JPH0789693B2 - Inductive power supply for power line monitoring sensor - Google Patents

Inductive power supply for power line monitoring sensor

Info

Publication number
JPH0789693B2
JPH0789693B2 JP63060504A JP6050488A JPH0789693B2 JP H0789693 B2 JPH0789693 B2 JP H0789693B2 JP 63060504 A JP63060504 A JP 63060504A JP 6050488 A JP6050488 A JP 6050488A JP H0789693 B2 JPH0789693 B2 JP H0789693B2
Authority
JP
Japan
Prior art keywords
voltage
current
current transformer
secondary winding
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63060504A
Other languages
Japanese (ja)
Other versions
JPH01238414A (en
Inventor
順一 皆藤
耕一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63060504A priority Critical patent/JPH0789693B2/en
Publication of JPH01238414A publication Critical patent/JPH01238414A/en
Publication of JPH0789693B2 publication Critical patent/JPH0789693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、送電線に流れている電流を電源として、送電
線の監視センサを駆動するための直流電力を得る送電線
監視センサ用の誘導電源装置に関するものである。
Description: [Industrial application] The present invention uses a current flowing in a power transmission line as a power source to obtain direct current power for driving a power transmission line monitoring sensor It relates to a power supply device.

[従来の技術] 従来、送電線から電力を得る誘導電源装置として、比較
的大きな電力を必要とする場合には、通常、送電線鉄塔
に電気的に接続されている架空地線を鉄塔と絶縁するこ
とによって、送電線本線と架空地線の相互静電容量,架
空地線の自己静電容量で決まる静電誘導電圧を発生さ
せ、この静電誘導による電圧を利用して、目的とする装
置等の駆動用交流電源あるいは直流電源を得るものがあ
る。
[Prior Art] Conventionally, as an induction power supply device that obtains electric power from a transmission line, when relatively large electric power is required, the overhead ground wire electrically connected to the transmission line tower is usually insulated from the tower. By doing so, an electrostatic induction voltage determined by the mutual capacitance between the transmission line main line and the overhead ground wire and the self electrostatic capacitance of the overhead ground wire is generated, and the target device is utilized by using this electrostatic induction voltage. There is one that obtains a driving AC power supply or a DC power supply.

その他、送電線本線に本線状態を計測できるようなセン
サを取付ける場合には、送電線本線から電源を得る必要
があるが、この場合には、通常、送電線本線に変流器を
取付け、その変流器の二次巻線出力を整流し、第3図の
ような回路で必要な電源をとるのが一般的である。第3
図の回路では、送電線1の電流による磁束を変流器2の
鉄心で拾い、二次巻線2aに交流電圧を発生させる。この
交流電圧を整流回路3で整流し、定電圧素子4たるツェ
ナーダイオードZD並びに電圧レギュレータ7で一定の直
流電圧レベルに保って、センサ駆動用電源とするもので
ある。
In addition, when a sensor that can measure the main line condition is installed on the main line of the transmission line, it is necessary to obtain power from the main line of the transmission line.In this case, a current transformer is usually attached to the main line of the transmission line and Generally, the output of the secondary winding of the current transformer is rectified and the power required for the circuit shown in FIG. 3 is taken. Third
In the circuit shown in the figure, the magnetic flux due to the current in the power transmission line 1 is picked up by the iron core of the current transformer 2 to generate an AC voltage in the secondary winding 2a. This AC voltage is rectified by the rectifier circuit 3, and is maintained at a constant DC voltage level by the Zener diode ZD, which is the constant voltage element 4, and the voltage regulator 7, and is used as a sensor driving power supply.

[発明が解決しようとする課題] しかし、架空地線から所定の電源を得る場合に、前記し
たように、架空地線を送電線鉄塔から絶縁することは、
設備上極めて大がかりな工事を必要とする他、架空地線
が絶縁されることにより、本来の目的である「避雷の効
果」が期待できなくなる等の欠点がある。
[Problems to be Solved by the Invention] However, when a predetermined power source is obtained from an overhead ground wire, as described above, it is necessary to insulate the overhead ground wire from a transmission line tower.
In addition to requiring extremely large-scale work on the facility, there are drawbacks such that the original purpose, "the effect of lightning protection," cannot be expected because the overhead ground wire is insulated.

そこで、架空地線から所定の電源を得るために、送電線
本線から電源を取る第3図の回路をそのまま適用するこ
とが考えられるが、次のような問題がある。
Therefore, in order to obtain a predetermined power source from the overhead ground wire, it is possible to apply the circuit of FIG. 3 that takes the power source from the main line of the power transmission line as it is, but there are the following problems.

