JPH0790457A - Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment - Google Patents

Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment

Info

Publication number
JPH0790457A
JPH0790457A JP25636393A JP25636393A JPH0790457A JP H0790457 A JPH0790457 A JP H0790457A JP 25636393 A JP25636393 A JP 25636393A JP 25636393 A JP25636393 A JP 25636393A JP H0790457 A JPH0790457 A JP H0790457A
Authority
JP
Japan
Prior art keywords
alloy
sacrificial anode
clad
brazing
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25636393A
Other languages
Japanese (ja)
Inventor
Takeshi Itagaki
武志 板垣
Ken Toma
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP25636393A priority Critical patent/JPH0790457A/en
Publication of JPH0790457A publication Critical patent/JPH0790457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al allay clad material showing excellent pitting corrosion resistance even if being subjected to brazing heating treatment. CONSTITUTION:In an Al alloy clad material obtd. by cladding one side or both sides of the core material with a sacrificial anode material and in an Al alloy clad material obtd. by cladding one side of the core material with a sacrificial anode material and the other side with an Al-Si alloy brazing filler metal, the core material is constituted of an Al alloy contg., by weight, 0.5 to 2% Mn and 0.2 to 1% Fe and contg., at need, one or more kinds among 0.3 to 1.2% Si, 0.05 to 5% Mg, 0.05 to 0.25% Cr, 0.05 to O.25% Zr, 0.02 to 0.25% Ti and 0.05 to 0.25% V. The sacrificial anode material is constituted of an Al alloy contg. 0.01 to 0.15% Sn, 0.05 to 1% Zn and 0.002 to 0.15% Fe and contg., at need, 0.1 to 4.5% Mg.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばラジエータや
カーエアコンなどの熱交換器の作動流体通路形成部材、
さらに太陽温水器などの給排水管材、水貯蔵タンク材な
どの各種設備装置の構造部材として用いた場合に、これ
らの組み立てに必要なろう付け加熱処理を施した後でも
すぐれた耐孔食性を有するAl合金クラッド材に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a working fluid passage forming member for a heat exchanger such as a radiator or a car air conditioner,
Furthermore, when used as structural members for various equipment such as water supply and drainage pipe materials for solar water heaters, water storage tank materials, etc., Al that has excellent pitting corrosion resistance even after the brazing heat treatment necessary for assembly The present invention relates to an alloy clad material.

【0002】[0002]

