JPH0789740B2 - Rotation transmission mechanism - Google Patents

Rotation transmission mechanism

Info

Publication number
JPH0789740B2
JPH0789740B2 JP19477488A JP19477488A JPH0789740B2 JP H0789740 B2 JPH0789740 B2 JP H0789740B2 JP 19477488 A JP19477488 A JP 19477488A JP 19477488 A JP19477488 A JP 19477488A JP H0789740 B2 JPH0789740 B2 JP H0789740B2
Authority
JP
Japan
Prior art keywords
magnet
pole
peripheral surface
driven
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19477488A
Other languages
Japanese (ja)
Other versions
JPH0246160A (en
Inventor
征四郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP19477488A priority Critical patent/JPH0789740B2/en
Publication of JPH0246160A publication Critical patent/JPH0246160A/en
Publication of JPH0789740B2 publication Critical patent/JPH0789740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Blinds (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、駆動軸の回転を、その駆動軸に対して捩れの
位置で交叉する従動軸に伝達する回転伝動機構に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation transmission mechanism that transmits rotation of a drive shaft to a driven shaft that intersects the drive shaft at a twisted position.

〔従来の技術〕[Conventional technology]

上述した回転伝動機構は、例えば、一対のガラス板の間
に介装したブラインド装置に対するスラットの昇降や角
度変更用の操作機構に組み込まれて使用されている。つ
まり、スラットの昇降や角度変更は、通常、回動体のス
ラットの長手方向に沿った軸芯周りでの回転によってそ
の回転体に対して吊り紐を巻き取たり繰り出したりする
ことで行われるが、その操作は、この種のブラインド装
置が建物の窓に設けられることが多い関係上その窓の側
方からの操作がし難いため、窓の前面から、その窓に直
交する軸芯周りでのハンドルの回転で行うことが好まし
く、そのハンドルの回転を、そのハンドルの軸に対して
捩れの位置で交叉する前記回動体の軸に伝達することが
必要になるからである。
The rotation transmission mechanism described above is used, for example, by being incorporated in an operation mechanism for raising and lowering a slat and changing an angle with respect to a blind device interposed between a pair of glass plates. In other words, raising and lowering or changing the angle of the slat is usually performed by winding or unwinding the hanging string with respect to the rotating body by the rotation of the rotating body around the axis along the longitudinal direction of the slat, Since this type of blind device is often installed on the window of a building, it is difficult to operate it from the side of the window, so handle from the front of the window around the axis perpendicular to the window. This is because it is necessary to transmit the rotation of the handle to the shaft of the rotating body that intersects with the shaft of the handle at a twist position.

従来、上述した回転伝動機構としては、駆動軸および従
動軸の双方に付設したハイポイドギアどうしを嵌合させ
る構成、或いは、駆動軸および従動軸の一方にウォーム
を付設するとともに他方のそのウォームに咬み合うウォ
ームホィールを付設した構成等が知られている(文献を
挙げることができない)。
Conventionally, as the rotation transmission mechanism described above, a configuration in which hypoid gears attached to both a drive shaft and a driven shaft are fitted to each other, or a worm is attached to one of the drive shaft and the driven shaft and meshes with the other worm It is known that a worm wheel or the like is attached (references cannot be given).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、上述した従来の構成においては、次のような問
題があった。
However, the above-mentioned conventional configuration has the following problems.

まず、回転の伝動が、互いに咬み合うギアを介した機械
的なものであるため、その機械要素の接触による摩損が
避け難く、耐久性に乏しい。
First, since the transmission of rotation is mechanical via gears that mesh with each other, abrasion due to contact of the mechanical elements is unavoidable and durability is poor.

また、伝動がギアを介した直接的なものであるから、従
動軸に対して異物の詰り等に起因した過負荷がある場合
に駆動軸を回転させ続けると伝動系を破損する虞があ
り、それを防止するためには伝動系中に所定負荷以上で
駆動軸と従動軸とを相対回転させる安全装置を介装する
必要があって装置の大型化を来すこととなる。さらに、
円滑な伝動を長期にわたって維持するためには潤滑油等
を定期的に補給しなければならず、頻繁なメンテナンス
作業が必要であり、それを回避すべく回転伝動機構の全
体を潤滑油中に封止した構成にすると封止用のケースを
必要とすることから装置の大型化を来す。特に、先に述
べた一対のガラス板の間に介装したブラインド装置に対
する操作機構にこの回転伝動機構を組み込む場合のよう
に、従動軸側の部分と駆動軸側の部分とを気密ないし水
密状態に離隔してある場合にあっては、操作具から被操
作対象物までが一連の伝動系で構成されていることか
ら、気密ないし水密状態を維持するためのシール機構が
必要となり、構成の複雑化を来すものであった。
Further, since the transmission is direct through the gear, there is a risk that the transmission system may be damaged if the driven shaft is continuously rotated when there is an overload on the driven shaft due to foreign matter clogging, etc. In order to prevent this, it is necessary to interpose a safety device in the transmission system that causes the drive shaft and the driven shaft to rotate relative to each other at a predetermined load or more, which results in an increase in size of the device. further,
In order to maintain smooth transmission over a long period of time, lubricating oil must be replenished regularly, and frequent maintenance work is required.To avoid this, the entire rotary transmission mechanism is sealed in lubricating oil. If the configuration is stopped, a case for sealing is required, so that the size of the device is increased. In particular, as in the case where this rotation transmission mechanism is incorporated in the operation mechanism for the blind device interposed between the pair of glass plates described above, the driven shaft side part and the drive shaft side part are separated from each other in an airtight or watertight state. In such a case, since the operation tool and the operated object are composed of a series of transmission systems, a sealing mechanism for maintaining an airtight or watertight state is required, which complicates the configuration. It was something to come.

本発明の目的は、上述の種々の問題を一掃することので
きる回転伝動機構を提供することにある。
An object of the present invention is to provide a rotary transmission mechanism capable of eliminating the above-mentioned various problems.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明による回転伝動機構の特徴構成は、駆動軸と、そ
の駆動軸に対して捩れの位置で交叉する従動軸との交叉
部において駆動軸と従動軸とに、N極とS極とを周方向
に交互に配置した磁性周面部をそれぞれ形成し、それら
前記駆動軸および従動軸に各別に形成した両磁性周面部
の内の少なくとも一方を、前記駆動軸および従動軸の軸
芯それぞれに対して直交する線を含む面で軸芯方向に2
つに分割し、分割された両分割磁性周面部どうしが互い
に軸芯周りに偏位する姿勢に配置したところにある。
The characteristic structure of the rotary transmission mechanism according to the present invention is that the drive shaft and the driven shaft are surrounded by the N pole and the S pole at the intersection of the drive shaft and the driven shaft that intersects the drive shaft at a twisted position. Magnetic peripheral surface portions alternately arranged in the direction, and at least one of the magnetic peripheral surface portions separately formed on the drive shaft and the driven shaft, respectively, with respect to the axis of the drive shaft and the driven shaft, respectively. 2 in the axial direction on a plane that includes orthogonal lines
The two divided magnetic peripheral surface portions are arranged so as to be offset from each other around the axis.

また、本発明による回転伝動機構は、上述の構成に加え
て、前記駆動軸および従動軸に各別に形成した両磁性周
面部の内の他方を、前記駆動軸および従動軸の軸芯それ
ぞれに対して直交する線を含む面で軸芯方向に2つに分
割し、分割された両分割磁性周面部どうしが互いに軸芯
周りに偏位する姿勢に配置した構成としてもよい。
The rotation transmission mechanism according to the present invention has, in addition to the above-described configuration, the other of the magnetic peripheral surface portions separately formed on the drive shaft and the driven shaft, with respect to the respective axes of the drive shaft and the driven shaft. May be divided into two in the axial direction by a plane including orthogonal lines, and the divided magnetic peripheral surface portions may be arranged so as to be deviated from each other around the axial center.

〔作 用〕[Work]

まず上述の回転伝動機構の動作を説明する。 First, the operation of the rotation transmission mechanism described above will be described.

第9図(イ)〜(ハ)において、(D)が駆動軸であ
り、(S)が従動軸である。そして、従動軸(S)の磁
性周面部(Ms)を、N極(Ns)とS極(Ss)とを位相を
180度異ならせて形成した磁石(以下、従動側磁石と称
する)(MsO)をもって構成してある。また、駆動軸
(D)の磁性周面部(Md)を、それぞれN極(Nd1),
(Nd2)とS極(Sd1),(Sd2)とを位相を180度異なら
せて形成した各々が分割磁性周面部を構成する一対の磁
石(Md1),(Md2)(以下、駆動側第1磁石(Md1)お
よび駆動側第2磁石(Md2)と称する)に分割した構成
とし、それら一対の磁石(Md1),(Md2)を、駆動側第
2磁石(Md2)のN極(Nd2)が駆動側第1磁石(Md1)
のN極(Nd1)に対して、図中A′方向に位相が90度進
んだ姿勢で配設することをもって構成してある。前記駆
動軸(D)の磁性周面部(Md)を、周方向に展開して示
すと、第13図のように表すことができ、図中の網目表示
の部分は、磁力線が出る範囲で、図中の斜線表示の部分
は、磁力線が入る範囲である。
9A to 9C, (D) is a drive shaft and (S) is a driven shaft. Then, the magnetic peripheral surface portion (Ms) of the driven shaft (S) is phased between the N pole (Ns) and the S pole (Ss).
It is composed of magnets (hereinafter referred to as driven side magnets) (MsO) formed differently by 180 degrees. In addition, the magnetic peripheral surface portion (Md) of the drive shaft (D) is connected to the N pole (Nd1),
(Nd2) and S poles (Sd1), (Sd2) are formed with 180 degrees different phases to form a pair of magnets (Md1), (Md2) (hereinafter referred to as drive side first The magnet (Md1) and the driving side second magnet (Md2) are divided into two parts, and the pair of magnets (Md1) and (Md2) are connected to each other by the N pole (Nd2) of the driving side second magnet (Md2). Drive side first magnet (Md1)
With respect to the N pole (Nd1) of FIG. When the magnetic peripheral surface portion (Md) of the drive shaft (D) is expanded and shown in the circumferential direction, it can be represented as shown in FIG. 13, and the meshed portion in the drawing shows the magnetic field lines within the range. The shaded area in the figure is the range in which the lines of magnetic force enter.

この構成における駆動軸(D)側の2つの磁石(Md
1),(Md2)の上面、ならびに、従動軸(S)側の磁石
(MsO)の下面の位置関係を第10図(イ)〜(ハ)に示
す。
Two magnets (Md) on the drive shaft (D) side in this configuration
1) and (Md2) and the lower surface of the driven shaft (S) side magnet (MsO) are shown in FIGS. 10 (a) to 10 (c).