第3図の回路では、変流器2の二次巻線2aの出力に、絶
えず変化している送電線1の電流に対応した電圧が誘起
される。この誘起電圧を整流回路3で整流した後、定電
圧素子4と制限抵抗5(抵抗R)の直列回路で一定の直
流電圧を作るが、その時、定電圧素子4には、変流器2
の二次巻線2aの出力電圧と定電圧レベルとの差分だけ、
電流Izが流れる。即ち、変流器2の二次巻線2aの出力電
圧を交流ピーク値でVaとし、定電圧素子4の電圧レベル
をVzとすると、定電圧素子4に電流Iz=(Va−Vz)/Rが
流れる。この電流Izが大きくなればなる程、定電圧素子
4は流れる電流に耐えるような容量を持つ必要があり、
回路のコンパクト化に大きな妨げとなっていた。
In the circuit of FIG. 3, a voltage corresponding to the constantly changing current of the transmission line 1 is induced in the output of the secondary winding 2a of the current transformer 2. After the induced voltage is rectified by the rectifier circuit 3, a constant DC voltage is generated by the series circuit of the constant voltage element 4 and the limiting resistor 5 (resistor R).
Only the difference between the output voltage of the secondary winding 2a and the constant voltage level,
Current Iz flows. That is, if the output voltage of the secondary winding 2a of the current transformer 2 is Va at the AC peak value and the voltage level of the constant voltage element 4 is Vz, the current Iz = (Va-Vz) / R in the constant voltage element 4 is obtained. Flows. As the current Iz increases, the constant voltage element 4 needs to have a capacity to withstand the flowing current.
This was a major obstacle to making the circuit compact.

第3図の回路の動作原理を第4図を用いて更に詳しく説
明する。第4図(a)は変流器2の二次巻線出力を整流
回路3中の整流器で整流した後の波形であり、このピー
ク値Vaの出力は整流回路3中の平滑回路を経ることによ
り第4図(b)のように平滑化され、ツェナーダイオー
ドZDで第4図(c)の如く一定電圧レベルVzとなって出
力される。この場合、ツェナーダイオードZDの電力損失
PはP=Vz×Izであるから、ツェナーダイオードZDに流
れる電流Izが増えるとき、即ち変流器2の二次巻線出力
が大きくなるときは、その送電線電流の増大につれてツ
ェナーダイオードZDの電力損失Pも増えるという関係に
あり、熱的にも温度上昇する。第4図(d)は、変流器
2の二次巻線2aの出力電圧VaとツェナーダイオードZDの
定電圧レベルVzとの差分だけ、流れる電流Iz=(Va−V
z)/Rを示す。
The operating principle of the circuit shown in FIG. 3 will be described in more detail with reference to FIG. FIG. 4 (a) shows the waveform after the secondary winding output of the current transformer 2 is rectified by the rectifier in the rectifier circuit 3, and the output of this peak value Va passes through the smoothing circuit in the rectifier circuit 3. As a result, the voltage is smoothed as shown in FIG. 4 (b), and the zener diode ZD outputs a constant voltage level Vz as shown in FIG. 4 (c). In this case, since the power loss P of the Zener diode ZD is P = Vz × Iz, when the current Iz flowing through the Zener diode ZD increases, that is, when the output of the secondary winding of the current transformer 2 increases, the transmission There is a relationship that the power loss P of the Zener diode ZD increases as the wire current increases, and the temperature also rises thermally. FIG. 4 (d) shows that the current Iz = (Va−V) flowing by the difference between the output voltage Va of the secondary winding 2a of the current transformer 2 and the constant voltage level Vz of the Zener diode ZD.
z) / R is shown.

このようなことから第3図に示した回路では、広範囲に
変動している電流領域をカバーして安定した直流電流を
得ることは困難であり、この回路をそのまま適用できな
い。
For this reason, it is difficult for the circuit shown in FIG. 3 to obtain a stable direct current by covering a current region that varies over a wide range, and this circuit cannot be applied as it is.

本発明の目的は、従来技術の欠点を解消し、簡単にしか
も良質な直流電力を架空地線電流から得ることができる
送電線監視センサ用の誘導電源装置を提供することにあ
る。
An object of the present invention is to solve the drawbacks of the prior art and to provide an inductive power supply device for a power transmission line monitoring sensor that can easily obtain high-quality DC power from an overhead ground wire current.