【従来の技術】一般に、上記の各種設備装置の構造部材
の形成に、芯材の片面または両面に犠牲陽極材をクラッ
ドしてなるAl合金クラッド材や、芯材の一方面に犠牲
陽極材を、他方面にAl−Si系合金のろう材をクラッ
ドしてなるAl合金クラッド材が用いられている。ま
た、上記Al合金クラッド材の芯材が、重量%で(以
下、%は重量%を示す)、Mn:0.5〜2%、を含有
し、さらに必要に応じて、Si:0.3〜1.2%、
Mg:0.05〜5%、Cr:0.05〜0.2
5%、 Zr:0.05〜0.25%、Ti:0.0
2〜0.25%、 V:0.05〜0.25%、のう
ちの1種または2種以上、を含有し、残りがAlと不可
避不純物からなる組成を有するAl合金、で構成され、
上記犠牲陽極材が、Sn:0.01〜0.15%、
Zn:0.05〜1%、を含有し、さらに必要に応じ
て、Mg:0.1〜4.5%、を含有し、残りがAlと
不可避不純物からなる組成を有するAl合金、で構成さ
れていることも知られている。
2. Description of the Related Art Generally, an Al alloy clad material obtained by clad a sacrificial anode material on one side or both sides of a core material or a sacrificial anode material on one surface of the core material is used for forming structural members of the above various equipments. An Al alloy clad material obtained by clad with a brazing material of an Al-Si alloy is used on the other surface. Further, the core material of the Al alloy clad material contains Mn: 0.5 to 2% in weight% (hereinafter,% means weight%), and further Si: 0.3 if necessary. ~ 1.2%,
Mg: 0.05-5%, Cr: 0.05-0.2
5%, Zr: 0.05 to 0.25%, Ti: 0.0
2 to 0.25%, V: 0.05 to 0.25%, one or more of the above, and the remainder is composed of an Al alloy having a composition of Al and inevitable impurities,
The sacrificial anode material is Sn: 0.01 to 0.15%,
Zn: 0.05 to 1%, and if necessary, Mg: 0.1 to 4.5%, with the balance being an Al alloy having a composition of Al and unavoidable impurities. It is also known to have been done.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の従来A
l合金クラッド材においては、これに組み立てのための
ろう付け加熱処理が施されると、これを構成する犠牲陽
極材では、ろう付け温度からの冷却過程で素地に固溶し
ていた合金成分としてのSn成分が粒界に析出し、実質
的に素地のSn含有量が低下してしまうため、電気化学
的に貴になり、その分電位の上昇が避けられず、一方同
芯材においては、反対にろう付け加熱処理中に犠牲陽極
材から拡散してきたSnが素地に固溶して、これの電位
を下げ、このように犠牲陽極材では電位が上がり、芯材
では電位が低下した状態では、犠牲陽極材の芯材に対す
る防食効果は低下したものとなるため、実用に際して孔
食が発生し易くなるという問題がある。
However, the conventional method A described above is used.
In the l-alloy clad material, when it is subjected to a brazing heat treatment for assembling, in the sacrificial anode material constituting the clad material, as an alloy component that has been solid-solved in the base material during the cooling process from the brazing temperature. The Sn component of is precipitated at the grain boundaries, and the Sn content of the base material is substantially reduced, so that it becomes electrochemically noble, and an increase in the potential cannot be avoided by that amount. On the other hand, in the concentric material, On the contrary, Sn that has diffused from the sacrificial anode material during the brazing heat treatment forms a solid solution in the base material to lower the potential of the base material. In this way, the sacrificial anode material raises the potential and the core material lowers the potential. Since the sacrificial anode material has a reduced anticorrosion effect on the core material, there is a problem that pitting corrosion is likely to occur during practical use.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、ろう付け加熱処理が施されても
すぐれた耐孔食性を有するAl合金クラッド材を開発す
べく、上記の従来Al合金クラッド材に着目して研究を
行なった結果、上記の従来Al合金クラッド材におい
て、これを構成する犠牲陽極材に、合金成分としてFe
を0.002〜0.15%の割合で含有させると、この
Fe成分がろう付け温度からの冷却過程で素地に固溶す
るSn成分が粒界に析出するのを著しく抑制し、Sn成
分が素地に固溶した状態を保持することから、電位の上
昇が抑制され、Sn成分によるすぐれた犠牲陽極効果が
確保されるようになり、また同芯材には、同じくFe成
分を合金成分として0.2〜1%の割合で含有させる
と、このFe成分がろう付け加熱処理時に犠牲陽極材か
ら拡散してきたSn成分およびAl成分と結合し、ろう
付け温度からの冷却過程でAl−Fe−Sn系の金属間
化合物として析出するため、素地中にSn成分が固溶す
るのが避けられるようになり、この結果犠牲陽極材およ
び芯材はそれぞれ電気化学的にろう付け加熱処理後もろ
う付け加熱処理前の状態を維持することから、すぐれた
耐孔食性を保持するという研究結果を得たのである。
Therefore, the present inventors have
From the above viewpoints, in order to develop an Al alloy clad material having excellent pitting corrosion resistance even when subjected to brazing heat treatment, as a result of conducting research by focusing on the above conventional Al alloy clad material, In the conventional Al alloy clad material, Fe is used as an alloy component in the sacrificial anode material constituting the clad material.
Is contained in a proportion of 0.002 to 0.15%, the Fe component significantly suppresses the precipitation of the Sn component, which forms a solid solution in the matrix during the cooling process from the brazing temperature, at the grain boundaries, and the Sn component is Since the solid solution is maintained in the base material, the rise of the potential is suppressed, and the excellent sacrificial anode effect by the Sn component is secured, and the same core component has the same Fe component as the alloy component. When contained in a proportion of 0.2 to 1%, this Fe component is combined with the Sn component and Al component diffused from the sacrificial anode material during the brazing heat treatment, and Al-Fe-Sn is cooled in the cooling process from the brazing temperature. Since it precipitates as an intermetallic compound of the system, it becomes possible to avoid the solid solution of the Sn component in the matrix. As a result, the sacrificial anode material and the core material are electrochemically brazed and heated after brazing. Before processing Since maintaining the status is to obtain the results of a study of keeping excellent pitting corrosion resistance.

