔位置に下配力鉄筋19を貫通配設
することは任意である。
In addition, as shown in FIGS. 3 and 4, outside the upper distribution reinforcing bar 15, if necessary, between the CT section steels 11 with projections, and perpendicularly to the upper distribution reinforcing bar 15. Disposing rebar 18 and / or trapezoidal corrugated web in CT section 11 with each protrusion
Approximately 1/2 of the total height of 13 and the web height supplement strip 17
It is optional to dispose the lower distribution reinforcing bar 19 at a required interval in the longitudinal direction of the portion.

さらに、第3図、第4図に示す実施例では、並列開断面
鋼箱桁内の全体に膨張コンクリート16を打設している
が、前記膨張コンクリート16を、各突起付きCT形鋼11に
おける台形波形ウェブ13とウェブ高さ補足用帯鋼板17と
の合計高さのほぼ1/2部位の若干下方位置から前記上配
力鉄筋15の若干上方位置までの、並列開断面鋼箱桁内の
圧縮領域側のみに打設して、並列開断面鋼箱桁内の引張
領域側は中空になるように合成床版橋を構築してもよ
く、あるいは引張領域側の中空部内に発泡樹脂材を充填
して、合成床版橋を構築してもよい。
Further, in the embodiment shown in FIG. 3 and FIG. 4, the expansive concrete 16 is placed in the entire parallel open-section steel box girder. From a position slightly lower than approximately half of the total height of the trapezoidal corrugated web 13 and the web height supplemental strip steel plate 17 to a position slightly above the upper distribution reinforcing bar 15 in the parallel open-section steel box girder. A composite deck slab may be constructed so that it is placed only on the compression area side and the tension area side in the parallel open-section steel box girder is hollow, or a foamed resin material is placed in the hollow area on the tension area side. It may be filled to build a synthetic deck bridge.

「発明の効果」 以上述べた如く、本発明によれば、上下のフランジ表面
に突起を有するH形鋼のウェブを、その長手方向に波形
線に沿って二等分切断してなるフランジ表面に突起を有
するCT形鋼の高さは、従来の最大寸法の突起付きCT形鋼
の高さ459mmよりも350mm増加して809mmとなり、さらに
前記突起付きCT形鋼における波形ウェブの波底部下端面
長手方向全長にわたり、所要板幅のウェブ高さ補足用帯
鋼板の一側端面を溶接して、ウェブ高さを一層増加さ
せ、このウェブ高さ補足用帯鋼板を有する突起付きCT形
鋼を所要等間隔に並列配置し、上記各突起付きCT形鋼に
おけるウェブ高さ補足用帯鋼板の下端面間にわたり底鋼
板を溶接して、並列開断面鋼箱桁を形成し、この並列開
断面鋼箱桁内に膨張コンクリートを打設して、合成床版
橋を構築することにより、合成床版橋の最大適用支間長
を38m以上に拡大することが可能となる。
[Advantages of the Invention] As described above, according to the present invention, a web of H-section steel having projections on the upper and lower flange surfaces is cut into two halves along the corrugated line in the longitudinal direction. The height of the CT-section steel with protrusions is 809 mm, which is 350 mm higher than the height of the conventional maximum-size CT-section steel with protrusions, which is 809 mm. Along the entire length in the direction, one side end face of the strip steel plate for supplementing the required web width is welded to further increase the web height. The steel plates are arranged in parallel at intervals and welded to the bottom steel plate across the lower end faces of the strip steel plates for supplementing the web height of the above-mentioned CT section steels to form parallel open-section steel box girders. Placing expansive concrete inside to build a composite slab bridge And makes it possible to increase the maximum applicable span length of the composite floor slab bridge above 38m.

しかも並列開断面鋼箱桁内に打設した膨張コンクリート
が、各突起付きCT形鋼における波形ウェブの切欠き部を
経て、並列開断面鋼箱桁の全体に均一に廻込み、打設膨
張コンクリートの分散性が良好になる。
Moreover, the expansive concrete placed in the parallel open-section steel box girder is uniformly wound around the entire parallel open-section steel box girder through the cutouts of the corrugated web in the CT section steel with protrusions, and the expansive concrete is poured. Dispersibility is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る合成床版橋の構築方法において用
いる突起付きCT形鋼を製作するための突起付きH形鋼の
斜視図、第2図は1本の突起付きH形鋼から2本の突起
付きCT形鋼を製作した実施例を示す分解斜視図、第3図
は本発明方法の実施例を示す合成床版橋の横断面図、第
4図は、第3図A-A線における断面図、第5図は従来の
合成床版橋の横断面図、第6図は、第5図A-A線におけ
る断面図である。 符号の説明 11……突起付きCT形鋼、12……フランジ 12a……突起、13……台形波形ウェブ 14……底鋼板、15……上配力鉄筋 16……膨張コンクリート、17……ウェブ高さ補足用帯鋼
板 18……鉄筋、19……下配力鉄筋
FIG. 1 is a perspective view of a H-section steel with protrusions for producing a CT-section steel with protrusions used in the method for constructing a composite deck slab according to the present invention, and FIG. Fig. 3 is an exploded perspective view showing an example of manufacturing a CT-shaped steel with protrusions, Fig. 3 is a cross-sectional view of a composite slab bridge showing an example of the method of the present invention, and Fig. 4 is a line AA in Fig. 3. A sectional view, FIG. 5 is a transverse sectional view of a conventional composite floor slab bridge, and FIG. 6 is a sectional view taken along line AA of FIG. Explanation of symbols 11 …… CT shaped steel with protrusions, 12 …… Flange 12a …… Protrusions, 13 …… Trapezoidal corrugated web 14 …… Bottom steel plate, 15 …… Upper distribution reinforcing bar 16 …… Expanded concrete, 17 …… Web Steel strip for height supplement 18 …… Reinforcing bar, 19 …… Lower distribution reinforcing bar