この構成では、第9図(イ)および第10図(イ)の状態
において、従動側磁石(MsO)のS極(Ss)のうち、駆
動側第2磁石(Md2)側の部分(Ss2)では、駆動側第2
磁石(Md2)のN極(Md2)との間の吸引力およびS極
(Sd2)との間の反発力とが打ち消し合って従動側磁石
(MsO)を回転させる力は生じておらず、従動側磁石(M
sO)のS極(Ss)のうちの駆動側第1磁石(Md1)側の
部分(Ss1)と、駆動側第1磁石(Md1)のN極(Nd1)
との間で吸引力によって、従動側磁石(MsO)が図中
B′方向に回転する。
In this configuration, in the state of FIG. 9 (a) and FIG. 10 (a), of the S pole (Ss) of the driven side magnet (MsO), the part (Ss2) on the drive side second magnet (Md2) side. Then, the second drive side
The attraction force between the N pole (Md2) of the magnet (Md2) and the repulsive force between the S pole (Sd2) cancel each other out, and the force to rotate the driven side magnet (MsO) does not occur. Side magnet (M
(Ss) of the S pole (Ss) on the drive side first magnet (Md1) side (Ss1) and the drive side first magnet (Md1) N pole (Nd1)
The driven-side magnet (MsO) rotates in the B'direction in the figure due to the attraction force between and.

この状態から駆動軸(D)を図中A′方向に回転させる
と、従動側磁石(MsO)のS極(Ss)のうち、駆動側第
1磁石(Md1)側の部分(Ss1)では、駆動側第1磁石
(Md1)のN極(Nd1)が離れて行くのでそのN極(Nd
1)との間に働く吸引力が次第に小さくなるが、駆動側
第2磁石(Md2)の側の部分(Ss2)では、駆動側第2磁
石(Md2)のN極(Nd2)が離れて行くとともにS極(Sd
2)が近付いてくるのでそのS極(Sd2)との間に働く反
発力が次第に大きくなり、その結果、図中B′方向に回
転する従動側磁石(MsO)のS極(Ss)が駆動側第2磁
石(Md2)側から上方に向かって移動して従動軸(S)
がさらに図中B′方向に回転し、第9図(ロ)および第
10図(ロ)に示す状態に移行する。
From this state, when the drive shaft (D) is rotated in the direction of A ′ in the figure, in the S pole (Ss) of the driven magnet (MsO), the portion (Ss1) on the drive first magnet (Md1) side is Since the N pole (Nd1) of the drive side first magnet (Md1) goes away, its N pole (Nd
1) The attraction force acting between the drive side second magnet (Md2) and the drive side second magnet (Md2) is gradually reduced, but the N pole (Nd2) of the drive side second magnet (Md2) goes away. With S pole (Sd
2) comes closer, the repulsive force acting between it and the S pole (Sd2) gradually increases, and as a result, the S pole (Ss) of the driven magnet (MsO) that rotates in the B'direction in the figure is driven. From the second magnet (Md2) side to the upper side to move the driven shaft (S)
Further rotates in the direction B'in the figure, and
Transition to the state shown in Figure 10 (b).

この状態から駆動軸(D)を図中A′方向にさらに回転
させると、従動側磁石(MsO)のN極(Ns)に駆動側第
1磁石(Md1)のS極(Ss1)が次第に近付いてくるの
で、そのS極(Ss1)との間に働く吸引力が次第に大き
くなり、その結果、従動側磁石(MsO)のN極(Ns)が
下方に向かって移動して従動軸(S)はさらに図中B′
方向に回転し、第9図(ハ)および第10図(ハ)に示す
状態に移行する。
When the drive shaft (D) is further rotated in the direction of A'in this figure, the S pole (Ss1) of the drive side first magnet (Md1) gradually approaches the N pole (Ns) of the driven side magnet (MsO). As a result, the attractive force acting between the S pole (Ss1) and the S pole (Ss1) gradually increases, and as a result, the N pole (Ns) of the driven magnet (MsO) moves downward and the driven shaft (S) B'in the figure
It rotates in the direction and shifts to the state shown in FIG. 9 (C) and FIG. 10 (C).

第9図(ハ)および第10図(ハ)に示す状態は、各磁石
のN極がS極に替わっただけで第9図(イ)および第10
図(イ)に示す状態と同じであるから、この状態から駆
動軸(D)を図中A′方向にさらに回転させることに伴
って、上述の動作と同様にして従動軸(S)は図中B′
方向への回転を続ける。
In the states shown in FIGS. 9 (c) and 10 (c), only the N pole of each magnet is changed to the S pole, and the states shown in FIGS.
Since it is the same as the state shown in FIG. 6 (a), the driven shaft (S) is rotated in the same manner as above by further rotating the drive shaft (D) in the direction A'in the figure from this state. Medium B '
Continue to rotate in the direction.

また、図示はしないが、駆動軸(D)の磁性周面部(M
d)において、一対の磁石(Md1),(Md2)を、駆動側
第2磁石(Md2)のN極(Nd2)が駆動側第1磁石(Md
1)のN極(Nd1)に対して、図中A′方向に位相が90度
遅れた姿勢で配設することをもって構成した場合には、
上述した動作とほぼ同様の動作によって、駆動軸(D)
を図中A′方向に回転させることに伴って、従動軸
(S)は図中C′方向に回転する。
Also, although not shown, the magnetic peripheral surface portion (M
In d), the pair of magnets (Md1) and (Md2) are connected to each other, and the N pole (Nd2) of the drive side second magnet (Md2) is the drive side first magnet (Md2).
In the case of a configuration in which the phase is delayed by 90 degrees in the A'direction in the figure with respect to the N pole (Nd1) in 1),
The drive shaft (D) is operated by almost the same operation as described above.
The driven shaft (S) rotates in the C ′ direction in the drawing as the shaft rotates in the A ′ direction in the drawing.

次に、第11図(イ)〜(ハ)に示すように、駆動軸
(D)の磁性周面部(Md)を、N極(Nd)とS極(Sd)
との位相を180度異ならせて形成した磁石(以下、駆動
側磁石と称する)(MdO)をもって構成するとともに、
従動軸(S)の磁性周面部(Ms)をそれぞれN極(Ns
1),(Ns2)とS極(Ss1),(Ss2)とを位相を180度
異ならせて形成した各々が分割磁性周面部を構成する一
対の磁石(Ms1),(Ms2)(以下、従動側第1磁石(Ms
1)、従動側第2磁石(Ms2)と称する)に分割した構成
とし、それら一対の磁石(Ms1),(Ms2)を、従動側第
2磁石(Ms2)のN極(Ns2)が従動側第1磁石(Ms1)
のN極(Ns1)に対して、図中B″方向に位相が90度遅
れた姿勢で配設することをもって構成した場合を説明す
る。
Next, as shown in FIGS. 11A to 11C, the magnetic peripheral surface portion (Md) of the drive shaft (D) is connected to the N pole (Nd) and the S pole (Sd).
And a magnet (hereinafter referred to as the drive side magnet) (MdO) that is formed with the phase difference of 180 degrees.
The magnetic peripheral surface (Ms) of the driven shaft (S) is connected to the N pole (Ns
1), (Ns2) and S poles (Ss1), (Ss2) are formed with the phases different by 180 degrees, and each pair constitutes a pair of magnets (Ms1), (Ms2) (hereinafter, driven). Side first magnet (Ms
1), the driven side second magnet (Ms2) is divided), and the pair of magnets (Ms1) and (Ms2) are connected to the N side (Ns2) of the driven side second magnet (Ms2) on the driven side. First magnet (Ms1)
A case will be described in which the N pole (Ns1) is arranged such that the phase is delayed by 90 degrees in the B ″ direction in the drawing.

この構成における駆動軸(D)側の磁石(Md0)の上
面、ならびに、従動軸(S)側の2つの磁石(Ms1),
(Ms2)の下面の位置関係を第12図(イ)〜(ハ)に示
す。
In this configuration, the upper surface of the magnet (Md0) on the drive shaft (D) side, and the two magnets (Ms1) on the driven shaft (S) side,
The positional relationship of the lower surface of (Ms2) is shown in Fig. 12 (a) to (c).

この構成では、第11図(イ)および第12図(イ)の状態
において、駆動側磁石(Md0)のS極(Sd)のうちの従
動側第1磁石(Ms1)側の部分(Sd1)と、従動側第1磁
石(Ms1)のN極(Ns1)との間での吸引力があるが、こ
の吸引力は、従動軸(S)が何れかの方向に回動しよう
とする場合に、従動軸(S)の軸芯方向視において左右
の一方が回動を助けるように他方が回動を妨げるように
作用して釣合うこととなるので、従動軸(S)の回転に
は関与せず、一方、従動側第2磁石(Ms2)側の部分(S
d2)で、従動側第2磁石(Ms2)のS極(Ss2)との間で
の反発力および従動側第2磁石(Ms2)のN極(Ns2)と
の間での吸引力があり、従動側第2磁石(Ms2)を図中
B″方向に回転させるモーメントが生じるので、このモ
ーメントによって、従動軸(S)が図中B″方向に回転
することとなる。
In this configuration, in the state of FIG. 11 (a) and FIG. 12 (a), the part (Sd1) on the driven side first magnet (Ms1) side of the S pole (Sd) of the drive side magnet (Md0). And there is an attractive force between the driven side first magnet (Ms1) and the N pole (Ns1). This attractive force is generated when the driven shaft (S) tries to rotate in either direction. When viewed from the axial direction of the driven shaft (S), one of the left and the right acts to assist the rotation and the other acts to prevent the rotation, and thus balances the rotation of the driven shaft (S). On the other hand, on the other hand, the part on the side of the driven second magnet (Ms2) (S
d2), there is a repulsive force between the driven side second magnet (Ms2) and the S pole (Ss2), and an attractive force between the driven side second magnet (Ms2) and the N pole (Ns2), A moment is generated to rotate the second driven magnet (Ms2) in the B ″ direction in the figure, and the moment causes the driven shaft (S) to rotate in the B ″ direction in the figure.

この状態から駆動軸(D)を図中A″方向に回転させる
と、駆動側磁石(Md0)のN極(Nd)が従動側第1磁石
(Ms1)のN極(Ns1)に近付いてくるので、それら両極
(Nd),(Ns1)間の反発力が次第に大きくなって前記
モーメントにより図中B″方向に回転する従動側第1磁
石(Ms1)のN極(Ns1)が上方に向かって移動して従動
軸(S)が図中B″方向に回転し、第11図(ロ)および
第12図(ロ)に示す状態に移行する。
When the drive shaft (D) is rotated in the direction of A ″ from this state, the N pole (Nd) of the drive side magnet (Md0) approaches the N pole (Ns1) of the driven side first magnet (Ms1). Therefore, the repulsive force between the two poles (Nd) and (Ns1) gradually increases, and the N pole (Ns1) of the driven side first magnet (Ms1) that rotates in the B ″ direction in the figure due to the moment moves upward. The driven shaft (S) moves and rotates in the B ″ direction in the figure, and shifts to the state shown in FIG. 11 (b) and FIG. 12 (b).

