JPH0790309A - Electrically conductive fine metal powder and its production - Google Patents

Electrically conductive fine metal powder and its production

Info

Publication number
JPH0790309A
JPH0790309A JP5229286A JP22928693A JPH0790309A JP H0790309 A JPH0790309 A JP H0790309A JP 5229286 A JP5229286 A JP 5229286A JP 22928693 A JP22928693 A JP 22928693A JP H0790309 A JPH0790309 A JP H0790309A
Authority
JP
Japan
Prior art keywords
metal powder
fine
powder
fine metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5229286A
Other languages
Japanese (ja)
Inventor
Hirofumi Sugikawa
裕文 杉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Special Industries Ltd
Original Assignee
Katayama Special Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Special Industries Ltd filed Critical Katayama Special Industries Ltd
Priority to JP5229286A priority Critical patent/JPH0790309A/en
Publication of JPH0790309A publication Critical patent/JPH0790309A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the electric conductivity of the fine metal powder and to reduce its specific resistance by charging the fine metal powder and a soft metal powder having conductivity higher than that of the fine metal powder into a mixing agitator to form a pressure-coating film of the soft metal powder on the surface of the fine metal powder. CONSTITUTION:The fine metal powder 4 consisting of Ni, Cu, Ag, Al, Fe, Zn, a powdery mixture of Fe with Cr or a Fe-Cr alloy powder is prepared and a soft metal powder consisting of Au, Ag, Cu or In, each of which has conductivity higher than that of this fine metal powder 4, softness and ductility and is hardly oxidized, is also prepared. Then, this soft metal powder and the fine metal powder 4 are charged into a mixing agitator to form a pressure-coating film 11 of the soft metal powder on the surface of the fine metal powder 4. Thus, the conductive metal powder 10 which has spherical or flat flaky shape having a circular or elliptical cross section can be produced by coating the outer circumferential face of the fine metal powder 4 with the conductive pressure-coating film 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性金属微粒粉およ
び該導電性金属微粒粉の製造方法に関し、特に、ニッケ
ルカドミウム電池、リチウム電池、燃料電池等の各種電
池の極板、自動車用バッテリーの電極板として用いられ
る金属多孔体を形成する材料として好適に利用されるも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive metal fine powder and a method for producing the conductive metal fine powder, and more particularly to electrode plates for various batteries such as nickel-cadmium batteries, lithium batteries and fuel cells, and automobile batteries. It is preferably used as a material for forming a metal porous body used as the electrode plate of.

【0002】[0002]

【従来の技術】従来、金属微粒粉に導電性を付与する方
法として、主として、化学メッキ法、気相法および蒸着
法が用いられている。
2. Description of the Related Art Conventionally, a chemical plating method, a vapor phase method and a vapor deposition method have been mainly used as a method for imparting conductivity to fine metal particles.

【0003】[0003]

【発明が解決しようとする課題】上記従来の金属微粒粉
に対する導電性付与処理はいずれも下記の問題があっ
た。 a)化学メッキ方法 化学メッキを施す場合、工程数が多く、多数の薬液管理
が必要となり、特に、廃液処理に留意する必要が生じ
る。また、薬品等のコストが高くつく欠点があった。 b)気相法 有毒な金属ガスを使用するため、環境上で問題があり、
また、装置が大型化する欠点があった。 c)蒸着方法 蒸着は真空装置内で行う必要があるが、基材を連続して
処理する場合、真空装置内を通して真空装置内で蒸着す
ることは容易でなく、基材の出入口で空気漏れが発生
し、真空状態に保持することが容易でない。かつ、設備
が大型化し、さらに、コストが非常にかかると共に時間
がかかる欠点がある。
The above-mentioned conventional treatments for imparting conductivity to fine metal particles have the following problems. a) Chemical plating method When chemical plating is performed, the number of steps is large, and it is necessary to manage a large number of chemical liquids. In particular, it is necessary to pay attention to waste liquid treatment. Further, there is a drawback that the cost of chemicals is high. b) Gas phase method Since toxic metal gas is used, there is an environmental problem,
Further, there is a drawback that the device becomes large. c) Vapor deposition method It is necessary to perform vapor deposition in a vacuum apparatus. However, when the substrate is continuously processed, it is not easy to deposit the vapor through the vacuum apparatus in the vacuum apparatus, and air leakage occurs at the inlet and outlet of the substrate. Occurs and is not easy to maintain in a vacuum state. In addition, there is a drawback that the equipment becomes large, and that the cost is very high and the time is long.