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上下のフランジ表面に突起を有するH形鋼
のウェブを、その長手方向に波形線に沿って二等分切断
してなるフランジ表面に突起を有すCT形鋼における波形
ウェブの波底部下端面長手方向全長にわたり、所要板幅
のウェブ高さ補足用帯鋼板の一側端面を溶接し、このウ
ェブ高さ補足用帯鋼板を有する突起付きCT形鋼を所要等
間隔に並列配置し、上記各突起付きCT形鋼におけるウェ
ブ高さ補足用帯鋼板の下端面間にわたり底鋼板を溶接し
て、並列開断面鋼箱桁を形成し、この並列開断面鋼箱桁
内に膨張コンクリートを打設することを特徴とする合成
床版橋の構築方法。
1. A corrugated web of a CT section steel having projections on a flange surface obtained by cutting an H-section steel web having projections on upper and lower flange surfaces in half along a corrugated line in a longitudinal direction thereof. The bottom end surface of the corrugated part is welded to one end surface of the strip steel plate for supplementing the web height of the required strip width over the entire length in the longitudinal direction, and the CT section steels with protrusions having the strip steel strip for supplementing the web height are arranged in parallel at required intervals. Then, the bottom steel plate is welded between the lower end surfaces of the strip steel plates for supplementing the web height in the above-mentioned CT-section steel with projections to form a parallel open-section steel box girder, and expanded concrete in the parallel open-section steel box girder. A method for constructing a composite slab bridge, which is characterized by placing.
【請求項2】前記膨張コンクリートを、前記並列開断面
鋼箱桁内の圧縮領域側のみに打設することを特徴とする
請求項1に記載の合成床版橋の構築方法。
2. The method for constructing a composite deck slab according to claim 1, wherein the expansive concrete is cast only on the compression region side in the parallel open-section steel box girder.
JP63222840A 1988-09-06 1988-09-06 How to build a synthetic slab bridge Expired - Lifetime JPH0791813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222840A JPH0791813B2 (en) 1988-09-06 1988-09-06 How to build a synthetic slab bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222840A JPH0791813B2 (en) 1988-09-06 1988-09-06 How to build a synthetic slab bridge

Publications (2)

Publication Number Publication Date
JPH0270807A JPH0270807A (en) 1990-03-09
JPH0791813B2 true JPH0791813B2 (en) 1995-10-09

Family

ID=16788733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222840A Expired - Lifetime JPH0791813B2 (en) 1988-09-06 1988-09-06 How to build a synthetic slab bridge

Country Status (1)

Country Link
JP (1) JPH0791813B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564429B2 (en) * 1991-02-27 1996-12-18 株式会社宮地鐵工所 How to build a synthetic slab bridge
JP5458959B2 (en) * 2010-03-02 2014-04-02 Jfeエンジニアリング株式会社 Steel box girder, steel box girder and concrete floor slab joint structure, concrete floor slab, girder bridge and bridge

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833611A (en) * 1981-08-25 1983-02-26 川崎製鉄株式会社 Constructing of reinforced concrete beam
JPS60195206A (en) * 1984-03-14 1985-10-03 川崎製鉄株式会社 Construction of plywood floor panel bridge

Also Published As

Publication number Publication date
JPH0270807A (en) 1990-03-09

Similar Documents

Publication Publication Date Title
JP3678831B2 (en) Steel-concrete composite floor slab bridge and its construction method
US4452019A (en) Antiseismic reinforcement method for an existing building with a concrete block system
JPH0791813B2 (en) How to build a synthetic slab bridge
JP2003278112A (en) Steel/concrete composite slab
JP2002188236A (en) Embedded material for concrete slab, precast concrete slab and void concrete slab
JP2001020221A (en) Corrugated steel plate for bridge
US4040221A (en) Load-bearing concrete members provided with moisture and damp proof
JP2006322312A (en) Concrete girder bridge and its construction method
JPH0739927Y2 (en) Hollow synthetic slab bridge
JP2000038798A (en) Semi-precast floor slab
US20030061672A1 (en) Bridge construction method and composite girder for use in same
JP2000038794A (en) Precast floor slab
JP2943111B1 (en) Bridge girder, bridge girder construct and bridge girder construction method
JP3813718B2 (en) Precast concrete boards, concrete slabs and structures
JP2575887Y2 (en) Precast concrete beam members
JP2816073B2 (en) Synthetic floor slab for structures
JPS6115128Y2 (en)
JPS6245934B2 (en)
JP2943142B1 (en) Precast concrete slab and manufacturing method thereof
JP2000080748A (en) Corrugated plate form and corrugated plate synthetic floor slab using it
JPH037454Y2 (en)
JPH079921Y2 (en) Joint structure between reinforced concrete column and steel beam
JPH06229045A (en) Connecting method for earthquake resisting wall and slab
JP2725064B2 (en) Precast concrete composite beams
JPH0113122Y2 (en)