【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、芯材の片面または両面に犠牲陽
極材をクラッドしてなるAl合金クラッド材、および芯
材の一方面に犠牲陽極材を、他方面にAl−Si系合金
のろう材をクラッドしてなるAl合金クラッド材におい
て、上記芯材を、Mn:0.5〜2%、 F
e:0.2〜1%、を含有し、さらに必要に応じて、S
i:0.3〜1.2%、 Mg:0.05〜5%、
Cr:0.05〜0.25%、 Zr:0.05〜0.
25%、Ti:0.02〜0.25%、 V:0.05
〜0.25%、のうちの1種または2種以上、を含有
し、残りがAlと不可避不純物からなる組成を有するA
l合金、で構成し、上記犠牲陽極材を、Sn:0.01
〜0.15%、 Zn:0.05〜1%、Fe:0.0
02〜0.15%、を含有し、さらに必要に応じて、M
g:0.1〜4.5%、を含有し、残りがAlと不可避
不純物からなる組成を有するAl合金、で構成してな
る、ろう付け加熱処理後もすぐれた耐孔食性を有するA
l合金クラッド材に特徴を有するものである。
The present invention has been made on the basis of the above research results. An Al alloy clad material obtained by clad a sacrificial anode material on one or both sides of a core material, and a sacrificial anode on one surface of the core material. In an Al alloy clad material in which a brazing material of an Al-Si alloy is clad on the other surface, the core material is Mn: 0.5 to 2%, F
e: 0.2 to 1%, and if necessary, S
i: 0.3 to 1.2%, Mg: 0.05 to 5%,
Cr: 0.05-0.25%, Zr: 0.05-0.
25%, Ti: 0.02 to 0.25%, V: 0.05
To 0.25%, one or more of which is A, and the balance is Al and unavoidable impurities.
1 alloy, the sacrificial anode material is Sn: 0.01
~ 0.15%, Zn: 0.05-1%, Fe: 0.0
02-0.15%, and if necessary, M
g: 0.1 to 4.5%, and the remainder being an Al alloy having a composition of Al and inevitable impurities, which has excellent pitting corrosion resistance even after brazing heat treatment.
This is characterized by the l alloy clad material.

【0006】つぎに、この発明のAl合金クラッド材の
芯材および犠牲陽極材を構成するAl合金の成分組成を
上記の通りに限定した理由を説明する。 A.芯材 (a) Mn Mn成分には、芯材の強度を向上させると共に、芯材を
電気化学的に貴にし、電位を犠牲陽極材に比して高め
て、犠牲陽極材が十分な犠牲陽極効果を発揮せしめるよ
うにする作用があるが、その含有量が0.5%未満では
前記作用に所望の効果が得られず、一方その含有量が2
%を越えると、圧延加工性が低下すると共に、粒界腐食
感受性が高まるようになることから、その含有量を0.
5〜2%と定めた。
Next, the reason why the component compositions of the Al alloy constituting the core material and the sacrificial anode material of the Al alloy clad material of the present invention are limited as described above will be explained. A. Core material (a) Mn The Mn component improves the strength of the core material, makes the core material electrochemically noble, and raises the potential as compared with the sacrificial anode material so that the sacrificial anode material has a sufficient sacrificial anode material. Although it has an effect of exerting the effect, if the content is less than 0.5%, the desired effect cannot be obtained on the other hand, while the content is 2%.
%, The rolling workability deteriorates, and the intergranular corrosion susceptibility increases, so the content is set to 0.
It was set at 5 to 2%.

【0007】(b) Fe Fe成分には、上記のようにろう付け加熱処理時に犠牲
陽極材から拡散してきたSn成分を、ろう付け温度から
の冷却過程(この場合空冷や強制空冷などの冷却手段が
とられるが、20〜200℃/min の範囲内の冷却速度
となるのが一般である)でAl−Fe−Sn系の金属間
化合物として析出せしめ、素地中にSn成分が固溶する
ことによる電位低下を阻止し、犠牲陽極材との間に所定
の電位差を保持する作用があるが、その含有量が0.2
%未満では前記作用に所望の効果が得られず、一方その
含有量が1%を越えると、圧延加工性および耐食性が低
下するようになることから、その含有量を0.2〜1%
と定めた。
(B) Fe As the Fe component, the Sn component diffused from the sacrificial anode material during the brazing heat treatment as described above is a cooling process from the brazing temperature (in this case, cooling means such as air cooling or forced air cooling). However, the cooling rate is generally within the range of 20 to 200 ° C./min), and the Sn component is solid-dissolved in the matrix by precipitating it as an Al-Fe-Sn intermetallic compound. Has a function of preventing a decrease in potential due to, and maintaining a predetermined potential difference with the sacrificial anode material, but its content is 0.2
If the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 1%, the rolling workability and the corrosion resistance are deteriorated, so the content is 0.2 to 1%.
I decided.