【0004】本発明は上記問題に鑑みてなされたもの
で、簡単かつ安価に実施できる導電性金属微粒粉の製造
方法および該方法により製造される導電性が優れた金属
微粒粉を提供することを目的としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for producing a conductive fine metal powder which can be easily and inexpensively manufactured, and a fine metal powder having excellent conductivity produced by the method. Has an aim.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、金属微粒粉の表面に、該金属微粒粉より
も導電性が高い金属を圧接被膜していることを特徴とす
る導電性金属微粒粉を提供するものである。
In order to achieve the above object, the present invention is characterized in that the surface of fine metal powder is coated with a metal having higher conductivity than the fine metal powder by pressure welding. The present invention provides a fine powder of a fine metal powder.

【0006】詳しくは、上記金属微粒粉はNi,Cu,
Ag,Al,Fe,Zn,FeとCrの混合粉末、Fe
とCrとの合金粉末からなり、該金属微粒粉に圧接被膜
する金属はAu,Ag,Cu,Inからなり、上記金属
微粒粉と該金属微粒粉とを夫々上記金属より選択して組
み合わせ、上記金属微粒粉より導電性が高く且つ柔らか
く延性を有すると共に酸化しにくい上記圧接被覆金属
を、金属微粒粉の外周面に被覆している。
[0006] More specifically, the fine metal particles are Ni, Cu,
Ag, Al, Fe, Zn, mixed powder of Fe and Cr, Fe
The alloy fine powder of Cr and Cr, and the metal to be pressure-contacted with the fine metal powder is Au, Ag, Cu, In. The fine metal powder and the fine metal powder are selected from the above metals and combined, respectively. The outer peripheral surface of the fine metal powder is coated with the pressure-contact coated metal that has higher conductivity, is softer and more ductile than the fine metal powder, and is less likely to be oxidized.

【0007】上記金属微粒粉の表面に圧接皮膜金属を備
えた導電性金属微粒粉は、断面形状が略真円形状の球
形、略楕円形状の球形、あるいは偏平なフレーク形状な
ど、任意の形状とすることができる。
The conductive fine metal powder having the pressure contact coating metal on the surface of the fine metal powder has an arbitrary shape such as a spherical shape having a substantially perfect circular cross section, a substantially elliptical spherical shape, or a flat flake shape. can do.

【0008】上記導電性金属微粒粉は、金属微粒粉と、
該金属微粒粉よりも導電性が良いと共に柔らかく延性を
有する金属パウダーを混合撹拌器に投入して、上記金属
微粒粉の表面に上記金属パウダーを圧接被膜して製造し
ている。具体的には、ボールミル、アトライター等の混
合撹拌器内部に、 ジルコニア、アルミナ、 鉄からなる直
径10mm程度のボールと、純水と、粒径1μm〜50
μmの上記金属微粒粉および0.1μ〜20μmの上記
金属パウダーを投入して撹拌し、上記ボールとの接触に
より上記金属パウダーを粉砕して、純水との混合でスラ
リー化させ、このスラリー化させた金属パウダーを上記
金属微粒粉の外周面に圧接皮膜し、その後、乾燥して脱
水している。
The above conductive fine metal particles include fine metal powder and
A metal powder having better conductivity and softness and ductility than the fine metal powder is put into a mixing stirrer, and the surface of the fine metal powder is pressure-contacted with the fine metal powder to manufacture the metal powder. Specifically, inside a mixing stirrer such as a ball mill or an attritor, a ball made of zirconia, alumina, and iron and having a diameter of about 10 mm, pure water, and a particle size of 1 μm to 50 μm are used.
The metal fine powder of μm and the metal powder of 0.1 μm to 20 μm are charged and stirred, and the metal powder is crushed by contact with the balls and slurried by mixing with pure water. The metal powder thus obtained is pressure-contact coated on the outer peripheral surface of the fine metal powder particles, and then dried and dehydrated.