この状態から駆動軸(D)を図中A″方向にさらに回転
させると、駆動側磁石(Md0)のN極(Nd)で、従動側
第1磁石(Ms1)のN極(Ns1)との間での反発力および
従動側第1磁石(Ms1)のS極(Ss1)との間での吸引力
があるので、従動側第1磁石(Ms1)を図中B″方向に
回転させるモーメントが生じ、かつそのモーメントは駆
動軸(D)の回転に伴って次第に大きくなり、一方、駆
動側磁石(Md0)のS極(Sd)は従動側第2磁石(Ms2)
のN極(Ns2)から離れて行くので、そのN極(Ns2)と
の間で生じる吸引力が次第に小さくなり、その結果、前
記モーメントによって従動軸(S)が図中B″方向に回
転し、第11図(ハ)および第12図(ハ)に示す状態に移
行する。
From this state, when the drive shaft (D) is further rotated in the direction of A ″ in the figure, the N pole (Nd) of the drive side magnet (Md0) becomes the N pole (Ns1) of the driven side first magnet (Ms1). Since there is a repulsive force between them and an attractive force between the driven side first magnet (Ms1) and the S pole (Ss1), the moment that rotates the driven side first magnet (Ms1) in the B ″ direction in the figure is And its moment gradually increases with the rotation of the drive shaft (D), while the S pole (Sd) of the drive side magnet (Md0) is the driven side second magnet (Ms2).
, The attraction force generated between the N pole (Ns2) and the N pole (Ns2) gradually decreases, and as a result, the driven shaft (S) rotates in the B ″ direction in the figure due to the moment. , The state shown in FIG. 11 (C) and FIG. 12 (C).

第11図(ハ)および第12図(ハ)に示す状態は、各磁石
のN極がS極に替わっただけで第11図(イ)および第12
図(イ)に示す状態と同じであるから、この状態から駆
動軸(D)を図中A″方向にさらに回転させることに伴
って、上述の動作と同様にして従動軸(S)は図中B″
方向への回転を続ける。
In the states shown in FIGS. 11 (c) and 12 (c), only the north pole of each magnet is changed to the south pole, and the states shown in FIGS.
Since it is the same as the state shown in FIG. 6 (a), the driven shaft (D) is rotated in the same manner as described above by further rotating the drive shaft (D) in the direction of A ″ from the state. Medium B ″
Continue to rotate in the direction.

また、図示はしないが、従動軸(S)の磁性周面部(M
s)において、一対の磁石(Ms1),(Ms2)を従動側第
2磁石(Ms2)のN極(Ns2)が従動側第1磁石(Ms1)
のN極(Ns2)に対して、図中B″方向に位相が90度進
んだ姿勢で配設することをもって構成した場合には、上
述した動作とほぼ同様の動作によって、駆動軸(D)を
図中A″方向に回転させることに伴って、従動軸(S)
は図中C″方向に回転する。
Also, although not shown, the magnetic peripheral surface portion (M) of the driven shaft (S) is
In (s), the pair of magnets (Ms1) and (Ms2) is connected to the driven side second magnet (Ms2) by the N pole (Ns2) of the driven side first magnet (Ms1).
When it is configured by arranging the N pole (Ns2) in the posture in which the phase is advanced by 90 degrees in the B ″ direction in the figure, the drive shaft (D) is operated by almost the same operation as described above. Driven shaft (S)
Rotates in the C "direction in the figure.

最後に、第1図(イ)〜(ハ)に示すように、駆動軸
(D)の磁性周面部(Md)と従動軸(S)の磁性周面部
(Ms)とを、何れも、N極どうしが周方向で偏位した軸
芯周り姿勢の各々が分割磁性周面部を形成する一対の磁
石(以下、先の説明に倣って、駆動側第1磁石(Md
1)、駆動側第2磁石(Md2)、および、従動側第1磁石
(Ms1)、従動側第2磁石(Ms2)と称する)に分割した
構成とし、それら一対づつの磁石(Md1),(Md2),
(Ms1),(Ms2)を、駆動軸(D)側においては駆動側
第2磁石(Md2)のN極(Nd2)が駆動側第1磁石(Md
1)のN極(Nd1)に対して図中A方向に位相が90度遅れ
た姿勢で配設するとともに、従動軸(S)側においては
従動側第2磁石(Ms2)のN極(Ns2)が従動側第1磁石
(Ms1)のN極(Ns1)に対して図中B方向に位相が90度
遅れた(G)で配設することをもって構成した場合を説
明する。
Finally, as shown in FIGS. 1A to 1C, the magnetic peripheral surface portion (Md) of the drive shaft (D) and the magnetic peripheral surface portion (Ms) of the driven shaft (S) are both N A pair of magnets each of which has poles that are deviated in the circumferential direction around the axis to form a split magnetic peripheral surface portion (hereinafter, in accordance with the above description, the drive-side first magnet (Md
1), a driving side second magnet (Md2), and a driven side first magnet (Ms1) and a driven side second magnet (Ms2)), and the pair of magnets (Md1), ( Md2),
(Ms1) and (Ms2), the N pole (Nd2) of the drive side second magnet (Md2) on the drive shaft (D) side is the drive side first magnet (Md).
The phase is delayed by 90 degrees in the direction A in the figure with respect to the N pole (Nd1) of 1), and on the driven shaft (S) side, the N pole (Ns2) of the driven side second magnet (Ms2). ) Is arranged at a position (G) whose phase is delayed by 90 degrees in the B direction in the figure with respect to the N pole (Ns1) of the driven-side first magnet (Ms1).

この構成における駆動軸(D)側の2つの磁石(Md
1),(Md2)の上面、ならびに、従動軸(S)側の2つ
の磁石(Ms1),(Ms2)の下面の位置関係を第2図
(イ)〜(ハ)に示す。
Two magnets (Md) on the drive shaft (D) side in this configuration
The positional relationships between the upper surfaces of 1) and (Md2) and the lower surfaces of the two magnets (Ms1) and (Ms2) on the driven shaft (S) side are shown in FIGS.

この構成では、第1図(イ)および第2図(イ)に示す
状態において、駆動側第1磁石(Md1)のS極(Sd1)と
従動側第2磁石(Ms2)のS極(Ss2)との間、および、
駆動側第1磁石(Md1)のN極(Nd1)と従動側第1磁石
(Ms1)のN極(Ns1)との間に何れも反発力があり、一
方、駆動側第2磁石(Md2)のS極(Sd2)と従動側第1
磁石(Ms1)のN極(Ns1)ならばに従動側第2磁石(Ms
2)のN極(Ns2)との間に何れも吸引力があるので、従
動軸(S)は、それら各力によって、図中B方向に回転
する。
In this configuration, in the states shown in FIG. 1 (a) and FIG. 2 (a), the S pole (Sd1) of the drive side first magnet (Md1) and the S pole (Ss2) of the driven side second magnet (Ms2) are ), And
There is a repulsive force between the N pole (Nd1) of the drive side first magnet (Md1) and the N pole (Ns1) of the driven side first magnet (Ms1), while the drive side second magnet (Md2) is present. S pole (Sd2) and driven side first
If it is the N pole (Ns1) of the magnet (Ms1), the driven second magnet (Ms1)
Since there is a suction force between the N pole (2) and the N pole (Ns2), the driven shaft (S) rotates in the B direction in the figure by the respective forces.

この状態から駆動軸(D)を図中A方向に回転させる
と、駆動側第1磁石(Md1)のN極(Md1)が従動側第1
磁石(Ms1)のN極(Ns1)に近付いてそれらの間の反発
力が次第に増加するとともに、それ以外の磁極どうしの
間に磁力も依然として同じ方向に作用するので、図中B
方向に回転する従動軸(S)がさらに図中B方向に回転
し、第1図(ロ)および第2図(ロ)に示す状態に移行
する。
If the drive shaft (D) is rotated in the direction A in this state, the N pole (Md1) of the drive-side first magnet (Md1) will move to the driven-side first magnet.
Since the repulsive force between the N pole (Ns1) of the magnet (Ms1) approaches and gradually increases, the magnetic force still acts between the other magnetic poles in the same direction.
The driven shaft (S) rotating in the direction further rotates in the direction B in the figure, and shifts to the state shown in FIG. 1 (b) and FIG. 2 (b).

この状態においては、駆動側第1磁石(Md1)のN極(N
d1)と従動側第1磁石(Ms1)のN極(Ns1)ならびに従
動側第2磁石(Ms2)のN極(Ns2)との間に何れも反発
力があり、一方、駆動側第2磁石(Md2)のS極(Sd2)
と従動側第2磁石(Ms2)のN極(Ns2)との間、およ
び、駆動側第2磁石(Md2)のN極(Nd2)と従動側第1
磁石(Ms1)とN極(Ss1)との間に何れも吸引力がある
ので、従動軸(S)は、それら各力によって、さらに図
中B方向に回転する。
In this state, the drive side first magnet (Md1) has the N pole (N
d1) has a repulsive force between the N pole (Ns1) of the driven side first magnet (Ms1) and the N pole (Ns2) of the driven side second magnet (Ms2), while the driving side second magnet (Md2) S pole (Sd2)
And the N pole (Ns2) of the driven side second magnet (Ms2), and between the N pole (Nd2) of the driving side second magnet (Md2) and the driven side first
Since there is an attractive force between the magnet (Ms1) and the N pole (Ss1), the driven shaft (S) is further rotated in the direction B in the figure by the respective forces.

この状態から駆動軸(D)をさらに図中A方向に回転さ
せると、駆動側第2磁石(Md2)のN極(Nd2)が従動側
第1磁石(Ms1)のS極(Ss1)に近付いてそれらの間の
吸引力が次第に増加するとともに、それ以外の磁極どう
しの間の磁力も依然として同じ方向に使用するので、図
中B方向に回転する従動軸(S)がさらに図中B方向に
回転し、第1図(ハ)および第2図(ハ)に示す状態に
移行する。
When the drive shaft (D) is further rotated in the direction A in this state, the N pole (Nd2) of the drive side second magnet (Md2) approaches the S pole (Ss1) of the driven side first magnet (Ms1). As the attraction force between them gradually increases, and the magnetic force between the other magnetic poles is still used in the same direction, the driven shaft (S) rotating in the B direction in the figure is further moved in the B direction in the figure. It rotates and shifts to the state shown in FIG. 1 (C) and FIG. 2 (C).

第1図(ハ)および第2図(ハ)に示す状態は、各磁石
のN極がS極に替わっただけで、第1図(イ)および第
2図(イ)に示す状態と同じであって、従動軸(S)を
図中B方向に回転させる力が作用しており、この状態か
ら駆動軸(D)を図中A方向にさらに回転させることに
伴って、上述の動作と同様にして、従動軸(S)は図中
B方向への回転を続ける。
The states shown in FIGS. 1 (c) and 2 (c) are the same as those shown in FIGS. 1 (a) and 2 (a), except that the north pole of each magnet is changed to the south pole. In addition, a force for rotating the driven shaft (S) in the B direction in the drawing acts, and further rotating the drive shaft (D) in the A direction in the drawing from this state causes the above-mentioned operation. Similarly, the driven shaft (S) continues to rotate in the B direction in the figure.