【0008】(c) Si,Mg,Cr,Zr,Ti、
およびV これらの成分には、いずれも芯材の強度を向上させる作
用があるので、必要に応じて含有させるが、その含有量
が、それぞれSi:0.3%未満、Mg:0.05%未
満、Cr:0.05%未満、Zr:0.05%未満、T
i:0.02%未満、およびV:0.05%未満では所
望の強度向上効果が得られず、一方その含有量が、それ
ぞれSi:1.2%、Mg:5%、Cr:0.25%、
Zr:0.25%、Ti:0.25%、およびV:0.
25%を越えると、耐食性の低下や圧延加工性の低下を
もたらすようになることから、その含有量を、それぞれ
Si:0.3〜1.2%、Mg:0.05〜5%、C
r:0.05〜0.25%、Zr:0.05〜0.25
%、Ti:0.02〜0.25%、およびV:0.05
〜0.25%と定めた。
(C) Si, Mg, Cr, Zr, Ti,
And V Since any of these components has the effect of improving the strength of the core material, it is contained if necessary, but their contents are respectively less than Si: 0.3% and Mg: 0.05%. Less than, Cr: less than 0.05%, Zr: less than 0.05%, T
If i: less than 0.02% and V: less than 0.05%, the desired strength-improving effect cannot be obtained, while the contents are Si: 1.2%, Mg: 5%, Cr: 0. 25%,
Zr: 0.25%, Ti: 0.25%, and V: 0.
If it exceeds 25%, the corrosion resistance and the rolling workability are deteriorated. Therefore, the contents are Si: 0.3 to 1.2%, Mg: 0.05 to 5%, and C, respectively.
r: 0.05 to 0.25%, Zr: 0.05 to 0.25
%, Ti: 0.02-0.25%, and V: 0.05
Was determined to be 0.25%.

【0009】B 犠牲陽極材 (a) Sn Sn成分には、素地に固溶して電気化学的に卑にし、も
ってすぐれた犠牲陽極効果を発揮せしめる作用がある
が、その含有量が0.01%未満では前記作用に所望の
効果が得られず、一方その含有量が0.15%を越える
と熱間加工性が低下するようになることから、その含有
量を0.01〜0.15%と定めた。
B Sacrificial Anode Material (a) Sn The Sn component has a function of forming a solid solution in the matrix to make it electrochemically base, and exerting an excellent sacrificial anode effect, but its content is 0.01 If the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 0.15%, the hot workability is deteriorated. Therefore, the content is 0.01 to 0.15. Defined as%.

【0010】(b) Fe Fe成分には、上記のようにろう付け加熱処理時におけ
るろう付け温度からの冷却過程において素地に固溶した
Sn成分が粒界に析出するのを抑制して、Sn成分によ
ってもたらされるすぐれた犠牲陽極効果の低下を防止す
る作用があるが、その含有量が0.002%未満では前
記作用に所望の効果が得られず、一方その含有量が0.
15%を越えると、結晶粒が粗大化するようになって熱
間加工性の低下が急激に発生することから、その含有量
を0.002〜0.15%と定めた。
(B) Fe The Fe component suppresses the precipitation of the Sn component dissolved in the matrix in the grain boundaries during the cooling process from the brazing temperature during the brazing heat treatment as described above. Although it has the effect of preventing the excellent sacrificial anode effect from being lowered by the components, if its content is less than 0.002%, the desired effect is not obtained on the other hand, while its content is less than 0.
If it exceeds 15%, the crystal grains become coarse and the hot workability is rapidly deteriorated. Therefore, the content thereof is set to 0.002 to 0.15%.

【0011】(c) Zn Zn成分には、腐食形態を全面型にかえ、もって耐孔食
性を向上させる作用があるが、その含有量が0.05%
未満では前記作用に所望の効果が得られず、一方その含
有量が1%を越えると腐食速度が急激に上昇し、使用寿
命の短命化の原因となることから、その含有量を0.0
5〜1%と定めた。
(C) Zn The Zn component has the effect of changing the corrosion form to a full-face type and thereby improving pitting corrosion resistance, but its content is 0.05%.
If the content is less than the above, the desired effect cannot be obtained, while if the content exceeds 1%, the corrosion rate sharply increases, which causes the shortening of the service life.
It was set at 5 to 1%.

【0012】(d) Mg Mg成分には、素地に固溶し、Sn成分による作用を損
なうことなく室温強度を向上させる作用があるので、必
要に応じて含有されるが、その含有量が0.1%未満で
は所望の強度向上効果が得られず、一方その含有量が
4.5%を越えると熱間加工性が低下するようになるこ
とから、その含有量を0.1〜4.5%と定めた。
(D) Mg Since the Mg component has a function of forming a solid solution in the matrix and improving the room temperature strength without impairing the action of the Sn component, it is contained as necessary, but its content is 0. When the content is less than 1%, the desired strength improving effect cannot be obtained, and when the content exceeds 4.5%, the hot workability is deteriorated. It was set at 5%.

【0013】[0013]

【実施例】つぎに、この発明のAl合金クラッド材を実
施例により具体的に説明する。通常の溶解法により表1
〜5に示される成分組成をもった芯材用Al合金、犠牲
陽極材用Al合金、およびろう材用Al合金をそれぞれ
溶製し、鋳造して鋳塊とし、以下いずれも通常の条件
で、均質化熱処理を施した後、熱間圧延にて板厚:8mm
の熱延板とし、さらに犠牲陽極材用およびろう材用熱延
板に対しては冷間圧延を施して、犠牲陽極材用について
は、片面クラッドの場合は板厚:0.9mm、両面クラッ
ドの場合は板厚:1mmの冷延板とし、またろう材用につ
いては板厚:1mmの冷延板とし、この状態で前記芯材用
熱延板、犠牲陽極材用冷延板、およびろう材用冷延板を
表6,7に示される組み合わせにしたがって重ね合わ
せ、熱間圧延にてクラッドし、引続いて冷間圧延を施し
て板厚:0.5mmとすることにより本発明Al合金クラ
ッド材1〜16および従来Al合金クラッド材1〜10
をそれぞれ製造した。
EXAMPLES Next, the Al alloy clad material of the present invention will be specifically described by way of examples. Table 1 by the usual dissolution method
To Al alloys for core materials, Al alloys for sacrificial anode materials, and Al alloys for brazing materials, each of which has the component composition shown in FIGS. After subjected to homogenizing heat treatment, hot rolled to a plate thickness: 8 mm
The hot-rolled sheet for sacrificial anode material and the brazing material is cold-rolled. For the sacrificial anode material, the thickness of the single-sided clad is 0.9 mm, the double-sided clad. In this case, the thickness is 1 mm, and for the brazing material, the thickness is 1 mm. In this state, the hot-rolled core material, the cold-rolled sacrificial anode material, and the brazing material are used. The cold-rolled sheets for materials are stacked according to the combinations shown in Tables 6 and 7, clad by hot rolling, and then cold rolled to give a sheet thickness of 0.5 mm. Clad materials 1 to 16 and conventional Al alloy clad materials 1 to 10
Were manufactured respectively.

【0014】ついで、この結果得られた各種のAl合金
クラッド材から試験片を切り出し、この試験片を用い
て、常温の3.5%NaCl溶液中でこれを構成する芯
材および犠牲陽極材の孔食電位を測定し、ついで上記試
験片をろう付け加熱処理に相当する条件、すなわちろう
材用Al合金イ,ロをクラッドしたAl合金クラッド材
は10-4torrの真空中、それ以外のAl合金クラッド材
は窒素雰囲気中、温度:600℃に5分間保持した後空
冷の条件で加熱処理し、この加熱処理後の試験片につい
て、上記条件と同じ条件で孔食電位を測定し、さらに1
ppm のCu++イオンを含有した40℃の水道水中に30
日間浸漬の腐食試験を行ない、最大孔食深さを測定し
た。これらの測定結果を表6,7に示した。
Then, test pieces were cut out from the various Al alloy clad materials obtained as a result, and the test pieces were used to prepare a core material and a sacrificial anode material constituting the same in a 3.5% NaCl solution at room temperature. The pitting potential was measured, and the test piece was then brazed by heat treatment. That is, the Al alloy clad material clad with Al alloys a and b for brazing was used in a vacuum of 10 -4 torr and other Al. The alloy clad material was held in a nitrogen atmosphere at a temperature of 600 ° C. for 5 minutes and then heat-treated under the conditions of air cooling. The pitting corrosion potential of the test piece after the heat treatment was measured under the same conditions as above, and further 1
30 in 40 ° C tap water containing ppm Cu ++ ions
The corrosion test of immersion for a day was performed to measure the maximum pitting depth. The measurement results are shown in Tables 6 and 7.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【表6】 [Table 6]