[課題を解決するための手段] 本発明は、送電線に流れている電流を電源として、送電
線設備の監視センサ等を駆動する電力を得る誘導電源装
置において、架空地線電流から交流電圧を得る変流器
と、該変流器の二次巻線出力端子に接続した整流回路
と、該整流回路に接続した直流定電圧制御回路と、上記
変流器の二次巻線出力端子に接続され一定の電圧に達し
た時に信号出力する定電圧素子と制限抵抗から成る直列
回路と、該変流器の二次巻線出力端子に並列に接続され
ており、上記定電圧素子と制限抵抗の結合点に接続され
た制御入力端子を有し、定電圧素子からの信号出力を制
御入力として受けて導通し、導通時における変流器の二
次巻線出力の交流電圧極性が反転すると非導通となるス
イッチイング素子のサイリスタとを備えたものである。
[Means for Solving the Problems] The present invention uses an electric current flowing in a power transmission line as a power source to obtain electric power for driving a monitoring sensor of a power transmission line facility, and the like. Current transformer to be obtained, rectifier circuit connected to the secondary winding output terminal of the current transformer, DC constant voltage control circuit connected to the rectifier circuit, and connected to the secondary winding output terminal of the current transformer Connected in parallel to the secondary winding output terminal of the current transformer, and a series circuit composed of a constant voltage element that outputs a signal when a certain voltage is reached, and a limiting resistance. It has a control input terminal connected to the connection point, receives the signal output from the constant voltage element as a control input and conducts, and is non-conducting when the alternating voltage polarity of the secondary winding output of the current transformer is reversed during conduction. With a thyristor of switching element Is.

[作用] 送電線に流れている電流、従って架空地線電流から変流
器で得られる交流電圧が変動し、特にその電圧が定電圧
素子の規定する一定電圧にまで達すると、定電圧素子に
信号が出力される。この信号は、変流器の二次巻線出力
端子に並列に接続されたスイッチング素子の制御入力端
子に加わり、スイッチング素子を導通させる。従って、
変流器の二次巻線出力端子はスイッチング素子により短
絡される。このため定電圧素子に加わっている電圧は定
電圧素子の規定する一定電圧以下に落ち、定電圧素子に
はその耐容量以上の大きな電流が流れない。スイッチン
グ素子は、導通時における変流器の二次巻線出力の交流
電圧極性が反転すると非導通となり、自動復帰する。
[Operation] When the AC voltage obtained by the current transformer fluctuates from the current flowing in the power transmission line, that is, the overhead ground wire current, and especially when the voltage reaches the constant voltage specified by the constant voltage element, The signal is output. This signal is applied to the control input terminal of a switching element connected in parallel with the secondary winding output terminal of the current transformer, causing the switching element to conduct. Therefore,
The secondary winding output terminal of the current transformer is short-circuited by the switching element. Therefore, the voltage applied to the constant voltage element drops below the constant voltage specified by the constant voltage element, and a large current exceeding the withstand capacity of the constant voltage element does not flow. The switching element becomes non-conductive and automatically recovers when the alternating voltage polarity of the output of the secondary winding of the current transformer is reversed during conduction.

このように、変流器出力を所定電圧レベル時に短絡する
回路構成とすることにより、定電流領域から大電流領域
まで安定した直流電圧を、簡単にしかも経済的に得るこ
とができるようになる。
As described above, the circuit configuration in which the output of the current transformer is short-circuited at the predetermined voltage level makes it possible to easily and economically obtain a stable DC voltage from the constant current region to the large current region.

[実施例] 以下本発明を図示の実施例に従って説明する。[Examples] The present invention will be described below with reference to illustrated examples.

第1図は本発明の電源装置の具体例を示したもので、送
電線架空地線1aに貫通させた変流器2を有し、この変流
器2の二次巻線2aには整流回路3が接続され、整流回路
3の出力端子には、定電圧素子4たるツェナーダイオー
ドZD及び制限抵抗5たる抵抗Rから成る直列回路と、電
圧レギュレータ7とが接続されている。更に、変流器2
の二次巻線2aにはスイッチング素子としてのサイリスタ
6が並列に接続され、サイリスタ6の制御入力端子たる
ゲートは、ツェナーダイオードZDと制限抵抗5との結合
点xに接続されている。
FIG. 1 shows a concrete example of a power supply device of the present invention, which has a current transformer 2 penetrating an overhead ground wire 1a of a transmission line, and a secondary winding 2a of the current transformer 2 is rectified. The circuit 3 is connected to the output terminal of the rectifier circuit 3. The voltage regulator 7 is connected to a series circuit including a Zener diode ZD that is a constant voltage element 4 and a resistor R that is a limiting resistor 5. Furthermore, the current transformer 2
A thyristor 6 as a switching element is connected in parallel to the secondary winding 2a, and a gate serving as a control input terminal of the thyristor 6 is connected to a coupling point x between the Zener diode ZD and the limiting resistor 5.