また、図示はしないが、駆動軸(D)の磁性周面部(M
d)において、一対の磁石(Md1),(Md2)を、駆動側
第2磁石(Md2)のN極(Nd2)が駆動側第1磁石(Md
1)のN極(Nd1)に対して、図中A方向に位相が90度進
んだ姿勢で配設することをもって構成した場合には、上
述した動作とほぼ同様の動作によって、駆動軸(D)を
図中A方向に回転させることに伴って、従動軸(S)は
図中C方向に回転する。
Also, although not shown, the magnetic peripheral surface portion (M
In d), the pair of magnets (Md1) and (Md2) are connected to each other, and the N pole (Nd2) of the drive side second magnet (Md2) is the drive side first magnet (Md2).
In the case of the arrangement in which the phase is advanced by 90 degrees in the direction A in the figure with respect to the N pole (Nd1) of 1), the drive shaft (D ) Is rotated in the direction A in the figure, the driven shaft (S) is rotated in the direction C in the figure.

さらに、従動軸(S)の磁性周面部(Ms)において、一
対の磁石(Ms1),(Ms2)を従動側第2磁石(Ms2)の
N極(Ns2)が従動側第1磁石(Ms1)のN極(Ns1)に
対して、図中B方向に位相が90度進んだ姿勢で配設する
ことをもって構成した場合には、上述した動作とほぼ同
様の動作によって、駆動軸(D)を図中A方向に回転さ
せることに伴って、従動軸(S)は図中C方向に回転す
る。
Further, in the magnetic peripheral surface portion (Ms) of the driven shaft (S), the pair of magnets (Ms1) and (Ms2) are connected to the N pole (Ns2) of the driven side second magnet (Ms2) and the driven side first magnet (Ms1). When it is configured by arranging the N pole (Ns1) in the posture in which the phase advances by 90 degrees in the B direction in the figure, the drive shaft (D) is moved by almost the same operation as described above. The driven shaft (S) rotates in the direction C in the figure as it rotates in the direction A in the figure.

上述した3つの場合の動きを纏めると、駆動軸と、その
駆動軸に対して捩れの位置で交叉する従動軸との交叉部
のそれぞれに、N極とS極とを周方向に交互に配置した
磁性周面部を形成し、それらの磁性周面部の一方の、前
記駆動軸および従動軸の軸芯それぞれに対して直交する
線を含む面で軸芯方向に2つに分割し、それら2つの分
割磁性周面部を、一方の分割磁性周面部のN極が他方の
分割磁性周面部のN極と偏位する軸芯周り姿勢に配置す
ることで、上記2つの分割磁性周面部それぞれにおける
磁力線の方向に偏りが生じ、それら2つの分割磁性周面
部の組合せになる一方の磁性周面部を駆動軸として回転
することで、従動軸となる他方の磁性周面部の磁極に対
するそれら2つの分割磁性周面部による磁力に、その従
動軸の軸芯に直交する方向でアンバランス生じ、それに
よって従動軸が回転されることとなり、また、上記他方
の磁性周面部を駆動軸として回転することで、従動軸と
なる上記一方の磁性周面部の2つの分割磁性周面部それ
ぞれに対する他方の磁性周面部の磁極による磁力に、そ
の従動軸の軸芯に直交する方向でアンバランスが生じ、
それによって従動軸が回転されることとなる。
To summarize the movements of the above-mentioned three cases, N poles and S poles are alternately arranged in the circumferential direction at each intersection of the drive shaft and the driven shaft that intersects the drive shaft at a twisted position. The magnetic peripheral surface portions are formed, and one of the magnetic peripheral surface portions is divided into two in the axial direction in the plane including the lines orthogonal to the respective axial cores of the drive shaft and the driven shaft. By arranging the divided magnetic peripheral surface portion in an attitude around the axis in which the N pole of one divided magnetic peripheral surface portion is deviated from the N pole of the other divided magnetic peripheral surface portion, the magnetic force lines in each of the two divided magnetic peripheral surface portions are arranged. By rotating one magnetic peripheral surface portion that is a combination of the two divided magnetic peripheral surface portions as a drive shaft, the two divided magnetic peripheral surface portions with respect to the magnetic poles of the other magnetic peripheral surface portion that is the driven shaft are biased. Perpendicular to the axis of the driven shaft The driven shaft is rotated by the imbalance in one direction, and by rotating the other magnetic peripheral surface part as the drive shaft, the two divided magnetic parts of the one magnetic peripheral surface part to be the driven shaft are rotated. The magnetic force of the magnetic pole of the other magnetic peripheral surface portion with respect to each peripheral surface portion causes imbalance in the direction orthogonal to the axis of the driven shaft,
As a result, the driven shaft is rotated.

そして、2つの分割磁性周面部に分割された方の磁性周
面部において、それら2つの分割磁性周面部のN極どう
しの偏位方向を逆方向とすることで、この磁性周面部が
駆動軸側或いは従動軸側の何れに形成されている場合で
あっても、駆動軸の同一方向への回転によって、従動軸
を逆方向に回転させることができる。
Then, in the magnetic peripheral surface portion that is divided into the two divided magnetic peripheral surface portions, by making the deviation directions of the N poles of these two divided magnetic peripheral surface portions opposite to each other, this magnetic peripheral surface portion is located on the drive shaft side. Alternatively, regardless of whether it is formed on the driven shaft side, the driven shaft can be rotated in the opposite direction by rotating the drive shaft in the same direction.

また、図示して説明をすることはしなかったが、上述し
た駆動軸側の磁性周面部と従動軸側の磁性周面部とにお
いて、何れか一方の磁性周面部におけるN極とS極との
組合せになる磁極対を、他方の磁性周面部におけるその
磁極対の数とは異なる数で配置した場合にあっては、駆
動軸の回転を従動軸に伝達するにあたって、その回転数
を異ならせることができ、他に特別の装置を設けること
なく、この回転伝動機構に、減速機構或いは増速機構の
機能を持たせることが可能になる。
Although not illustrated and described, in the magnetic peripheral surface portion on the drive shaft side and the magnetic peripheral surface portion on the driven shaft side, the N pole and the S pole of either one of the magnetic peripheral surface portions are described. When the number of magnetic pole pairs to be combined is different from the number of magnetic pole pairs on the other magnetic peripheral surface portion, the number of rotations should be different when transmitting the rotation of the drive shaft to the driven shaft. Therefore, the rotation transmission mechanism can be provided with the function of the speed reduction mechanism or the speed increase mechanism without providing any special device.

従って、全体として、本発明による回転伝動機構は、駆
動軸ならびに従動軸の磁性周面部のうちの一方を、中間
部分で磁力線の方向を偏らせることで、磁性周面部どう
しの相対回転に伴って他方の磁性周面部の間での磁力の
アンバランスを生じさせ、その磁力のアンバランスによ
って、駆動軸の回転を非接触で従動軸に伝えることがで
きるようにしてある。
Therefore, as a whole, the rotation transmission mechanism according to the present invention displaces one of the magnetic peripheral surface portions of the drive shaft and the driven shaft in the direction of the magnetic force line at the intermediate portion, so that the magnetic peripheral surface portions are relatively rotated. An unbalance of the magnetic force is generated between the other magnetic peripheral surface portions, and the rotation of the drive shaft can be transmitted to the driven shaft in a non-contact manner by the unbalance of the magnetic force.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明による回転伝動機構は、捩れ
の位置で交叉する駆動軸と従動軸との間で磁力を用いて
の非接触の伝動を可能にしたものであるから、従来の構
成で必要としたギア等の機械的な伝動機構を設けること
を不要にできる。その結果、回転伝動機構における機械
要素の接触に起因した摩損をなくすことができるととも
に、円滑に伝達を長期にわたって保証するための潤滑油
供給もなくすことができる。また、伝動が直接的なもの
ではないから、別の安全装置を設けることなく従動軸側
に過負荷が生じた場合にこの回転伝動機構において滑り
が生じることで伝動系の破損を防止できる。それに加え
て、特に、後述する実施例の場合のように、従動軸側の
部分を駆動軸側の部分から気密状態ないし水密状態に離
隔する場合にあっては、操作具から被操作対象物までの
伝動系を、この回転伝動機構の部分で分割した構成とす
ることができるから、伝動系との間にシール構造を付設
することなく従動軸側の部分を高い気密状態ないし水密
状態に維持することができる。
As described above, the rotary transmission mechanism according to the present invention enables non-contact transmission using magnetic force between the drive shaft and the driven shaft that intersect at the twisted position, and thus has the conventional configuration. It is possible to eliminate the need for providing a mechanical transmission mechanism such as a gear, which is required in the above. As a result, it is possible to eliminate wear and tear due to contact of mechanical elements in the rotary transmission mechanism, and also to eliminate the supply of lubricating oil for ensuring smooth transmission over a long period of time. Further, since the transmission is not direct, it is possible to prevent damage to the transmission system by slipping in the rotary transmission mechanism when an overload occurs on the driven shaft side without providing another safety device. In addition to that, in particular, in the case of separating the driven shaft side portion from the drive shaft side portion to the airtight state or the watertight state, as in the case of the embodiment described later, from the operation tool to the operated object. The transmission system can be divided into parts of this rotary transmission mechanism, so that the driven shaft side part can be maintained in a highly airtight state or a watertight state without attaching a seal structure to the transmission system. be able to.

従って、全体として、簡単な構成で伝動系の摩損や損傷
を少なくでき、しかもメンテナンス作業も少なくて済
む、コスト面ならびに信頼面において優れた回転伝動機
構を提供できるようになった。
Therefore, as a whole, it is possible to provide a rotary transmission mechanism that is simple in construction, has less wear and damage to the transmission system, and requires less maintenance work, and is excellent in terms of cost and reliability.

〔実施例〕〔Example〕

以下、図面に基づいて、本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図に示すように、矩形に組み立てたサッシュ枠
(1)に、所定間隔を隔てて一対のガラス板(2A),
(2B)を嵌め込み、それら一対のガラス板(2A),(2
B)の間にブラインド(3)を介してブラインド付複層
ガラス建具を構成してある。
As shown in FIG. 3, a pair of glass plates (2A), which are separated by a predetermined distance, are attached to a sash frame (1) assembled in a rectangle.
(2B) is fitted and the pair of glass plates (2A), (2
A double-layered glass fitting with a blind is constructed through a blind (3) between B).

このブラインド(3)は、一対のガラス板(2A),(2
B)にほぼ平行なボトムレール(3A)、及び、このボト
ムレール(3A)にほぼ平行に複数のスラット(3B)等か
ら構成されている。ボトムレール(3A)及びスラット
(3B)は、何れもガラス板(2A),(2B)に平行な軸芯
周りでの回動自在に取り付けられている。
This blind (3) consists of a pair of glass plates (2A), (2
The bottom rail (3A) is substantially parallel to B), and the plurality of slats (3B) are substantially parallel to the bottom rail (3A). The bottom rail (3A) and the slat (3B) are both attached so as to be rotatable around an axis parallel to the glass plates (2A) and (2B).

そして、それらボトムレール(3A)とスラット(3B)と
を回動させてそれらの角度を変更する(以下、纏めてス
ラット角度変更と称する)ためのスラット角度変更操作
装置(SA)が、ガラス建具の上部に設けられている。
The slat angle changing operation device (SA) for rotating the bottom rails (3A) and the slats (3B) to change their angles (hereinafter collectively referred to as slat angle change) is a glass fitting. Is provided on the upper part of.