【0021】[0021]

【表7】 [Table 7]

【0022】[0022]

【発明の効果】表1〜7に示される結果から、本発明A
l合金クラッド材1〜16においては、ろう付け加熱処
理時のろう付け温度からの冷却過程で、犠牲陽極材に含
有するSn成分がFe成分の作用で粒界に析出するのが
抑制されるので、犠牲陽極材のろう付け加熱処理後の電
位上昇はきわめて小さく、また芯材中に含有するFe成
分によってろう付け加熱処理時に犠牲陽極材より拡散し
てきたSn成分がろう付け温度からの冷却過程で金属間
化合物として析出し、素地に固溶することがないので、
芯材もろう付け加熱処理前と変らぬ電位を保持し、この
結果ろう付け加熱処理後においても芯材と犠牲陽極材の
間にはろう付け加熱処理前と変らぬ電位差が確保され、
犠牲陽極材はすぐれた犠牲陽極効果を発揮して、芯材を
よく防食することが明らかであり、一方、従来Al合金
クラッド材1〜10においては、ろう付け加熱処理によ
って犠牲陽極材の電位は上昇し、芯材の電位は低下する
ようになり、これら両者間の電位差はきわめて小さいも
のとなることから、芯材には孔食が発生し易くなること
が明らかである。
From the results shown in Tables 1 to 7, the present invention A
In the 1-alloy clad materials 1 to 16, during the cooling process from the brazing temperature during the brazing heat treatment, the Sn component contained in the sacrificial anode material is suppressed from precipitating at the grain boundaries due to the action of the Fe component. The potential rise of the sacrificial anode material after the brazing heat treatment is extremely small, and the Sn component diffused from the sacrificial anode material during the brazing heat treatment by the Fe component contained in the core material is cooled in the cooling process from the brazing temperature. Since it precipitates as an intermetallic compound and does not form a solid solution in the matrix,
The core material also holds the same potential as before the brazing heat treatment, and as a result, a potential difference that is the same as that before the brazing heat treatment is secured between the core material and the sacrificial anode material even after the brazing heat treatment,
It is clear that the sacrificial anode material exerts an excellent sacrificial anode effect and well protects the core material from corrosion. On the other hand, in the conventional Al alloy clad materials 1 to 10, the potential of the sacrificial anode material is changed by the brazing heat treatment. It rises, the potential of the core material decreases, and the potential difference between the two becomes extremely small, so that it is clear that pitting corrosion easily occurs in the core material.

【0023】上述のように、この発明のAl合金クラッ
ド材においては、ろう付け加熱処理が施されても、これ
を構成する犠牲陽極材および芯材がろう付け加熱処理前
とほとんど変らぬ電位差を保持することから、これを用
いてろう付け結合されて組み立てられた各種設備装置で
は、犠牲陽極材が芯材をよく防食するので、著しく長期
に亘ってすぐれた性能を発揮するのである。
As described above, in the Al alloy clad material of the present invention, even if the brazing heat treatment is performed, the sacrificial anode material and the core material constituting the same have a potential difference that is almost unchanged from that before the brazing heat treatment. Since the sacrificial anode material corrodes the core material well in the various equipment devices assembled by brazing and using the same, the excellent performance is exhibited for a remarkably long time.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 芯材の片面または両面に犠牲陽極材をク
ラッドしてなるAl合金クラッド材、および芯材の一方
面に犠牲陽極材を、他方面にAl−Si系合金のろう材
をクラッドしてなるAl合金クラッド材において、 上記芯材を、重量%で、 Mn:0.5〜2%、 Fe:0.2〜1%、 を含有し、残りがAlと不可避不純物からなる組成を有
するAl合金、で構成し、上記犠牲陽極材を、重量%
で、 Sn:0.01〜0.15%、 Zn:0.05〜1
%、 Fe:0.002〜0.15%、 を含有し、残りがAlと不可避不純物からなる組成を有
するAl合金、で構成したことを特徴とする、ろう付け
加熱処理後もすぐれた耐孔食性を有するAl合金クラッ
ド材。
1. An Al alloy clad material obtained by clad a sacrificial anode material on one or both sides of a core material, and a sacrificial anode material on one surface of the core material and an brazing material of an Al--Si alloy on the other surface. In the Al alloy clad material obtained by the above, a composition containing the above-mentioned core material by weight%, Mn: 0.5 to 2%, Fe: 0.2 to 1%, and the balance of Al and unavoidable impurities Al alloy, which has the above sacrificial anode material, by weight%
Then, Sn: 0.01 to 0.15%, Zn: 0.05 to 1
%, Fe: 0.002 to 0.15%, and the balance being an Al alloy having a composition of Al and unavoidable impurities, which is excellent in hole resistance even after brazing heat treatment. Al alloy clad material having corrosion resistance.
【請求項2】 芯材の片面または両面に犠牲陽極材をク
ラッドしてなるAl合金クラッド材、および芯材の一方
面に犠牲陽極材を、他方面にAl−Si系合金のろう材
をクラッドしてなるAl合金クラッド材において、 上記芯材を、重量%で、 Mn:0.5〜2%、 Fe:0.2〜1%、 を含有し、さらに、 Si:0.3〜1.2%、 Mg:0.05〜5
%、 Cr:0.05〜0.25%、 Zr:0.05〜0.
25%、 Ti:0.02〜0.25%、 V:0.05〜0.2
5%、 のうちの1種または2種以上、を含有し、残りがAlと
不可避不純物からなる組成を有するAl合金、で構成
し、上記犠牲陽極材を、重量%で、 Sn:0.01〜0.15%、 Zn:0.05〜1
%、 Fe:0.002〜0.15%、 を含有し、残りがAlと不可避不純物からなる組成を有
するAl合金、で構成したことを特徴とする、ろう付け
加熱処理後もすぐれた耐孔食性を有するAl合金クラッ
ド材。
2. An Al alloy clad material in which a sacrificial anode material is clad on one or both sides of a core material, and a sacrificial anode material on one surface of the core material and an brazing material of an Al--Si alloy on the other surface. In the Al alloy clad material obtained by the above, the core material contains, by weight%, Mn: 0.5 to 2%, Fe: 0.2 to 1%, and further Si: 0.3 to 1. 2%, Mg: 0.05-5
%, Cr: 0.05 to 0.25%, Zr: 0.05 to 0.
25%, Ti: 0.02 to 0.25%, V: 0.05 to 0.2
5%, one or more of them, and the balance being an Al alloy having a composition of Al and unavoidable impurities, wherein the sacrificial anode material is, by weight%, Sn: 0.01 ~ 0.15%, Zn: 0.05-1
%, Fe: 0.002 to 0.15%, and the balance being an Al alloy having a composition of Al and unavoidable impurities, which is excellent in hole resistance even after brazing heat treatment. Al alloy clad material having corrosion resistance.
【請求項3】 芯材の片面または両面に犠牲陽極材をク
ラッドしてなるAl合金クラッド材、および芯材の一方
面に犠牲陽極材を、他方面にAl−Si系合金のろう材
をクラッドしてなるAl合金クラッド材において、 上記芯材を、重量%で、 Mn:0.5〜2%、 Fe:0.2〜1%、 を含有し、残りがAlと不可避不純物からなる組成を有
するAl合金、で構成し、上記犠牲陽極材を、重量%
で、 Sn:0.01〜0.15%、 Zn:0.05〜1
%、 Fe:0.002〜0.15%、 を含有し、さらに、 Mg:0.1〜4.5%、 を含有し、残りがAlと不可避不純物からなる組成を有
するAl合金、で構成したことを特徴とする、ろう付け
加熱処理後もすぐれた耐孔食性を有するAl合金クラッ
ド材。
3. An Al alloy clad material obtained by clad a sacrificial anode material on one or both sides of a core material, and a sacrificial anode material on one side of the core material and a brazing material of an Al--Si alloy on the other side. In the Al alloy clad material obtained by the above, a composition containing the above-mentioned core material by weight%, Mn: 0.5 to 2%, Fe: 0.2 to 1%, and the balance of Al and unavoidable impurities Al alloy, which has the above sacrificial anode material, by weight%
Then, Sn: 0.01 to 0.15%, Zn: 0.05 to 1
%, Fe: 0.002 to 0.15%, further, Mg: 0.1 to 4.5%, and the balance being an Al alloy having a composition of Al and unavoidable impurities. An Al alloy clad material having excellent pitting corrosion resistance even after brazing heat treatment, characterized in that.
【請求項4】 芯材の片面または両面に犠牲陽極材をク
ラッドしてなるAl合金クラッド材、および芯材の一方
面に犠牲陽極材を、他方面にAl−Si系合金のろう材
をクラッドしてなるAl合金クラッド材において、 上記芯材を、重量%で、 Mn:0.5〜2%、 Fe:0.2〜1%、 を含有し、さらに、 Si:0.3〜1.2%、 Mg:0.05〜5
%、 Cr:0.05〜0.25%、 Zr:0.05〜0.
25%、 Ti:0.02〜0.25%、 V:0.05〜0.2
5%、 のうちの1種または2種以上、を含有し、残りがAlと
不可避不純物からなる組成を有するAl合金、で構成
し、上記犠牲陽極材を、重量%で、 Sn:0.01〜0.15%、 Zn:0.05〜1
%、 Fe:0.002〜0.15%、 を含有し、さらに、 Mg:0.1〜4.5%、 を含有し、残りがAlと不可避不純物からなる組成を有
するAl合金、で構成したことを特徴とする、ろう付け
加熱処理後もすぐれた耐孔食性を有するAl合金クラッ
ド材。
4. An Al alloy clad material obtained by clad a sacrificial anode material on one or both sides of a core material, and a sacrificial anode material on one surface of the core material and a brazing material of an Al--Si alloy on the other surface. In the Al alloy clad material obtained by the above, the core material contains, by weight%, Mn: 0.5 to 2%, Fe: 0.2 to 1%, and further Si: 0.3 to 1. 2%, Mg: 0.05-5
%, Cr: 0.05 to 0.25%, Zr: 0.05 to 0.
25%, Ti: 0.02 to 0.25%, V: 0.05 to 0.2
5%, one or more of them, and the balance being an Al alloy having a composition of Al and unavoidable impurities, wherein the sacrificial anode material is, by weight%, Sn: 0.01 ~ 0.15%, Zn: 0.05-1
%, Fe: 0.002 to 0.15%, further, Mg: 0.1 to 4.5%, and the balance being an Al alloy having a composition of Al and unavoidable impurities. An Al alloy clad material having excellent pitting corrosion resistance even after brazing heat treatment, characterized in that.
JP25636393A 1993-09-20 1993-09-20 Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment Pending JPH0790457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25636393A JPH0790457A (en) 1993-09-20 1993-09-20 Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25636393A JPH0790457A (en) 1993-09-20 1993-09-20 Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment

Publications (1)

Publication Number Publication Date
JPH0790457A true JPH0790457A (en) 1995-04-04

Family

ID=17291646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25636393A Pending JPH0790457A (en) 1993-09-20 1993-09-20 Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment

Country Status (1)

Country Link
JP (1) JPH0790457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918096A1 (en) * 1997-11-20 1999-05-26 Alusuisse Technology & Management AG Structural element made of a die-cast aluminium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918096A1 (en) * 1997-11-20 1999-05-26 Alusuisse Technology & Management AG Structural element made of a die-cast aluminium alloy

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
JP2685927B2 (en) A Blazing sheet for refrigerant passage of heat exchanger manufactured by A
JP3873267B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP3217607B2 (en) Aluminum alloy composite for heat exchanger with excellent fatigue strength and corrosion resistance
JPH07179969A (en) Laminated brazing sheet made of aluminum alloy for heat exchanger
JP3858255B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JPH0525576A (en) High strength al alloy tube material for al heat exchanger excellent in pitting corrosion resistance
JP2685926B2 (en) A Blazing sheet for refrigerant passage of heat exchanger manufactured by A
JPH0210212B2 (en)
JPH0790457A (en) Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment
JPH0790456A (en) Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment
JP4019337B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPH06212331A (en) Aluminum alloy brazing sheet having high strength and high corrosion resistance
JPH0790455A (en) Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment
JPH07179973A (en) Al alloy brazing sheet for vacuum brazing for structural member for heat exchanger, excellent in corrosion resistance
JP4058650B2 (en) Clad material for heat exchangers with excellent pitting corrosion resistance in a strong alkaline environment
JPH07118781A (en) Al alloy clad material having excellent pitting corrosion resistance even after brazing heating treatment
JP2779172B2 (en) Aluminum brazing sheet for heat exchanger components
JP3133390B2 (en) High strength aluminum alloy clad material for low temperature brazing
JP3337771B2 (en) Aluminum alloy composite for heat exchanger
JPH038569A (en) Production of heat exchanger made of aluminum
JPH11241133A (en) High corrosion resistant aluminum alloy clad material and its production
JPH11140572A (en) High strength aluminum alloy brazing sheet for heat exchanger excellent in intergranular corrosion resistance