上記構成の動作を第2図を参照しながら説明する。The operation of the above configuration will be described with reference to FIG.

変流器2の二次巻線2aの出力は、サイリスタ6が当初は
非導通となっていることから、整流回路3中の整流器に
より第2図(a)のように整流され、整流回路3中の平
滑回路により第2図(b)のように平滑化される。平滑
化された電圧VaがツェナーダイオードZDの動作電圧レベ
ルVz以下であれば、電圧レギュレータ7で一定の電圧値
に変化され、直流電圧が得られる。
The output of the secondary winding 2a of the current transformer 2 is rectified by the rectifier in the rectifier circuit 3 as shown in FIG. It is smoothed by the smoothing circuit inside as shown in FIG. If the smoothed voltage Va is equal to or lower than the operating voltage level Vz of the Zener diode ZD, the voltage regulator 7 changes the voltage to a constant voltage value to obtain a DC voltage.

架空地線電流が大きくなり、整流回路3の出力電圧Va
(第2図(b))が高くなって、ツェナーダイオードZD
の動作電圧レベルVz以上となる場合には、ツェナーダイ
オードZDの働きにより、整流回路3の出力ラインの電圧
(第1図に示すy点の電位)は、第2図(c)に示した
ようにツェナー動作電圧Vzに押えられる。このとき、ツ
ェナーダイオードZDの動作前においてはゼロ電位となっ
ていた制限抵抗5の端子電圧(x点の電位)が、ほぼ整
流回路出力電圧Vaとツェナー動作電圧Vzとの差(Va−V
z)に対応する電位になる。このため、x点に接続され
ているサイリスタ6のゲート(z点)の電位が上昇し、
サイリスタ6がターンオンして導通状態になる。
The overhead ground wire current increases and the output voltage Va of the rectifier circuit 3 increases.
(Fig. 2 (b)) becomes higher and Zener diode ZD
2 becomes higher than the operating voltage level Vz, the voltage of the output line of the rectifier circuit 3 (potential at point y in FIG. 1) is as shown in FIG. 2 (c) due to the action of the Zener diode ZD. It is suppressed to the Zener operating voltage Vz. At this time, the terminal voltage of the limiting resistor 5 (potential at point x), which was at zero potential before the operation of the Zener diode ZD, is almost equal to the difference (Va-V) between the rectifier circuit output voltage Va and the Zener operating voltage Vz.
It becomes the potential corresponding to z). Therefore, the potential of the gate (point z) of the thyristor 6 connected to point x rises,
The thyristor 6 turns on and becomes conductive.

サイリスタ6が導通すれば、第2図(d)に示すよう
に、変流器2の二次巻線の出力は端子は短絡され、短絡
直後から急激に下る。このためVa≒Vzとなり、ツェナー
ダイオード4に流れる電流Izは殆ど流れない。
When the thyristor 6 is turned on, the output of the secondary winding of the current transformer 2 is short-circuited at its terminals, as shown in FIG. Therefore, Va≈Vz, and the current Iz flowing through the Zener diode 4 hardly flows.

サイリスタ6は、変流器2の二次巻線出力が正極性にあ
る間は、一度短絡するとゲートのz点の電位が下って
も、そのままの状態を保持し、変流器2の二次巻線出力
が負極性になって逆阻止状態となったとき、再びターン
オフして非導通状態になる。
While the secondary winding output of the current transformer 2 is positive, the thyristor 6 maintains the same state even if the potential at the z point of the gate drops once short-circuited, and the secondary current of the current transformer 2 is maintained. When the winding output has a negative polarity and is in the reverse blocking state, it is turned off again and becomes non-conductive.