このスラット角度変更操作装置(SA)には、第3図及び
第4図に示すように、ブラインド(3)とともに一対の
ガラス板(2A),(2B)の間に介装された操作体(4)
と、この操作体(4)に対して捩れの位置で交叉する状
態に対向配設された操作具(5)とからなる回転伝動機
構(X)が介装されている。
In this slat angle changing operation device (SA), as shown in FIGS. 3 and 4, an operating body (2A) and (2B) provided between the blind (3) and the pair of glass plates (2A) and (2B) is interposed. 4)
A rotary transmission mechanism (X) is interposed between the operating body (4) and an operating tool (5) arranged so as to face the operating body (4) at a twisted position.

操作体(4)は、一対のガラス板(2A),(2B)に平行
で、かつ、ブラインド(3)のスラッチ(3B)の長手方
向に沿う軸芯(X1)周りでの回動自在に取り付けられて
いる。また、操作具(5)は、一対のガラス板(2A),
(2B)に直交する軸芯(X2)周りでの回動自在に取り付
けられている。
The operating body (4) is rotatable about a shaft center (X 1 ) parallel to the pair of glass plates (2A) and (2B) and along the longitudinal direction of the slat (3B) of the blind (3). Is attached to. The operation tool (5) is a pair of glass plates (2A),
It is attached so that it can rotate around an axis (X 2 ) orthogonal to (2B).

操作体(4)は、ガラス建具の一方の端部に設けられて
いる。この操作体(4)には、連繋ロッド(6)を介し
てガラス建具の幅方向に二箇所に設けられた一対のプー
リ(7)が連動されている。そして、それら一対のプー
リ(7)に巻き掛けられたラダーコード(8)の両端側
が、夫々、各スラット(3B)及びボトムレール(3A)の
両側縁に止着されている。
The operation body (4) is provided at one end of the glass fitting. A pair of pulleys (7) provided at two positions in the width direction of the glass fitting are interlocked with the operating body (4) via a connecting rod (6). Both ends of the ladder cord (8) wound around the pair of pulleys (7) are fixed to both side edges of the slats (3B) and the bottom rail (3A), respectively.

一方、操作具(5)には、操作ハンドル(9)が一体に
連設されている。なお、操作具(5)は、ケース(10)
内に納められ、操作ハンドル(9)が、このケース(1
0)から下方に垂下されている。
On the other hand, an operating handle (9) is integrally connected to the operating tool (5). The operation tool (5) is a case (10).
The operation handle (9) is stored in the case (1
From 0).

前記操作具(5)は、操作ハンドル(9)の回転操作で
回転される駆動軸(D)であり、操作体(4)が、前記
回転伝動機構(X)によって駆動軸である操作具(5)
の回転が伝達される従動軸(S)となっている。そし
て、操作具(5)と操作体(4)との交叉部(P)のそ
れぞれに、N極とS極とを周方向に交互に配置した磁性
周面部(Md),(Ms)を形成してある。
The operation tool (5) is a drive shaft (D) rotated by a rotating operation of the operation handle (9), and the operation body (4) is a drive shaft by the rotation transmission mechanism (X) ( 5)
Is a driven shaft (S) to which the rotation is transmitted. Then, magnetic peripheral surface portions (Md) and (Ms), in which N poles and S poles are alternately arranged in the circumferential direction, are formed on each of the intersecting portions (P) of the operating tool (5) and the operating body (4). I am doing it.

前記操作体(4)は、一対のガラス板(2A),(2B)の
内部に設けられている。一方、前記操作具(5)は、前
記操作体(4)の設置箇所の直上において一方のガラス
板(2A)の一部に形成した凹部(2a)の内部に、その磁
性周面部(Md)が嵌入する状態に設けられている。
The operating body (4) is provided inside the pair of glass plates (2A) and (2B). On the other hand, the operating tool (5) has a magnetic peripheral surface (Md) inside a recess (2a) formed in a part of one glass plate (2A) immediately above the installation position of the operating body (4). Is provided in a state of being fitted.

前記駆動軸(D)の磁性周面部(Md)と従動軸(S)の
磁性周面部(Ms)とは、第1図(イ)〜(ハ)に示すよ
うに、何れも、N極どうしが周方向で偏位した軸芯周り
姿勢の各々が分割磁性周面部を形成する一対の磁石(以
下、駆動側第1磁石(Md1)、駆動側第2磁石(Md2)、
および、従動側第1磁石(Ms1)、従動側第2磁石(Ys
2)と称する)に分割した構成とし、それら一対づつの
磁石(Md1),(Md2),(Ms1),(Ms2)を、駆動軸
(D)側においては駆動側第2磁石(Md2)のN極(Nd
2)が駆動側第1磁石(Md1)のN極(Nd1)に対して図
中A方向に位相が90度遅れた姿勢で配設するとともに、
従動軸(S)側においては従動側第2磁石(Ms2)のN
極(Ns2)が従動側第1磁石(Ms1)のN極(Ns1)に対
して図中B方向に位相が90度遅れた姿勢で配設すること
をもって構成されている。
The magnetic peripheral surface portion (Md) of the drive shaft (D) and the magnetic peripheral surface portion (Ms) of the driven shaft (S) are, as shown in FIGS. A pair of magnets each having a posture about the axis that is deviated in the circumferential direction to form a divided magnetic peripheral surface portion (hereinafter, drive side first magnet (Md1), drive side second magnet (Md2),
Also, the driven side first magnet (Ms1) and the driven side second magnet (Ys
2)), and the pair of magnets (Md1), (Md2), (Ms1) and (Ms2) are connected to the drive side second magnet (Md2) on the drive shaft (D) side. N pole (Nd
2) is arranged such that the phase is delayed by 90 degrees in the A direction in the figure with respect to the N pole (Nd1) of the drive side first magnet (Md1), and
On the driven shaft (S) side, N of the driven side second magnet (Ms2)
The pole (Ns2) is arranged such that its phase is delayed by 90 degrees in the B direction in the figure with respect to the N pole (Ns1) of the driven-side first magnet (Ms1).

次に、上述した駆動軸(D)と従動軸(S)との間での
回転の伝達のメカニズムを説明する。説明を助けるため
に、駆動軸(D)側の2つの磁石(Md1),(Md2)の上
面、ならびに、従動軸(S)側の2つの磁石(Ms1),
(Ms2)の下面の位置関係を第2図(イ)〜(ハ)に示
す。
Next, the mechanism of transmission of rotation between the drive shaft (D) and the driven shaft (S) described above will be described. To facilitate the explanation, the upper surfaces of the two magnets (Md1) and (Md2) on the drive shaft (D) side, and the two magnets (Ms1) on the driven shaft (S) side,
The positional relationship of the lower surface of (Ms2) is shown in FIGS.

第1図(イ)および第2図(イ)に示す状態において、
駆動側第1磁石(Md1)のS極(Sd1)と従動側第2磁石
(Ms2)のS極(Ss2)との間、および、駆動側第1磁石
(Md1)のN極(Nd1)と従動側第1磁石(Ms1)のN極
(Ns1)との間に何れも反発力があり、一方、駆動側第
2磁石(Md2)のS極(Sd2)と従動側第1磁石(Ms1)
のN極(Ns1)ならびに従動側第2磁石(Ms2)のN極
(Ns2)との間にも吸引力があるので、従動軸(S)
は、それら各力によって、図中B方向に回転する。
In the state shown in FIG. 1 (a) and FIG. 2 (a),
Between the S pole (Sd1) of the drive side first magnet (Md1) and the S pole (Ss2) of the driven side second magnet (Ms2), and between the S pole (Nd1) of the drive side first magnet (Md1) There is a repulsive force between the driven side first magnet (Ms1) and the N pole (Ns1), while the driven side second magnet (Md2) has the S pole (Sd2) and the driven side first magnet (Ms1).
Of the driven shaft (S), because there is also attractive force between the N pole (Ns1) and the N pole (Ns2) of the driven side second magnet (Ms2).
Rotates in the B direction in the figure by each of these forces.

この状態から駆動軸(D)を図中A方向に回転させる
と、駆動側第1磁石(Md1)のN極(Nd1)が従動側第1
磁石(Ms1)のN極(Ns1)に近付いてそれらの間の反発
力が次第に増加するとともに、それ以外の磁極どうしの
間の磁力も依然として同じ方向に作用するので、図中B
方向に回転する従動軸(S)がさらに図中B方向に回転
し、第1図(ロ)および第2図(ロ)に示す状態に移行
する。
When the drive shaft (D) is rotated in the direction A from this state, the N pole (Nd1) of the drive-side first magnet (Md1) is moved to the driven-side first magnet.
Since the repulsive force between the magnets (Ms1) approaches the N pole (Ns1) and gradually increases, the magnetic force between the other magnetic poles still acts in the same direction.
The driven shaft (S) rotating in the direction further rotates in the direction B in the figure, and shifts to the state shown in FIG. 1 (b) and FIG. 2 (b).

この状態においては、駆動側第1磁石(Md1)のN極(N
d1)と従動側第1磁石(Ms1)のN極(Ns1)ならびに従
動側第2磁石(Ms2)のN極(Ns2)との間にも反発力が
あり、一方、駆動側第2磁石(Md2)のS極(Sd2)と従
動側第2磁石(Ms2)のN極(Ns2)との間、および、駆
動側第2磁石(Md2)のN極(Nd2)と従動側第1磁石
(Ms1)のS極(Ss1)との間に何れも吸引力があるの
で、従動軸(S)は、それら各力によって、さらに図中
B方向に回転する。
In this state, the drive side first magnet (Md1) has the N pole (N
There is also a repulsive force between the d1) and the N pole (Ns1) of the driven side first magnet (Ms1) and the N pole (Ns2) of the driven side second magnet (Ms2), while the driving side second magnet (Ns1) Between the S pole (Sd2) of Md2) and the N pole (Ns2) of the driven side second magnet (Ms2), and between the N pole (Nd2) of the driving side second magnet (Md2) and the driven side first magnet ( Since the attraction force is present between the Ms1) and the S pole (Ss1), the driven shaft (S) is further rotated in the B direction in the figure by the respective forces.

この状態から駆動軸(D)をさらに図中A方向に回転さ
せると、駆動側第2磁石(Md2)のN極(Nd2)が従動側
第1磁石(Ms1)のS極(Ss1)に近付いてそれらの間の
吸引力が次第に増加するとともに、それ以外の磁極どう
しの間の磁力も依然として同じ方向に作用するので、図
中B方向に回転する従動軸(S)がさらに図中B方向に
回転し、第1図(ハ)および第2図(ハ)に示す状態に
移行する。
When the drive shaft (D) is further rotated in the direction A in this state, the N pole (Nd2) of the drive side second magnet (Md2) approaches the S pole (Ss1) of the driven side first magnet (Ms1). The attraction force between them gradually increases, and the magnetic force between the other magnetic poles still acts in the same direction, so that the driven shaft (S) rotating in the B direction in the figure further moves in the B direction in the figure. It rotates and shifts to the state shown in FIG. 1 (C) and FIG. 2 (C).