【0009】さらに、上記混合撹拌器の内部に、ステア
リン酸ナトリウム等からなる還元剤を少量添加し、ボー
ル、金属微粒粉、金属パウダー、純水と共に撹拌するこ
とにより、生成する導電性金属微粒粉に酸化防止処理を
施すことが好ましい。
Further, a small amount of a reducing agent such as sodium stearate is added to the inside of the mixing stirrer, and the mixture is stirred with balls, metal fine particles, metal powder and pure water to produce conductive metal fine particles. It is preferable to apply an antioxidant treatment to the.

【0010】上記導電性金属微粒粉を用いて、三次元網
状の多孔体に導電性を付与する場合には、上記導電性金
属微粒粉と接着剤と混合してスラリー化させ、該スラリ
ーを多孔体の表面に含浸・塗布することが好ましい。
When the conductive fine metal powder is used to impart conductivity to a three-dimensional mesh-like porous body, the conductive fine metal powder and an adhesive are mixed to form a slurry, and the slurry is porous. It is preferable to impregnate / apply on the surface of the body.

【0011】[0011]

【作用】本発明の導電性金属微粒粉は、金属微粒粉と、
該金属微粒粉に圧接皮膜する金属パウダーとを混合撹拌
器に投入し、撹拌するだけの極めて簡単な作業で、金属
微粒粉に導電性を付与する事ができる。このように製造
された金属微粒粉は、表面に導電性が良いと共に酸化し
にくい金属で皮膜されているため、金属微粒粉の導電性
が良好となり、固有抵抗値を低下させることが出来る。
よって、後工程で電気メッキを施す場合には、高電流で
電気メッキを行う事が可能となる。
The function of the conductive fine metal powder of the present invention is as follows:
It is possible to impart conductivity to the fine metal powder by an extremely simple operation of charging the fine metal powder with a metal powder to be pressure-contacted with a film and stirring the mixture. Since the fine metal powder thus produced has a surface coated with a metal that has good conductivity and is difficult to oxidize, the fine metal powder has good conductivity, and the specific resistance value can be reduced.
Therefore, when electroplating is performed in a later step, it is possible to perform electroplating with a high current.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図1に示すように、本発明の導電性金属微
粒粉10は、(A)に示す断面が略真円形状の球状、
(B)に示す断面が楕円形状の球形、あるいは(C)に
示す偏平なフレーク形状としており、いずれも、金属微
粒粉4の外周面に導電性金属皮膜11が圧接皮膜された
構成となっている。導電性金属微粒粉10の粒径は、図
1の(A)に示すものでは直径1μm〜10μm程度と
している。尚、導電性金属微粒粉10の大きさは、その
使用箇所に応じて、10μm以上としても良いことは言
うまでもなく、1μm〜50μmの範囲に含まれる事が
好ましい。
Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIG. 1, the conductive metal fine particle powder 10 of the present invention has a spherical shape whose cross section shown in FIG.
The cross section shown in (B) has an elliptical spherical shape, or the flat flake shape shown in (C), both of which have a configuration in which the conductive metal film 11 is pressure-bonded to the outer peripheral surface of the fine metal powder 4. There is. The particle size of the conductive metal fine powder 10 is about 1 μm to 10 μm in diameter in the one shown in FIG. It is needless to say that the size of the conductive metal fine powder 10 may be 10 μm or more depending on the place where it is used, and it is preferable that the size is in the range of 1 μm to 50 μm.

【0013】上記金属微粒粉4としては、Ni,Cu,
Ag,Al,Fe,Znの微粒粉、FeとCrとの混合
微粒粉、あるいは、FeとCrとの合金の微粒粉等の微
粒粉が好適に用いられる。また、後述するように導電性
金属皮膜11は金属パウダー11’より形成しており、
該金属パウダー11’としては、導電性が高く、かつ、
柔らかくて延性を有し、しかも酸化しにくい金属、例え
ば、Au,Ag,Cu,In等が好適に用いられる。
The fine metal particles 4 include Ni, Cu,
Fine particles of Ag, Al, Fe, Zn, fine particles of mixed powder of Fe and Cr, or fine particles of alloy of Fe and Cr are preferably used. Further, as described later, the conductive metal film 11 is formed of metal powder 11 ′,
The metal powder 11 'has high conductivity, and
A metal that is soft and has ductility and is hard to oxidize, such as Au, Ag, Cu or In, is preferably used.

【0014】金属微粒粉4と金属パウダー11’の組み
合わせは、金属微粒粉4に対し金属パウダー11’の方
が導電性が大であると共に、柔らかく延性が優れたもの
が圧接皮膜される。
As for the combination of the fine metal powder 4 and the fine metal powder 11 ', the fine metal powder 4'is more conductive than the fine metal powder 4 and is soft and excellent in ductility.

【0015】上記導電性金属微粒粉10の製造方法は、
図2に示すボールミル100を用い、該ボールミル10
0の内部に金属微粒粉4と金属パウダー11’と、純粋
とを投入し、ボールミル100の内部に予め投入されて
いるボール101と共に回転させて、撹拌することによ
り、金属パウダー11’を粉砕し、金属微粒粉4の表面
に圧接被膜して製造している。
The method for producing the conductive metal fine powder 10 is as follows.
Using the ball mill 100 shown in FIG.
The fine metal powder 4 and the metal powder 11 ′ are put into the inside of 0, and the fine metal powder 11 ′ is crushed by rotating and stirring together with the balls 101 previously put into the ball mill 100. The surface of the fine metal powder 4 is pressure-contacted and manufactured.

【0016】本実施例では、上記ボールミル100とし
て、容積15lのUF(ウルトラファイン)ミルを用いて
おり、ボール101は直径10mmのジルコニアボール
で、ボールミル100の内筒100aと外筒100bと
により挟まれた筒内部100cに、その容積の80%を
ボール101で占めるように予め投入している。上記内
筒100aと外筒100bとも筒内部100cに突出す
る羽根部100dを有する形状である。上記内筒100
aと外筒100bとは図示のように互いに逆方向に0.
75N/Ncの回転数で回転するように設定されてい
る。
In this embodiment, a UF (ultra fine) mill having a volume of 15 l is used as the ball mill 100, and the ball 101 is a zirconia ball having a diameter of 10 mm, which is sandwiched between the inner cylinder 100a and the outer cylinder 100b of the ball mill 100. The balls 101 are put in advance in the hollow cylinder inside 100c so that 80% of the volume thereof is occupied by the balls 101. Both the inner cylinder 100a and the outer cylinder 100b have a shape having a blade portion 100d protruding into the cylinder interior 100c. The inner cylinder 100
a and the outer cylinder 100b are opposite to each other as shown in FIG.
It is set to rotate at a rotation speed of 75 N / Nc.

【0017】ボールミル100の内部には、まず、作動
液となる純水4lと、Ni微粒粉(粒径1μの球状)から
なる金属微粒粉4を4kgと混合して投入し、ボールミル
100を30分回転させ、予めボールミル100の内部
に投入されているボール101と共に金属微粒粉4を撹
拌することにより、金属微粒粉1をほぐしている。
First, 4 l of pure water as a working liquid and 4 kg of metal fine particles 4 made of Ni fine particles (spherical particles having a particle size of 1 μ) are mixed and charged into the ball mill 100, and the ball mill 100 is charged with 30 parts. The fine metal powder 1 is loosened by rotating the fine metal powder 4 by a minute and stirring the fine metal powder 4 together with the balls 101 that have been put into the ball mill 100 in advance.

【0018】ついで、Ag(粒径0.1μm〜15μm)
からなる金属パウダー11’を0.2kgをボールミル1
00の内部に添加する。この状態で、ボール101、金
属微粒粉4、金属パウダー11’を純水と共に、約1時
間回転させて撹拌する。この撹拌で、柔らかいAg等の
金属パウダー11’が粉砕および引き伸ばされた状態と
なって、純水と混合してスラリー化する。このスラリー
がボール101との接触作用により、金属微粒粉4の表
面に圧接被膜し、導電性金属皮膜11となる。上記回転
時間を経過した後、ボールミル100を停止し、ボール
101と金属分をフィルタで分離し、ついで、分離した
金属分をフィルタプレスで圧をかけて脱水する。この脱
水した金属分を乾燥して純水を蒸発させると、図1に示
す導電性金属微粒粉10が完成する。
Next, Ag (particle size 0.1 μm to 15 μm)
0.2kg of metal powder 11 'consisting of ball mill 1
00 inside. In this state, the ball 101, the fine metal powder 4, and the metal powder 11 'are rotated and stirred with pure water for about 1 hour. By this stirring, the metal powder 11 'such as soft Ag is crushed and stretched, and mixed with pure water to form a slurry. Due to the contact action of the slurry with the balls 101, the surface of the fine metal particle powder 4 is pressure-contacted to form a conductive metal film 11. After the rotation time has elapsed, the ball mill 100 is stopped, the balls 101 and the metal component are separated by a filter, and then the separated metal component is depressurized by a filter press to be dehydrated. When the dehydrated metal component is dried and pure water is evaporated, the conductive metal fine particle powder 10 shown in FIG. 1 is completed.

【0019】上記ボールミル100により、上記した約
1時間の回転で、図1(A)に示す断面真円形状の導電
性金属微粒粉10が形成される。この撹拌混合時間を延
ばすとボールとの接触により断面形状が変形して、ま
ず。(B)に示す断面楕円形状となり、さらに、混合撹
拌時間を延ばすと(C)に示す偏平なフレーク状とな
る。よって、撹拌混合時間を調節することにより、要求
される形状とすることができる。
By the ball mill 100, the conductive metal fine particle powder 10 having a perfect circular cross section shown in FIG. 1 (A) is formed by the rotation for about 1 hour. When this stirring and mixing time is extended, the cross-sectional shape is deformed due to contact with the ball, and first. The cross section becomes elliptical as shown in (B), and when the mixing and stirring time is further extended, it becomes flat flakes as shown in (C). Therefore, the required shape can be obtained by adjusting the stirring and mixing time.

【0020】さらに、上記ボールミル100の内部に、
ステアリング酸ナトリウム等からなる還元剤を少量添付
し、ボール101、金属微粒粉4、および純水と共に撹
拌混合すると、上記還元剤が金属微粒粉4と接触して酸
化防止処理が施される。よって、製造される導電性金属
微粒粉10は更に酸化しにくくなる特性を付与すること
ができる。
Further, inside the ball mill 100,
When a small amount of a reducing agent such as sodium stearate is attached, and the mixture is stirred and mixed with the balls 101, the metal fine particles 4, and pure water, the reducing agent comes into contact with the metal fine particles 4 and an antioxidant treatment is performed. Therefore, the manufactured conductive metal fine particle powder 10 can be provided with the property that it is more difficult to oxidize.

【0021】上記実施例はボールミルを用いて製造して
いるが、アトライターあるいは自動乳鉢を用い、これら
の内部で混合・撹拌して製造しても良いことは言うまで
もない。
Although the above-mentioned embodiment is manufactured by using a ball mill, it goes without saying that it may be manufactured by using an attritor or an automatic mortar and mixing / stirring inside thereof.