上記の繰返しにより、サイリスタ6の動作を考慮した整
流回路3の出力ライン上のy点の電圧波形は、第2図
(e)に示すようになり、常時、ツェナー動作電圧Vzを
ピーク値とした電圧を保持することになる。この整流出
力電圧を電圧レギュレータ7に入力することにより、安
定した直流電圧V dc(第2図(f))が出力される。
尚、電圧レギュレータ7は、サイリスタ6がターンオン
した時点より変流器2の二次巻線出力が負から正にゼロ
クロスする時点までの電圧変動をなくように動作する。
即ち、第2図(e)におけるツェナーダイオード4の動
作電圧レベルVzから電圧レベルV zoに対して、一定の直
流を出力するものである。
By repeating the above, the voltage waveform at the point y on the output line of the rectifier circuit 3 in consideration of the operation of the thyristor 6 becomes as shown in FIG. 2 (e), and the Zener operating voltage Vz is always the peak value. It will hold the voltage. By inputting this rectified output voltage to the voltage regulator 7, a stable DC voltage V dc (FIG. 2 (f)) is output.
The voltage regulator 7 operates so that there is no voltage fluctuation from the time when the thyristor 6 is turned on to the time when the secondary winding output of the current transformer 2 crosses from zero to zero.
That is, a constant direct current is output from the operating voltage level Vz of the Zener diode 4 in FIG. 2 (e) to the voltage level Vzo.

誘導電源装置を上記回路構成とすることにより、架空地
線電流が大きく変化しても、ツェナーダイオードZDに流
れる電流Izは無視し得るほど小さくなり、非常に小さな
素子で回路を構成することができる。又、サイリスタ6
には、変流器2の二次巻線2aの出力を短絡したときに電
流が流れるが、サイリスタ6の順方向のインピーダンス
は小さいので、その消費電力は僅かであり、全体の回路
構成は、極めてコンパクトになる。
By using the above-described circuit configuration of the induction power supply device, even if the overhead ground wire current changes significantly, the current Iz flowing through the Zener diode ZD becomes negligibly small, and the circuit can be configured with extremely small elements. . Also, thyristor 6
, A current flows when the output of the secondary winding 2a of the current transformer 2 is short-circuited. However, since the forward direction impedance of the thyristor 6 is small, its power consumption is small, and the overall circuit configuration is It becomes extremely compact.

[発明の効果] 以上述べたように、本発明の誘導電源装置は、変流器出
力を所定電圧レベルに短絡する回路構成としたものであ
るから、低電流領域から大電流領域まで安定した直流電
源を、簡単にしかも経済的に得ることができる。
[Effects of the Invention] As described above, the induction power supply device of the present invention has a circuit configuration in which the output of the current transformer is short-circuited to a predetermined voltage level. Power can be obtained easily and economically.

また、架空地線電流から、センサ等を駆動できる良質な
直流電力を作ることができることから、送電線鉄塔に容
易に設備状態を監視できるセンサを設置することがで
き、送電線の保守監視に大きな効果を発揮する。特に、
送電線設備を監視するセンサとして、鉄塔上に設置する
例が多い風向風速センサの電源として用いれば、その効
果は更に大きい。
In addition, since it is possible to generate high-quality DC power that can drive sensors etc. from the overhead ground wire current, it is possible to install a sensor that can easily monitor the equipment status on the transmission line tower, which is great for maintenance and monitoring of the transmission line. Be effective. In particular,
If it is used as a power source for a wind direction sensor, which is often installed on a tower, as a sensor for monitoring transmission line equipment, the effect is even greater.