第1図(ハ)および第2図(ハ)に示す状態は、各磁石
のN極がS極に替わっただけで、第1図(イ)および第
2図(イ)に示す状態と同じであって、従動軸(S)を
図中B方向に回転させる力が作用しており、この状態か
ら駆動軸(D)を図中A方向にさらに回転させることに
伴って、上述の動作と同様にして、従動軸(S)は図中
B方向への回転を続ける。
The states shown in FIGS. 1 (c) and 2 (c) are the same as those shown in FIGS. 1 (a) and 2 (a), except that the north pole of each magnet is changed to the south pole. In addition, a force for rotating the driven shaft (S) in the B direction in the drawing acts, and further rotating the drive shaft (D) in the A direction in the drawing from this state causes the above-mentioned operation. Similarly, the driven shaft (S) continues to rotate in the B direction in the figure.

つまり、駆動軸ならびに従動軸の磁性周面部のうちの一
方を、中間部分で磁力線の方向を偏らせることで、磁性
周面部どうしの相対回転に伴って他方の磁性周面部との
間で磁力のアンバランスを生じさせ、その磁力のアンバ
ランスによって駆動軸の回転を非接触で従動軸に伝える
ことができるのである。
That is, by biasing one of the magnetic peripheral surface portions of the drive shaft and the driven shaft in the direction of the magnetic force line at the intermediate portion, the magnetic force is generated between the magnetic peripheral surface portion and the other magnetic peripheral surface portion as the magnetic peripheral surface portions rotate relative to each other. An imbalance is generated and the rotation of the drive shaft can be transmitted to the driven shaft in a non-contact manner by the imbalance of the magnetic force.

その結果、捩れの位置で交叉する駆動軸(D)と従動軸
(S)との間で回転を伝動するにあたって、ギア等の機
械要素を不要にできるから、使用に伴う接触に起因する
それの摩損や、従動軸(S)側の過負荷に起因するそれ
らの破損をなくすことができ、しかも、潤滑油供給等の
メンテナンス作業を不要にできるから、長期にわたっ
て、確実な回転の伝動が保証される。
As a result, when transmitting the rotation between the drive shaft (D) and the driven shaft (S) that intersect at the twisted position, mechanical elements such as gears can be eliminated, so that the contact caused by use can cause It is possible to eliminate wear and tear and damages caused by overload on the driven shaft (S) side, and maintenance work such as lubricating oil supply can be eliminated, so that reliable rotation transmission is guaranteed for a long period of time. It

また、この回転伝動機構(X)の部分で、特別なシール
構造を設けることのなく、一対のガラス板(2A),(2
B)の内部空間を外部と気密状態に維持することがで
き、塵や埃の侵入を防止してブラインド(3)の昇降や
スラット角度変更を、長期にわたってスムースに行わせ
ることができる。
In addition, a pair of glass plates (2A), (2
The internal space of B) can be kept airtight with the outside, and dust and dirt can be prevented from entering and the blind (3) can be smoothly moved up and down and the slat angle can be changed over a long period of time.

〔別実施例〕[Another embodiment]

次に、本発明の別の実施例を列記する。 Next, another embodiment of the present invention will be listed.

〈1〉図示はしないが、駆動軸(D)の磁性周面部(M
d)において、一対の磁石(Md1),(Md2)を、駆動側
第2磁石(Md2)のN極(Nd2)が駆動側第1磁石(Md
1)のN極(Nd1)に対して、図中A方向に位相が90度進
んだ姿勢で配設することをもって構成してもよい。この
場合には、上述した動作とほぼ同様の動作によって、駆
動軸(D)を図中A方向に回転させることに伴って、従
動軸(S)は図中C方向に回転する。
<1> Although not shown, the magnetic peripheral surface portion (M
In d), the pair of magnets (Md1) and (Md2) are connected to each other, and the N pole (Nd2) of the drive side second magnet (Md2) is the drive side first magnet (Md2).
It may be configured by arranging the N pole (Nd1) of 1) in a posture in which the phase advances by 90 degrees in the A direction in the drawing. In this case, the driven shaft (S) is rotated in the direction C in the drawing along with the rotation of the drive shaft (D) in the direction A in the drawing by almost the same operation as described above.

また、従動軸(S)の磁性周面部(Ms)において、一対
の磁石(Ms1),(Ms2)を従動側第2磁石(Ms2)のN
極(Ns2)が従動側第1磁石(Ms1)のN極(Ns1)に対
して、図中B方向に位相が90度進んだ姿勢で配設するこ
とをもって構成してもよい。この場合には、上述した動
作とほぼ同様の動作によって、駆動軸(D)を図中A方
向に回転させることに伴って、従動軸(S)は図中C方
向に回転する。
Further, in the magnetic peripheral surface portion (Ms) of the driven shaft (S), the pair of magnets (Ms1) and (Ms2) are connected to the driven side second magnet (Ms2) by N.
The pole (Ns2) may be arranged such that the phase advances 90 degrees in the B direction in the figure with respect to the N pole (Ns1) of the driven-side first magnet (Ms1). In this case, the driven shaft (S) is rotated in the direction C in the drawing along with the rotation of the drive shaft (D) in the direction A in the drawing by almost the same operation as described above.

これを利用して、1つの駆動軸(D)の回転を、2つの
従動軸(S)に互いに異なる方向の回転として伝えるこ
とができる。第5図にその一例を示す。
Utilizing this, the rotation of one drive shaft (D) can be transmitted to the two driven shafts (S) as rotations in different directions. FIG. 5 shows an example thereof.

この実施例において、1つの駆動軸(D)と、2つの従
動軸(Sa),(Sb)との交叉部(Pa),(Pb)それぞれ
において、駆動軸(D)と従動軸(Sa),(Sb)とのそ
れぞれに、磁性周面部(Mda),(Mdb),(Msa),(M
sb)を形成してある。駆動軸(D)の磁性周面部(Md
a),(Mdb)においては、何れも、分割磁性周面部(Md
a1),(Mda2),(Mdb1),(Mdb2)を、そのN極(Nd
a1),(Nda2),(Ndb1),(Ndb2)どうしが、同じ方
向に偏位する状態に配置してある。また、2つの従動軸
(Sa),(Sb)の磁性周面部(Msa),(Msb)において
は、分割磁性周面部(Msa1),(Msa2),(Msb1),
(Msb2)を、そのN極(Nsa1),(Nsa2),(Nsb1),
(Nsb2)どうしが、逆方向に偏位する状態に配置してあ
る。
In this embodiment, a drive shaft (D) and a driven shaft (Sa) are respectively provided at intersections (Pa) and (Pb) of one drive shaft (D) and two driven shafts (Sa) and (Sb). , (Sb) and magnetic peripheral surface (Mda), (Mdb), (Msa), (M
sb) has been formed. Magnetic surface of drive shaft (D) (Md
In both a) and (Mdb), the divided magnetic peripheral surface (Md
a1), (Mda2), (Mdb1), (Mdb2) to the N pole (Nd
a1), (Nda2), (Ndb1), and (Ndb2) are arranged so as to be displaced in the same direction. Further, in the magnetic peripheral surface portions (Msa) and (Msb) of the two driven shafts (Sa) and (Sb), the divided magnetic peripheral surface portions (Msa1), (Msa2), (Msb1),
(Msb2) has its north poles (Nsa1), (Nsa2), (Nsb1),
(Nsb2) are arranged so that they are displaced in opposite directions.

この構成では、先に述べた原理によって、駆動軸(D)
が図中I方向に回転されるのに伴って、図中左方の第1
従動軸(Sa)の図中J方向に、図中右方の第2従動軸
(Sb)は図中K方向に、それぞれ回転する。
In this configuration, the drive shaft (D) is driven by the principle described above.
Is rotated in the direction I in the figure, the first
The driven shaft (Sa) rotates in the J direction in the drawing, and the second driven shaft (Sb) on the right side in the drawing rotates in the K direction in the drawing.

〈2〉1つの駆動軸(D)に対して、その駆動軸(D)
の一方向の回転に伴って何れも同じ方向に回転する2つ
以上の従動軸(Sn)、或いは、反対方向に回転する2つ
以上の従動軸(Sn)を設けてもよい。その一例として
は、2つ以上の従動軸(Sn)が同じ方向に回転するもの
として、第6図に示す複数の従動軸(Sn)が各別に一体
に連設された複数のローラ(11)によって物品を搬送す
る直線状のローラコンベアがある。
<2> For one drive shaft (D), the drive shaft (D)
Two or more driven shafts (Sn) that both rotate in the same direction with the rotation of one direction, or two or more driven shafts (Sn) that rotate in the opposite direction may be provided. As one example, it is assumed that two or more driven shafts (Sn) rotate in the same direction, and a plurality of driven shafts (Sn) shown in FIG. There is a linear roller conveyor that conveys articles by.

〈3〉駆動軸(D)と従動軸(S)とは、先の実施例の
場合のように、両者の軸芯にともに直交する方向視にお
いて直交する姿勢に配設される場合のほか、その方向視
においてそれ以外の角度で交叉する姿勢に配設されてい
てもよく、要するに、駆動軸(D)と従動軸(S)と
は、捩れの位置で、すなわち、同一平面上にない状態
で、交叉する姿勢に配設されるものであればよい。例え
ば、その一例としては、先に第6図に挙げた直線状のロ
ーラコンベアの変形として、第7図に示す曲線状のロー
ラコンベアを挙げることができる。
<3> In addition to the case where the drive shaft (D) and the driven shaft (S) are arranged so as to be orthogonal to each other in a direction view orthogonal to both axes, as in the case of the previous embodiment, The drive shaft (D) and the driven shaft (S) may be arranged in a posture in which they intersect with each other at another angle when viewed from that direction. In short, the drive shaft (D) and the driven shaft (S) are not twisted, that is, not on the same plane. Therefore, it may be arranged in an intersecting posture. For example, as an example thereof, a curved roller conveyor shown in FIG. 7 can be cited as a modification of the linear roller conveyor previously shown in FIG.

〈4〉駆動軸(D)側の磁性周面部(Md)と従動軸
(S)側の磁性周面部(Ms)とにおいて、何れか一方の
磁性周面部(Md又はMs)におけるN極とS極との組合せ
になる磁極対を、他方の磁性周面部におけるその磁極対
の数とは異なる数で配置してもよい。その一例を第8図
に示す。
<4> In the magnetic peripheral surface portion (Md) on the drive shaft (D) side and the magnetic peripheral surface portion (Ms) on the driven shaft (S) side, the N pole and the S pole on either one of the magnetic peripheral surface portions (Md or Ms). The number of magnetic pole pairs to be combined with the poles may be different from the number of magnetic pole pairs on the other magnetic peripheral surface portion. An example thereof is shown in FIG.