【0022】上記のように製造された導電性金属微粒粉
10を用いて、三次元網状の多孔体、例えば、発泡体、
不織布、メッシュ体、あるいはこれらの積層体に対し
て、導電性を付与する場合、接着剤と予め混合してスラ
リー状とし、該スラリーを上記多孔体の表面に含浸・塗
布することが好ましい。
Using the conductive metal fine powder 10 produced as described above, a three-dimensional mesh-like porous body such as a foam,
When imparting electroconductivity to a nonwoven fabric, a mesh body, or a laminated body of these, it is preferable to mix it with an adhesive in advance to form a slurry, and to impregnate and coat the surface of the porous body with the slurry.

【0023】上記接着剤とのスラリーを形成する場合
は、上記ボール101と分離した導電性金属微粒粉10
を完全に脱水せず、水分を20%程度含有した状態で、
このスラリーに乳化剤、分散剤を入れて、機械的撹拌で
分散させる。ついで、有機接着薬剤(例えば、アクリル
30%と水分70%との混合)を添加して、機械的撹拌
を行う。これにより、導電性金属微粒粉10と接着剤と
の混合スラリーが完成する。上記スラリーをロールコー
テングして上記多孔体の表面に含浸塗布、あるいは、ス
ラリー中に多孔体を浸けて含浸塗布する。これにより、
多孔体の表面に導電性金属層が形成される。
In the case of forming a slurry with the adhesive, the conductive metal fine powder 10 separated from the balls 101 is used.
Is not completely dehydrated and contains about 20% of water,
An emulsifier and a dispersant are added to this slurry and dispersed by mechanical stirring. Then, an organic adhesive agent (for example, a mixture of 30% acrylic and 70% water) is added and mechanical stirring is performed. As a result, a mixed slurry of the conductive metal fine powder 10 and the adhesive is completed. The slurry is roll-coated and impregnated and coated on the surface of the porous body, or the porous body is dipped in the slurry and impregnated and coated. This allows
A conductive metal layer is formed on the surface of the porous body.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
の導電性金属微粒粉では、金属微粒粉の表面に、該金属
より導電性のよい金属からなる皮膜を付着しているため
導電性が優れたものとなる。よって、該導電性金属微粒
粉を接着剤と共に多孔体等の基材表面に塗布すると、基
材表面に導電性金属層を容易に付与することができる。
As is clear from the above description, in the conductive fine metal powder of the present invention, the fine metal powder has a conductive film on the surface thereof, which is more conductive than the metal. Will be excellent. Therefore, when the conductive metal fine powder is applied to the surface of a base material such as a porous body together with an adhesive, a conductive metal layer can be easily applied to the surface of the base material.

【0025】また、上記導電性金属微粒粉は、金属微粒
粉と金属パウダーとを混合撹拌器で混合撹拌するだけで
極めて簡単に製造することができる。
The conductive fine metal powder can be manufactured very simply by mixing and stirring the fine metal powder and the metal powder with a mixing stirrer.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (A)(B)(C)はそれぞれ本発明の導電
性金属微粒粉を示す断面図である。
1 (A), (B), and (C) are cross-sectional views showing a conductive metal fine particle powder of the present invention, respectively.

【図2】 導電性金属微粒粉を製造するボールミルを示
す概略図である。
FIG. 2 is a schematic view showing a ball mill for producing conductive metal fine powder.

【符号の説明】[Explanation of symbols]

4 金属微粒粉 10 導電性金属微粒粉 11 圧接皮膜 11’ 金属パウダー 100 ボールミル 4 fine metal powder 10 conductive fine metal powder 11 pressure contact coating 11 'metal powder 100 ball mill

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属微粒粉の表面に、該金属微粒粉より
も導電性が高い金属を圧接被膜していることを特徴とす
る導電性金属微粒粉。
1. A conductive fine metal powder, wherein the surface of the fine metal powder is pressure-contacted with a metal having higher conductivity than the fine metal powder.
【請求項2】 上記金属微粒粉はNi,Cu,Ag,A
l,Fe,Zn,FeとCrの混合粉末あるいはFeと
Crとの合金粉末からなり、該金属微粒粉に圧接被膜す
る金属はAu,Ag,Cu,Inからなり、上記金属微
粒粉と該金属微粒粉とを夫々上記金属より選択して組み
合わせ、上記金属微粒粉より導電性が高く且つ柔らかく
延性を有すると共に酸化しにくい上記圧接被覆金属を、
金属微粒粉の外周面に被覆している請求項1記載の導電
性金属微粒粉。
2. The fine metal powder is Ni, Cu, Ag, A.
1, Fe, Zn, a mixed powder of Fe and Cr, or an alloy powder of Fe and Cr, and the metal to be pressure-contacted with the fine metal powder is Au, Ag, Cu, In, and the fine metal powder and the metal. The fine powder is selected and combined from the metal, respectively, and the pressure-contact coated metal which is more conductive and softer than the fine metal powder and has ductility, and which is difficult to oxidize,
The electrically conductive fine metal powder according to claim 1, which is coated on the outer peripheral surface of the fine metal powder.
【請求項3】 上記導電性金属微粒粉は、断面形状が略
真円の球形、楕円形状の球形、あるいは偏平なフレーク
形状からなる請求項1または請求項2に記載の導電性金
属微粒粉。
3. The conductive metal fine particle powder according to claim 1, wherein the conductive metal fine particle powder has a spherical shape having a substantially perfect circle in cross section, an elliptical spherical shape, or a flat flake shape.
【請求項4】 金属微粒粉と、該金属微粒粉よりも導電
性が良いと共に柔らかい金属パウダーを混合撹拌器に投
入して、上記金属微粒粉の表面に上記金属パウダーを圧
接被膜することを特徴とする導電性金属微粒粉の製造方
法。
4. A fine metal powder and a fine metal powder having better conductivity and softer than the fine metal powder are put into a mixing stirrer to press-coat the surface of the fine metal powder with the metal powder. And a method for producing a conductive metal fine powder.
【請求項5】 上記混合撹拌器内部には、 ジルコニア、
アルミナ、 鉄からなる直径10mm程度のボールを純水
と共に添加し、粒径1μm〜50μmの上記金属微粒粉
および0.1μ〜20μmの上記金属パウダーと共に撹
拌し、上記ボールとの接触により上記金属パウダーを粉
砕して、純水との混合でスラリー化させ、このスラリー
化させた金属パウダーを上記金属微粒粉の外周面に圧接
皮膜し、その後、乾燥して脱水する請求項4記載の製造
方法。
5. A zirconia,
A ball made of alumina and iron and having a diameter of about 10 mm was added together with pure water, and the mixture was stirred with the fine metal powder having a particle size of 1 μm to 50 μm and the metal powder having a particle size of 0.1 μ to 20 μm, and contacted with the ball to obtain the metal powder. 5. The method according to claim 4, wherein the powder is crushed and made into a slurry by mixing with pure water, and the slurry-made metal powder is pressure-contact coated on the outer peripheral surface of the fine metal particle powder, and then dried and dehydrated.
【請求項6】 上記混合撹拌器内部に還元剤を投入し、
上記ボール、金属微粒粉、金属パウダー、純水と共に撹
拌混合して、生成される上記導電性金属微粒粉に酸化防
止処理を施している請求項4または請求項5に記載の製
造方法。
6. A reducing agent is charged into the mixing stirrer,
The manufacturing method according to claim 4 or 5, wherein the conductive fine metal powder produced is agitated and mixed with the ball, the fine metal powder, the metal powder, and pure water to subject the produced fine conductive metal powder to an antioxidant treatment.
JP5229286A 1993-09-14 1993-09-14 Electrically conductive fine metal powder and its production Pending JPH0790309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5229286A JPH0790309A (en) 1993-09-14 1993-09-14 Electrically conductive fine metal powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5229286A JPH0790309A (en) 1993-09-14 1993-09-14 Electrically conductive fine metal powder and its production

Publications (1)

Publication Number Publication Date
JPH0790309A true JPH0790309A (en) 1995-04-04

Family

ID=16889743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5229286A Pending JPH0790309A (en) 1993-09-14 1993-09-14 Electrically conductive fine metal powder and its production

Country Status (1)

Country Link
JP (1) JPH0790309A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291660B1 (en) * 1998-04-06 2001-06-01 권문구 Tantalum capacitor using composite powder
KR100781586B1 (en) * 2006-02-24 2007-12-05 삼성전기주식회사 Core-shell structure metall nanoparticles and its manufacturing method
JP2008052991A (en) * 2006-08-23 2008-03-06 Sanyo Special Steel Co Ltd Manufacturing method of metallic porous body electrode
US20110281132A1 (en) * 2008-11-21 2011-11-17 Johnson Matthey Public Limited Company Method for coating particles
WO2014156978A1 (en) * 2013-03-28 2014-10-02 東洋アルミニウム株式会社 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
CN106077670A (en) * 2016-08-03 2016-11-09 杭州科技职业技术学院 Composite codeposition co-sintering prepares the method for superfine alloy powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291660B1 (en) * 1998-04-06 2001-06-01 권문구 Tantalum capacitor using composite powder
KR100781586B1 (en) * 2006-02-24 2007-12-05 삼성전기주식회사 Core-shell structure metall nanoparticles and its manufacturing method
JP2008052991A (en) * 2006-08-23 2008-03-06 Sanyo Special Steel Co Ltd Manufacturing method of metallic porous body electrode
US20110281132A1 (en) * 2008-11-21 2011-11-17 Johnson Matthey Public Limited Company Method for coating particles
JP2016006229A (en) * 2008-11-21 2016-01-14 アングロ プラチナム マーケティング リミテッド Method for coating particles
US9713842B2 (en) 2008-11-21 2017-07-25 Anglo Platinum Marketing Limited Method for coating particles
WO2014156978A1 (en) * 2013-03-28 2014-10-02 東洋アルミニウム株式会社 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
US10020090B2 (en) 2013-03-28 2018-07-10 Toyo Aluminium Kabushiki Kaisha Conductive particles, method of manufacturing the same, conductive resin composition containing the same, and conductive coated object
CN106077670A (en) * 2016-08-03 2016-11-09 杭州科技职业技术学院 Composite codeposition co-sintering prepares the method for superfine alloy powder

Similar Documents

Publication Publication Date Title
US4309457A (en) Process of producing multilayer-coated composite powder
CN111069591B (en) Preparation method of nickel-cobalt alloy particle modified graphene micro-sheet wave-absorbing composite powder
CN109936974B (en) Synthetic method of sandwich structure CoFe @ C/graphene electromagnetic wave absorption material
TW200409144A (en) Electrically conductive paste and electrically conductive film using it, plating process and process for producing fine metal part
CN110841721A (en) MXene two-dimensional material, Cu/MXene catalyst, and preparation method and application thereof
JPH0790309A (en) Electrically conductive fine metal powder and its production
CN110883337A (en) Spray granulation Fe-Al2O3Preparation method of spraying composite powder
KR20160004991A (en) Silver-coated nickel particles and method for producing same
JPH07118701A (en) Flaky metal powder, metallic porous body and production of the powder
US4309458A (en) Process of producing composite powder coated with noble metal
US4046302A (en) Methods of manufacturing bodies of conglomerated particles
US2273832A (en) Method of making metal powder
CN106480434B (en) A kind of chemical plating graphene and preparation method thereof and a kind of metal-base composites
CN105209660A (en) Method for coating of carbon nanomaterials
US20040208992A1 (en) Method for producing conductive particles
JP3483600B2 (en) Porous metal body and method for producing the metal porous body
CN114457325B (en) Nickel layer thickness control method for nickel-plated high polymer microspheres
CN1144404A (en) Battery terminal and its manufacturing method
CN112735670B (en) Preparation method and application of micron-sized silver-coated tin conductive particles
JPS6153417B2 (en)
CN113231631A (en) Preparation method of graphene-aluminum alloy composite material
JPH0677408B2 (en) Conductive particles
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
Wu et al. Effect of pH on film structure and electrical property of PMMA–Au composite particles prepared by redox transmetalation
KR20180117256A (en) Conductive metal-coated Al powder and manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030422