更に、送電線電流を電源としているため、送電線の電流
が流れている限り本誘導電源装置は動作し続けることか
ら、極めて効率良く、無保守・無交換の電源が得られ
る。
Furthermore, since the transmission line current is used as the power source, the induction power supply device continues to operate as long as the current of the transmission line is flowing, so that a maintenance-free and replacement-free power source can be obtained extremely efficiently.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の誘導電源装置の回路構成例を示す図、
第2図(a)〜(f)はその動作説明図に供する図、第
3図は従来の誘導電源装置の構成例を示す図、第4図
(a)〜(d)はその動作説明図に供する図である。 図中、1は送電線本線、1aは架空地線、2は変流器、2a
は変流器の二次巻線、3は整流回路、4は定電圧素子、
5は制限抵抗、6はサイリスタ(スイッチング素子)、
7は電圧レギュレータを示す。
FIG. 1 is a diagram showing a circuit configuration example of an induction power supply device of the present invention,
2 (a) to (f) are diagrams used for explaining the operation thereof, FIG. 3 is a diagram showing a configuration example of a conventional induction power supply device, and FIGS. 4 (a) to (d) are operation explanatory diagrams thereof. FIG. In the figure, 1 is a transmission line main line, 1a is an overhead ground line, 2 is a current transformer, and 2a
Is a secondary winding of a current transformer, 3 is a rectifier circuit, 4 is a constant voltage element,
5 is a limiting resistor, 6 is a thyristor (switching element),
Reference numeral 7 indicates a voltage regulator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送電線に流れている電流を電源として、送
電線の監視センサを駆動する電力を得る誘導電源装置に
おいて、架空地線電流から交流電圧を得る交流器と、該
変流器の二次巻線出力端子に接続した整流回路と、該整
流回路に接続され整流回路の出力が一定の電圧レベルに
達した時に信号を出力する定電圧素子と制限抵抗から成
る直列回路と、上記整流回路に接続した電圧レギュレー
タと、上記変流器の二次巻線出力端子に並列に接続され
ており、上記定電圧素子と上記制限抵抗の結合点に接続
された制御入力端子を有し、定電圧素子からの信号を制
御入力端子に受けて導通し、導通時における変流器の二
次巻線出力の交流電圧極性が反転すると非導通となるス
イッチイング素子のサイリスタとを備えたことを特徴と
する送電線監視センサ用の誘導電源装置。
1. An inductive power supply device that obtains electric power for driving a monitoring sensor of a power transmission line by using a current flowing in the power transmission line as a power source, and an AC device for obtaining an AC voltage from an overhead ground line current and a current transformer. A rectifier circuit connected to the secondary winding output terminal; a series circuit connected to the rectifier circuit, comprising a constant voltage element for outputting a signal when the output of the rectifier circuit reaches a certain voltage level and a limiting resistor; A voltage regulator connected to the circuit and a secondary winding output terminal of the current transformer are connected in parallel, having a control input terminal connected to the connection point of the constant voltage element and the limiting resistor, It is provided with a thyristor of a switching element that receives a signal from a voltage element at a control input terminal to be conductive, and becomes non-conductive when the AC voltage polarity of the secondary winding output of the current transformer is reversed when conductive. Transmission line monitoring Induction power supply for support.
JP63060504A 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor Expired - Lifetime JPH0789693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63060504A JPH0789693B2 (en) 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060504A JPH0789693B2 (en) 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor

Publications (2)

Publication Number Publication Date
JPH01238414A JPH01238414A (en) 1989-09-22
JPH0789693B2 true JPH0789693B2 (en) 1995-09-27

Family

ID=13144205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060504A Expired - Lifetime JPH0789693B2 (en) 1988-03-16 1988-03-16 Inductive power supply for power line monitoring sensor

Country Status (1)

Country Link
JP (1) JPH0789693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150712A (en) * 2019-03-14 2020-09-17 矢崎エナジーシステム株式会社 Power supply device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378887B2 (en) * 2019-07-04 2023-11-14 矢崎エナジーシステム株式会社 power supply
CN112986710A (en) * 2019-12-17 2021-06-18 新疆金风科技股份有限公司 Converter fault detection method and device and computer equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527530B2 (en) * 1973-01-18 1980-07-21
JPS5137346Y2 (en) * 1973-06-29 1976-09-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020150712A (en) * 2019-03-14 2020-09-17 矢崎エナジーシステム株式会社 Power supply device

Also Published As

Publication number Publication date
JPH01238414A (en) 1989-09-22

Similar Documents

Publication Publication Date Title
US11336198B2 (en) System for generating a power output and corresponding use
JPH0789693B2 (en) Inductive power supply for power line monitoring sensor
US6362985B1 (en) Power transmission apparatus and method for power transmission
KR100501802B1 (en) High-Tc Superconducting Fault Current Limiter Controlling Amplitude of the Applied Magnetic Field Using Power Switch
JPS5828439Y2 (en) Disconnection detection device
JP3580491B2 (en) Switching power supply
JP4081327B2 (en) Resonant switching power supply
JPH069591Y2 (en) Switching Regulator
JPS6144419Y2 (en)
JPH0746841A (en) Dc power supply
JPH0412790Y2 (en)
JPH0644310Y2 (en) Switching power supply
JPH0534198Y2 (en)
JPH0119056Y2 (en)
JPH03178555A (en) Inductance circuit and switching power source using the same
SE515103C2 (en) Active suction transformer system and use of one
SU792454A1 (en) Voltage sensor
JPH0514214Y2 (en)
JPS5810279Y2 (en) Relay drive circuit
JP3468114B2 (en) High voltage power supply
JP2725291B2 (en) Switching power supply
JPS5833484B2 (en) Excitation circuit of electromagnetic flowmeter
JPS6129228B2 (en)
JPH0767225B2 (en) AA neutral wire open phase detection circuit breaker
JPS6252555B2 (en)