この実施例では、駆動軸(D)側の磁性周面部(Md)に
おいては、2つの分割磁性周面部(Md1),(Md2)が何
れも周方向で位相を180度異ならせてN極(Nd1),(Nd
2)とS極(Sd1),(Sd2)とを形成したものであり、
それら2つの分割磁性周面部(Md1),(Md2)を、それ
らのN極(Nd1),(Nd2)どうしが位相が90度異なる状
態に配置するとともに、従動軸(S)側の磁性周面部
(Ms)においては、2つの分割磁性周面部(Ms1),(M
s2)が何れも周方向で位相を90度異ならせてN極(Ns1
a),(Ns1b),(Ns2a),(Na2b)とS極(Ss1a),
(Ss1b),(Ss2a),(Ss2b)とを形成したものであ
り、それら2つの分割磁性周面部(Ms1),(Ms2)を、
それらのN極どうしが位相が45度異なる状態に配置した
ものである。
In this embodiment, in the magnetic peripheral surface portion (Md) on the side of the drive shaft (D), the two divided magnetic peripheral surface portions (Md1) and (Md2) both have a phase difference of 180 degrees in the circumferential direction and form an N pole ( Nd1), (Nd
2) and S poles (Sd1) and (Sd2) are formed,
The two divided magnetic peripheral surfaces (Md1) and (Md2) are arranged such that their N poles (Nd1) and (Nd2) are 90 degrees out of phase with each other, and the magnetic peripheral surface on the driven shaft (S) side. In (Ms), the two divided magnetic peripheral surface portions (Ms1), (Ms1)
s2) have a phase difference of 90 degrees in the circumferential direction and have N poles (Ns1
a), (Ns1b), (Ns2a), (Na2b) and S pole (Ss1a),
(Ss1b), (Ss2a), and (Ss2b) are formed, and these two divided magnetic peripheral surface portions (Ms1) and (Ms2) are
These N poles are arranged so that their phases differ by 45 degrees.

この場合、駆動軸(D)の回転を従動軸(S)に伝達す
るにあたって、その回転数を異ならせることができ、他
の特別な装置を設けることなく、この回転伝動機構
(X)に、減速機構或いは増速機構の機能を持たせるこ
とが可能になる。
In this case, when transmitting the rotation of the drive shaft (D) to the driven shaft (S), it is possible to make the number of rotations different, and without providing any other special device, the rotation transmission mechanism (X) It becomes possible to have a function of a speed reduction mechanism or a speedup mechanism.

〈5〉2つの分割磁性周面部(Md1),(Md2)に分割さ
れた駆動軸(D)側の磁性周面部(Md)又は2つの分割
磁性周面部(Ms1),(Ms2)に分割された従動軸(S)
側の磁性周面部(Ms)において、分割磁性周面部(M
1),(M2)どうしの配置は、適宜変更自在であり、例
えば、第1図(イ)ないし(ハ)に示す実施例におい
て、駆動軸(D)側の分割磁性周面部(Md1),(Md2)
或いは従動軸(S)側の分割磁性周面部(Ms1),(Ms
2)どうしを90度以外の角度をもって配置してもよく、
要するに、2つの分割磁性周面部(M1),(M2)は、一
方の分割磁性周面部(M1)のN極(N1)が他方の分割磁
性周面部(M2)のN極(N2)と偏位する軸芯周り姿勢に
配置されていればよい。
<5> Drive shaft (D) side magnetic peripheral surface portion (Md) divided into two divided magnetic peripheral surface portions (Md1), (Md2) or divided into two divided magnetic peripheral surface portions (Ms1), (Ms2) Driven shaft (S)
Side magnetic peripheral surface portion (Ms), the divided magnetic peripheral surface portion (Ms
The positions of 1) and (M2) can be appropriately changed. For example, in the embodiment shown in FIGS. 1 (a) to 1 (c), the divided magnetic peripheral surface portion (Md1) on the drive shaft (D) side, (Md2)
Alternatively, the divided magnetic peripheral surface portions (Ms1), (Ms) on the driven shaft (S) side
2) You may place each other at an angle other than 90 degrees,
In short, in the two divided magnetic peripheral surface portions (M1) and (M2), the N pole (N1) of one divided magnetic peripheral surface portion (M1) is offset from the N pole (N2) of the other divided magnetic peripheral surface portion (M2). It suffices if it is arranged in a posture around the axis to be positioned.

〈6〉駆動軸(D)側の磁性周面部(Md)、または、従
動軸(S)側の磁性周面部(Ms)の何れか一方のみを、
軸芯方向に分割されていない構成としてもよい。次にそ
の例を示す。
<6> Either of the magnetic peripheral surface portion (Md) on the drive shaft (D) side or the magnetic peripheral surface portion (Ms) on the driven shaft (S) side,
It may be configured such that it is not divided in the axial direction. An example is shown below.

第9付(イ)〜(ハ)に示す実施例は、従動軸(S)側
の磁性周面部(Ms)を、軸芯方向に分割しない構成とし
たものである。
In the examples shown in 9th (a) to (c), the magnetic peripheral surface portion (Ms) on the driven shaft (S) side is not divided in the axial direction.

この実施例においては、従動軸(S)の磁性周面部(M
s)を、N極(Ns)とS極(Ss)とを位相を180度異なら
せて形成した磁石(MsO)をもって構成してある。ま
た、駆動軸(D)の磁性周面部(Md)を、それぞれN極
(Nd1),(Nd2)とS極(Sd1),(Sd2)とを位相を18
0度異ならせて形成した各々が分割磁性周面部を構成す
る一対の磁石(Md1),(Md2)(以下、駆動側第1磁石
(Md1)および駆動側第2磁石(Md2)と称する)に分割
した構成とし、それら一対の磁石(Md1),(Md2)を、
駆動側第2磁石(Md2)のN極(Nd2)が駆動側第1磁石
(Md1)のN極(Nd1)に対して、図中A′方向に位相が
90度進んだ姿勢で配設することをもって構成してある。
In this embodiment, the magnetic peripheral surface portion (M) of the driven shaft (S) is
s) is composed of a magnet (MsO) formed by making the N pole (Ns) and the S pole (Ss) different in phase by 180 degrees. Further, the magnetic peripheral surface portion (Md) of the drive shaft (D) has a phase of 18 (N poles (Nd1), (Nd2) and S poles (Sd1), (Sd2)).
A pair of magnets (Md1) and (Md2) (hereinafter, referred to as a drive side first magnet (Md1) and a drive side second magnet (Md2)), each of which is formed differently by 0 degrees and constitutes a divided magnetic peripheral surface portion. With a divided structure, the pair of magnets (Md1) and (Md2) are
The N pole (Nd2) of the drive side second magnet (Md2) has a phase in the A'direction in the figure with respect to the N pole (Nd1) of the drive side first magnet (Md1).
It is configured by arranging it in a 90 degree advanced posture.

この構成における駆動軸(D)側の2つの磁石(Md
1),(Md2)の上面、並びに、従動軸(S)側の磁石
(MsO)の下面の位置関係を第10図(イ)〜(ハ)に示
す。
Two magnets (Md) on the drive shaft (D) side in this configuration
1) and (Md2) and the lower surface of the driven shaft (S) side magnet (MsO) are shown in FIGS. 10 (a) to 10 (c).

この構成では、第9図(イ)および第10図(イ)の状態
から、駆動軸(D)を図中A′方向に回転させることに
よって、従動軸(S)は図中B′方向に回転する。ま
た、図示はしないが、駆動軸(D)の磁性周面部(Md)
において、一対の磁石(Md1),(Md2)を、駆動側第2
磁石(Md2)のN極(Nd2)が駆動側第1磁石(Md1)の
N極(Nd1)に対して、図中A′方向に位相が90度遅れ
た姿勢で配設することをもって構成した場合には、駆動
軸(D)を図中A′方向に回転させることに伴って、従
動軸(S)は図中C′方向に回転する。
In this configuration, by rotating the drive shaft (D) in the direction A ′ in the figure from the state of FIG. 9 (a) and FIG. 10 (a), the driven shaft (S) moves in the direction B ′ in the figure. Rotate. Although not shown, the magnetic peripheral surface portion (Md) of the drive shaft (D)
In, a pair of magnets (Md1) and (Md2) are connected to the second drive side.
The north pole (Nd2) of the magnet (Md2) is arranged such that its phase is delayed by 90 degrees in the A'direction in the figure with respect to the north pole (Nd1) of the drive side first magnet (Md1). In this case, the driven shaft (S) rotates in the C'direction in the drawing as the drive shaft (D) rotates in the A'direction in the drawing.

第11図(イ)〜(ハ)に示す実施例は、駆動軸(D)側
の磁性周面部(Md)を、軸芯方向に分割しない構成とし
たものである。
In the embodiment shown in FIGS. 11A to 11C, the magnetic peripheral surface portion (Md) on the drive shaft (D) side is not divided in the axial direction.

この構成においては、駆動軸(D)の磁性周面部(Md)
を、N極(Nd)とS極(Sd)とを位置を180度異ならせ
て形成した磁石(MsO)をもって構成するとともに、従
動軸(S)の磁性周面部(Ms)を、それぞれN極(Ns
1),(Ns2)とS極(Ss1),(Ss2)とを位相を180度
異ならせて形成した各々が分割磁性周面部を構成する一
対の磁石(Ms1),(Ms2)(以下、従動側第1磁石(Ms
1)、従動側第2磁石(Ms2)と称する)に分割した構成
とし、それら一対の磁石(Ms1),(Ms2)を、従動側第
2磁石(Ms2)のN極(Ns2)が従動側第1磁石(Ms1)
のN極(Ns1)に対して、図中B″方向に位相が90度遅
れた姿勢で配設することをもって構成してある。
In this configuration, the magnetic peripheral surface portion (Md) of the drive shaft (D)
Is composed of a magnet (MsO) formed by changing the positions of the N pole (Nd) and the S pole (Sd) at different positions by 180 degrees, and the magnetic peripheral surface portion (Ms) of the driven shaft (S) is the N pole. (Ns
1), (Ns2) and S poles (Ss1), (Ss2) are formed with the phases different by 180 degrees, and each pair constitutes a pair of magnets (Ms1), (Ms2) (hereinafter, driven). Side first magnet (Ms
1), the driven side second magnet (Ms2) is divided), and the pair of magnets (Ms1) and (Ms2) are connected to the N side (Ns2) of the driven side second magnet (Ms2) on the driven side. First magnet (Ms1)
With respect to the N pole (Ns1), the phase is delayed by 90 degrees in the B ″ direction in the figure.

この構成における駆動軸(D)側の磁石(Md0)の上
面、ならびに、従動軸(S)側の2つの磁石(Ms1),
(Ms2)の下面の位置関係を第12図(イ)〜(ハ)に示
す。
In this configuration, the upper surface of the magnet (Md0) on the drive shaft (D) side, and the two magnets (Ms1) on the driven shaft (S) side,
The positional relationship of the lower surface of (Ms2) is shown in Fig. 12 (a) to (c).

この構成では、第11図(イ)および第12図(イ)の状態
から、駆動軸(D)を図中A″方向に回転させることに
よって、従動軸(S)は図中B″方向に回転する。ま
た、図示はしないが、従動軸(S)の磁性周面部(Ms)
において、一対の磁石(Ms1),(Ms2)を従動側第2磁
石(Ms2)のN極(Ns2)が従動側第1磁石(Ms1)のN
極(Ns1)に対して、図中B″方向に位相が90度進んだ
姿勢で配設することをもって構成した場合には、上述し
た動作とほぼ同様の動作によって、駆動軸(D)を図中
A″方向に回転させることに伴って、従動軸(S)は図
中C″方向に回転する。
In this configuration, the drive shaft (D) is rotated in the A ″ direction in the drawing from the state shown in FIG. 11 (a) and FIG. 12 (a) so that the driven shaft (S) is moved in the B ″ direction in the drawing. Rotate. Also, although not shown, the magnetic peripheral surface portion (Ms) of the driven shaft (S)
In, the pair of magnets (Ms1) and (Ms2) is connected to the N pole (Ns2) of the driven side second magnet (Ms2) by the N side of the driven side first magnet (Ms1).
When it is configured by arranging the pole (Ns1) so that the phase is advanced by 90 degrees in the B ″ direction in the figure, the drive shaft (D) can be moved by almost the same operation as described above. The driven shaft (S) rotates in the C "direction in the drawing as it rotates in the middle A" direction.

〈7〉各磁性周面部(Md),(Ms)を構成する磁石は、
永久磁石であっても電磁石であってもよく、その種類は
不問である。
<7> The magnets forming the magnetic peripheral surface portions (Md) and (Ms) are
It may be a permanent magnet or an electromagnet, and its type is not limited.

〈8〉先の実施例では、本発明の回転伝動機構(X)
を、ブラインド付複層ガラス建具に適用した例を示し
た。この場合、先の実施例においては、ブラインド
(3)のスラット(3B)の角度を変更するための構成を
説明したが、操作体(4)と操作具(5)との磁力を用
いた連動構成は、ブラインド(3)をスラット(3B)の
並設方向に伸縮するための構成に適用してもよい。その
場合、ブラインド伸縮用の操作体を、木野実施例で説明
したスラット角度変更用の操作体(4)と兼用してもよ
いし、それとは別に設けてもよい。
<8> In the above embodiment, the rotation transmission mechanism (X) of the present invention is used.
An example of applying the above to a double-layered glass fitting with a blind is shown. In this case, in the above embodiment, the configuration for changing the angle of the slat (3B) of the blind (3) has been described, but the operation body (4) and the operation tool (5) are interlocked using magnetic force. The structure may be applied to the structure for expanding and contracting the blind (3) in the juxtaposed direction of the slats (3B). In that case, the operation body for expanding and contracting the blind may be used also as the operation body (4) for changing the slat angle described in the embodiment of Kino, or may be provided separately.

〈9〉本発明による回転伝動機構(X)は、先の実施例
で説明したブラインド付複層ガラス建具における操作機
構のほか、種々の伝動機構に適用することができる。
<9> The rotary transmission mechanism (X) according to the present invention can be applied to various transmission mechanisms in addition to the operation mechanism in the double-paned glass fitting with a blind described in the previous embodiment.

〈10〉なお、特許請求の範囲の項に図面との対照を便利
にする為に符号を記すが、該記入により本発明は添付図
面の構造および方法に限定されるものではない。
<10> Reference numerals are added to the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures and methods shown in the accompanying drawings by the description.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第4図は、本発明に係る回転伝動機構の実
施例を示し、第1図(イ)ないし(ハ)は駆動軸と従動
軸との動きを示す斜視図、第2図(イ)ないし(ハ)は
駆動軸の磁性周面部と従動軸の磁性周面部との位置関係
を示す説明図、第3図はブラインドの垂直断面図、第4
図は要部の斜視図である。第5図ないし第12図は別の実
施例を示し、第5図は要部の斜視図、第6図および第7
図はローラコンベアの斜視図、第8図は要部の斜視図、
第9図(イ)ないし(ハ)は駆動軸と従動軸との動きを
示す斜視図、第10図(イ)ないし(ハ)は第9図(イ)
ないし(ハ)に示す実施例における駆動軸の磁性周面部
と従動軸の磁性周面部との位置関係を示す説明図、第11
図(イ)ないし(ハ)はさらに別の実施例の駆動軸と従
動軸との動きを示す斜視図、第12図(イ)ないし(ハ)
は第11図(イ)ないし(ハ)に示す実施例における駆動
軸の磁性周面部と従動軸の磁性周面部との位置関係を示
す説明図である。第13図は、第9図(イ)ないし(ハ)
に示す実施例における駆動軸の磁性周面部の展開図であ
る。
1 to 4 show an embodiment of a rotary transmission mechanism according to the present invention, and FIGS. 1 (a) to 1 (c) are perspective views showing the movement of a drive shaft and a driven shaft, and FIG. (A) to (c) are explanatory views showing the positional relationship between the magnetic peripheral surface portion of the drive shaft and the magnetic peripheral surface portion of the driven shaft. FIG. 3 is a vertical sectional view of the blind.
The figure is a perspective view of a main part. 5 to 12 show another embodiment, and FIG. 5 is a perspective view of a main part, FIG. 6 and FIG.
Figure is a perspective view of the roller conveyor, Figure 8 is a perspective view of the main parts,
9 (a) to 9 (c) are perspective views showing the movement of the drive shaft and the driven shaft, and FIGS. 10 (a) to 10 (c) are FIG. 9 (a).
11A to 11C are explanatory views showing the positional relationship between the magnetic peripheral surface portion of the drive shaft and the magnetic peripheral surface portion of the driven shaft in the embodiment shown in FIGS.
FIGS. 12 (a) to 12 (c) are perspective views showing the movements of the drive shaft and the driven shaft of still another embodiment, and FIGS. 12 (a) to 12 (c).
FIG. 12 is an explanatory diagram showing the positional relationship between the magnetic peripheral surface portion of the drive shaft and the magnetic peripheral surface portion of the driven shaft in the embodiment shown in FIGS. 11 (a) to 11 (c). FIG. 13 shows FIG. 9 (a) to (c).
FIG. 6 is a development view of a magnetic peripheral surface portion of the drive shaft in the embodiment shown in FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】駆動軸(D)の回転を、その駆動軸(D)
に対して捩れの位置で交叉する従動軸(S)に伝達する
回転伝動機構であって、 前記駆動軸(D)と従動軸(S)との交叉部において駆
動軸(D)と従動軸(S)とに、N極とS極とを周方向
に交互に配置した磁性周面部(Md),(Ms)をそれぞれ
形成し、それら前記駆動軸(D)および従動軸(S)に
各別に形成した両磁性周面部(Md),(Ms)の内の少な
くとも一方を、前記駆動軸(D)および従動軸(S)の
軸芯それぞれに対して直交する線を含む面で軸芯方向に
2つに分割し、分割された両分割磁性周面部どうしが互
いに軸芯周りに偏位する姿勢に配置してある回転伝動機
構。
1. The rotation of a drive shaft (D) is converted into that of the drive shaft (D).
A rotary transmission mechanism that transmits to a driven shaft (S) that crosses at a twisted position with respect to the drive shaft (D) and the driven shaft (S) at the intersection of the drive shaft (D) and the driven shaft (S). S) and magnetic peripheral surface portions (Md) and (Ms), in which N poles and S poles are alternately arranged in the circumferential direction, are respectively formed, and the drive shaft (D) and the driven shaft (S) are separately formed. At least one of the formed magnetic peripheral surface portions (Md) and (Ms) is in the axial direction in a plane including lines orthogonal to the axial axes of the drive shaft (D) and the driven shaft (S). A rotary transmission mechanism that is divided into two and is arranged such that the divided magnetic peripheral surface portions are offset from each other around the axis.
【請求項2】前記駆動軸(D)および従動軸(S)に各
別に形成した両磁性周面部(Md),(Ms)の内の他方
を、前記駆動軸(D)および従動軸(S)の軸芯それぞ
れに対して直交する線を含む面で軸芯方向に2つに分割
し、分割された両分割磁性周面部どうしが互いに軸芯周
りに偏位する姿勢に配置してある請求項1記載の回転伝
動機構。
2. The other of the magnetic peripheral surface portions (Md), (Ms) formed separately on the drive shaft (D) and the driven shaft (S), respectively. ) Is divided into two in the axial direction by a plane including a line orthogonal to each of the axial cores, and the divided magnetic peripheral surface portions are arranged such that they are displaced from each other about the axial center. The rotary transmission mechanism according to Item 1.
JP19477488A 1988-08-03 1988-08-03 Rotation transmission mechanism Expired - Fee Related JPH0789740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19477488A JPH0789740B2 (en) 1988-08-03 1988-08-03 Rotation transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19477488A JPH0789740B2 (en) 1988-08-03 1988-08-03 Rotation transmission mechanism

Publications (2)

Publication Number Publication Date
JPH0246160A JPH0246160A (en) 1990-02-15
JPH0789740B2 true JPH0789740B2 (en) 1995-09-27

Family

ID=16330025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19477488A Expired - Fee Related JPH0789740B2 (en) 1988-08-03 1988-08-03 Rotation transmission mechanism

Country Status (1)

Country Link
JP (1) JPH0789740B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683317B2 (en) * 1993-11-19 1997-11-26 マルヤス機械株式会社 Conveyor
JP2683316B2 (en) * 1993-11-19 1997-11-26 カネテック株式会社 Drive
JP2683319B2 (en) * 1994-06-16 1997-11-26 カネテック株式会社 Conveyor

Also Published As

Publication number Publication date
JPH0246160A (en) 1990-02-15

Similar Documents

Publication Publication Date Title
CA1284095C (en) Support and transmission module for the winding shaft of a lifting curtain door
WO2007027650A1 (en) Selective tilting arrangement for a blind system for coverings for architectural openings
WO2003047335A1 (en) Device for rolling up/rolling down a shade
JPH0789740B2 (en) Rotation transmission mechanism
US7926370B2 (en) Rotation and extension/retraction link mechanism
WO1999053221A1 (en) A method and an apparatus for transfer of pressure and/or tensile load
CN201129116Y (en) Composite door and window component
JP4834140B2 (en) Double sliding platform gate
CN108016522B (en) Expanded chain type bilateral rolling ditch crossing investigation robot
KR102101494B1 (en) Folding type door
JPH0723031Y2 (en) Power transmission device by magnet
EP2397647B1 (en) Tubular gearmotor for actuating roller blinds
EP2137370B1 (en) Blind assembly
JPH0624192U (en) Blind device
JP4966170B2 (en) 4 Variable sign drive
KR200287075Y1 (en) Pair glass window
JPH0356637Y2 (en)
JPH0539190Y2 (en)
JPH05214882A (en) Rotation control mechanism
JP2546478Y2 (en) Rotary operation mechanism
EP0587572B1 (en) Vertically collapsible wall partitions
US20220205515A1 (en) Rigid multilinear actuator with flexible strand
KR200453010Y1 (en) Rail assembly
KR200300417Y1 (en) Retractor for opening/closing blind of duplex window
JPH0593485A (en) Automatic opening and closing device for door

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees