JP3468114B2 - High voltage power supply - Google Patents

High voltage power supply

Info

Publication number
JP3468114B2
JP3468114B2 JP21725698A JP21725698A JP3468114B2 JP 3468114 B2 JP3468114 B2 JP 3468114B2 JP 21725698 A JP21725698 A JP 21725698A JP 21725698 A JP21725698 A JP 21725698A JP 3468114 B2 JP3468114 B2 JP 3468114B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
voltage power
current
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21725698A
Other languages
Japanese (ja)
Other versions
JP2000050628A (en
Inventor
孝治 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21725698A priority Critical patent/JP3468114B2/en
Publication of JP2000050628A publication Critical patent/JP2000050628A/en
Application granted granted Critical
Publication of JP3468114B2 publication Critical patent/JP3468114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電子写真装置の感
光体に電位を供給し、かつ極性切替えを可能とする高圧
電源装置に関するものである。 【0002】 【従来の技術】従来この種の高圧電源装置は図3に示す
ように構成されていた。すなわち、図3において、1は
低圧の直流電源であり、この直流電源1には高圧トラン
ス12の一次巻線13とスイッチング素子18が直列接
続されている。このスイッチング素子18のベースには
制御回路19が接続されており、この制御回路19に
は、高圧トランス12の電圧検出巻線20に発生した電
圧をダイオード21とコンデンサ22で整流平滑した電
圧が帰還されている。 【0003】上記高圧トランス12の二次巻線14には
ダイオード15とコンデンサ16と抵抗17により構成
される整流、平滑及び放電回路が接続され、これにより
定電圧制御の第1の高圧電源が構成されている。 【0004】又、直流電源1には高圧トランス2も接続
されており、この高圧トランス2の一次巻線3とスイッ
チング素子8が直列接続されている。 【0005】上記スイッチング素子8のベースには制御
回路9が接続されており、この制御回路9には、出力端
子25より負荷11に流れる電流を検出する電流検出抵
抗10で発生した電圧が帰還されている。 【0006】上記高圧トランス2の二次巻線4にはダイ
オード5とコンデンサ6と抵抗7により構成される整
流、平滑及び放電回路が接続され、これにより低電流制
御の第2の高圧電源が構成されている。 【0007】又、端子23で制御回路9のオン、オフ動
作を行うことにより、第2の高圧電源をオン、オフし、
出力の極性を切替える構成となっている。 【0008】 【発明が解決しようとする課題】しかしながら、このよ
うな従来の高圧電源装置では、第2の高圧電源の電流値
を正しく検出しようとするために、電流の流れるループ
には、他の電流が流れないように、第1の高圧電源の電
圧検出手段として、高圧トランス12に電圧検出巻線2
0を設け、ダイオード21とコンデンサ22で整流、平
滑した電圧を制御回路19に帰還する構成となってい
た。 【0009】このような構成では、高圧トランス12の
二次巻線14と電圧検出巻線20との結合係数や、二次
巻線14のインピーダンスが有るため、負荷11の変動
や、直流電源1の電圧変動により、第1の高圧電源の出
力電圧が変動する不具合があった。 【0010】又、高圧トランス12に、電圧検出巻線2
0を設けること及びダイオード21とコンデンサ22を
追加することにより、高圧電源装置が大型化するととも
にコスト面で不利になるものであった。 【0011】本発明は以上のような従来の欠点を除去
し、簡単な構成で安定した出力電圧が得られ、かつ小型
で安価な高圧電源装置を提供することを目的とするもの
である。 【0012】 【課題を解決するための手段】上記課題を解決するため
に本発明の高圧電源装置は、第1の高圧電源の電圧検出
を、二次側の出力を電圧検出抵抗で直接検出し、なおか
つ、電圧検出抵抗に流す電流値を、第2の高圧電源から
出力される電流値の絶対値より大きくするように構成し
たものである。 【0013】この構成とすることにより、第2の高圧電
源の定電流精度を落とすことなく、第1の高圧電源の定
電圧精度を向上させ、かつ小型で安価とすることができ
る。 【0014】 【発明の実施の形態】本発明の請求項1に記載の発明
は、直流電源をスイッチング素子でスイッチングし、高
圧トランスの一次側に印加し、この高圧トランスの二次
側に発生する交流出力を整流してなる直流高圧電源にお
いて、定電圧の高電圧を発生し、かつ連続的に動作させ
る第1の高圧電源と、この第1の高圧電源とは逆極性で
定電流の高電圧を発生し、かつ断続的に動作させる第2
の高圧電源を有し、前記第1の高圧電源の高圧トランス
の二次側の高圧側に、前記第2の高圧電源の高圧トラン
スの二次側の低圧側を接続する直列接続とし、前記第1
の高圧電源の高圧トランスの二次側には出力電圧を検出
するための電圧検出抵抗を設け、この電圧検出抵抗に発
生する電圧を前記第1の高圧電源の制御回路に帰還させ
ることにより前記第1の高圧電源を定電圧制御するとと
ともに、前記第1の高圧電源の高圧トランスの二次側の
低電位側と接地間に電流検出抵抗を設け、この電流検出
抵抗に発生する電圧を前記第2の高圧電源の制御回路に
帰還させることにより前記第2の高圧電源を定電流制御
し、前記電圧検出抵抗に流す電流を前記第2の高圧電源
から出力される出力電流の絶対値より大きくするように
構成したものであり、この構成により第2の高圧電源の
定電流精度を高くするとともに小型で安価とすることが
できる。 【0015】以下、本発明の一実施の形態について図面
を用いて説明する。本発明の高圧電源装置の一実施の形
態について図1を用いて説明する。図1は本発明の一実
施の形態における高圧電源装置を示す回路図である。 【0016】図1において、26は低圧の直流電源で、
この直流電源26には高圧トランス37の一次巻線38
とスイッチング素子43が直列接続されている。上記ス
イッチング素子43のベースには制御回路44が接続さ
れており、この制御回路44には、高圧トランス37の
二次巻線39で発生した交流出力をダイオード40とコ
ンデンサ41で整流、平滑された直流出力が電圧検出抵
抗42で電圧を検出し制御回路44に帰還されておりこ
れにより定電圧制御の第1の高圧電源が構成されてい
る。 【0017】又、直流電源26には、高圧トランス27
も接続されており、この高圧トランス27の一次巻線2
8とスイッチング素子33が直列接続されている。 【0018】上記スイッチング素子33のベースには制
御回路34が接続されており、この制御回路34には、
出力端子46より負荷36に流れる電流を検出する電流
検出抵抗35で発生した電圧が帰還されている。 【0019】上記高圧トランス27の二次巻線29には
ダイオード30とコンデンサ31と放電抵抗32により
整流、平滑及び放電回路が構成され、これにより定電流
制御の第2の高圧電源が構成されている。又端子45で
制御回路34のオン、オフ動作を行うことにより、第2
の高圧電源をオン、オフし出力の極性を切替える構成と
なっている。 【0020】上記構成において、第1の高圧電源の電圧
検出手段は電圧検出抵抗42を第1の高圧電源の二次側
の高圧側に接続し、この第1の高圧電源の電圧が一定で
あり、電圧検出抵抗42に流れる電流も一定となる。次
に第2の高圧電源を端子45でオンをすれば、出力端子
46に発生する直流の極性は逆になり負荷36に流れる
ことになる。 【0021】ここで第1の高圧電源の電圧を−1000
Vとし、電圧検出手抵抗を10MΩと仮定すると、電圧
検出抵抗42に流れる電流は−10μAとなる。この時
負荷36に流れる電流は負荷のインピーダンスで決定さ
れる。 【0022】次に第2の高圧電源をオンすると出力の極
性が切替わり+となる。この時の必要な電流値が仮に+
5μAとするならば、電圧検出抵抗42に流れる電流1
0μAから、負荷36に流れる電流5μAと、電流検出
抵抗35に流れる電流5μAに分流する。 【0023】このことを図2で説明する。定電圧電源の
検出抵抗に流れる電流i1は常に一定であり、この電流
1は負荷36に流れる電流i2と電流検出抵抗35に流
れる電流i3に分流するので下記の式となる。 【0024】i1=i2+i3……式(1) 但し、i1よりi2が大きくなるとi3に電流が流れなく
なり定電流制御もできなくなる。 【0025】よって本発明は、電流i1を基準電流とし
2との差の電流i3を帰還することにより、定電流制御
とすることが可能である。 【0026】 【発明の効果】以上のように本発明の高圧電源装置は構
成されるため、第1の高圧電源の電圧及び第2の高圧電
源の電流が精度よく出力され、しかも小型で安価なもの
とすることができ、産業的価値の大なるものである。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a high-voltage power supply which supplies a potential to a photosensitive member of an electrophotographic apparatus and enables polarity switching. 2. Description of the Related Art Conventionally, this kind of high-voltage power supply device has been configured as shown in FIG. That is, in FIG. 3, reference numeral 1 denotes a low-voltage DC power supply, and a primary winding 13 and a switching element 18 of a high-voltage transformer 12 are connected to the DC power supply 1 in series. A control circuit 19 is connected to the base of the switching element 18, and a voltage obtained by rectifying and smoothing the voltage generated in the voltage detection winding 20 of the high-voltage transformer 12 by the diode 21 and the capacitor 22 is fed back to the control circuit 19. Have been. A rectifying, smoothing and discharging circuit composed of a diode 15, a capacitor 16 and a resistor 17 is connected to the secondary winding 14 of the high-voltage transformer 12, thereby forming a first high-voltage power supply of constant voltage control. Have been. A high voltage transformer 2 is also connected to the DC power supply 1, and a primary winding 3 of the high voltage transformer 2 and a switching element 8 are connected in series. A control circuit 9 is connected to the base of the switching element 8, and a voltage generated by a current detection resistor 10 for detecting a current flowing through a load 11 from an output terminal 25 is fed back to the control circuit 9. ing. A rectifying, smoothing and discharging circuit composed of a diode 5, a capacitor 6 and a resistor 7 is connected to the secondary winding 4 of the high-voltage transformer 2, thereby forming a second high-voltage power supply of low current control. Have been. Further, by turning on and off the control circuit 9 at the terminal 23, the second high-voltage power supply is turned on and off,
The output polarity is switched. However, in such a conventional high-voltage power supply device, in order to correctly detect the current value of the second high-voltage power supply, the loop through which the current flows is provided with another current. As a means for detecting the voltage of the first high-voltage power supply, the voltage detection winding 2 is connected to the high-voltage transformer 12 so that no current flows.
0 is provided, and the voltage rectified and smoothed by the diode 21 and the capacitor 22 is fed back to the control circuit 19. In such a configuration, since the coupling coefficient between the secondary winding 14 of the high-voltage transformer 12 and the voltage detection winding 20 and the impedance of the secondary winding 14 are present, fluctuations in the load 11 and the DC power supply 1 There is a problem that the output voltage of the first high-voltage power supply fluctuates due to the above voltage fluctuation. A high voltage transformer 12 has a voltage detecting winding 2
The provision of 0 and the addition of the diode 21 and the capacitor 22 increase the size of the high-voltage power supply device and are disadvantageous in cost. SUMMARY OF THE INVENTION An object of the present invention is to provide a small and inexpensive high-voltage power supply which can eliminate the above-mentioned drawbacks of the prior art, can obtain a stable output voltage with a simple structure, and can provide a small and inexpensive power supply. In order to solve the above problems, a high voltage power supply according to the present invention detects a voltage of a first high voltage power supply by directly detecting an output on a secondary side by a voltage detection resistor. Further, the current flowing through the voltage detection resistor is configured to be larger than the absolute value of the current output from the second high-voltage power supply. With this configuration, it is possible to improve the constant voltage accuracy of the first high-voltage power supply without lowering the constant current accuracy of the second high-voltage power supply, and to reduce the size and cost. According to the first aspect of the present invention, a DC power supply is switched by a switching element, applied to a primary side of a high voltage transformer, and generated on a secondary side of the high voltage transformer. A first high-voltage power supply that generates a constant high voltage and continuously operates in a DC high-voltage power supply obtained by rectifying an AC output, and a high voltage of a constant current having a polarity opposite to that of the first high-voltage power supply. And the second that operates intermittently
A high-voltage power supply of the first high-voltage power supply, and a high-voltage side of the secondary of the second high-voltage power supply is connected in series to a high-voltage side of the high-voltage transformer of the second high-voltage power supply; 1
Of the secondary side of the high voltage transformer of the high-voltage power supply is provided a voltage detection resistor for detecting the output voltage, originating in the voltage detection resistor
The generated voltage is fed back to the control circuit of the first high-voltage power supply.
To control the first high-voltage power supply at a constant voltage.
In both cases, a current detecting resistor is provided between the low-potential side on the secondary side of the high-voltage transformer of the first high-voltage power supply and the ground, and the voltage generated at this current detecting resistor is fed back to the control circuit of the second high-voltage power supply . Constant current control of the second high-voltage power supply
And a current flowing through the voltage detection resistor is supplied to the second high-voltage power supply.
The configuration is such that the absolute value of the output current output from the second high-voltage power supply is larger than that of the second high-voltage power supply. An embodiment of the present invention will be described below with reference to the drawings. One embodiment of the high voltage power supply of the present invention will be described with reference to FIG. FIG. 1 is a circuit diagram showing a high-voltage power supply device according to one embodiment of the present invention. In FIG. 1, reference numeral 26 denotes a low-voltage DC power supply.
This DC power supply 26 has a primary winding 38 of a high voltage transformer 37.
And the switching element 43 are connected in series. A control circuit 44 is connected to the base of the switching element 43. The control circuit 44 rectifies and smoothes the AC output generated in the secondary winding 39 of the high-voltage transformer 37 by the diode 40 and the capacitor 41. The DC output is detected by the voltage detection resistor 42 and is fed back to the control circuit 44, thereby forming a first high-voltage power supply of constant voltage control. The DC power supply 26 includes a high-voltage transformer 27.
Is connected to the primary winding 2 of the high-voltage transformer 27.
8 and the switching element 33 are connected in series. A control circuit 34 is connected to the base of the switching element 33. The control circuit 34
The voltage generated by the current detection resistor 35 for detecting the current flowing to the load 36 from the output terminal 46 is fed back. In the secondary winding 29 of the high-voltage transformer 27, a rectifying, smoothing and discharging circuit is formed by a diode 30, a capacitor 31, and a discharge resistor 32, thereby forming a second high-voltage power supply of constant current control. I have. The control circuit 34 is turned on and off at the terminal 45, so that the second
The high voltage power supply is turned on and off to switch the output polarity. In the above configuration, the voltage detecting means of the first high-voltage power supply connects the voltage detecting resistor 42 to the secondary high-voltage side of the first high-voltage power supply, and the voltage of the first high-voltage power supply is constant. , The current flowing through the voltage detection resistor 42 is also constant. Next, when the second high-voltage power supply is turned on at the terminal 45, the polarity of the direct current generated at the output terminal 46 is reversed and flows to the load 36. Here, the voltage of the first high-voltage power supply is set to -1000.
Assuming that the voltage is V and the voltage detection hand resistance is 10 MΩ, the current flowing through the voltage detection resistor 42 is −10 μA. At this time, the current flowing through the load 36 is determined by the impedance of the load. Next, when the second high-voltage power supply is turned on, the polarity of the output is switched to +. If the required current value at this time is +
If it is 5 μA, the current 1 flowing through the voltage detection resistor 42
The current is shunted from 0 μA into a current 5 μA flowing through the load 36 and a current 5 μA flowing through the current detection resistor 35. This will be described with reference to FIG. The current i 1 flowing through the detection resistor of the constant voltage power supply is always constant, and this current i 1 is divided into the current i 2 flowing through the load 36 and the current i 3 flowing through the current detection resistor 35, so that the following equation is obtained. I 1 = i 2 + i 3 (1) However, if i 2 is larger than i 1 , no current flows through i 3 and constant current control cannot be performed. Thus, in the present invention, constant current control can be performed by using the current i 1 as a reference current and feeding back the current i 3 having a difference from i 2 . As described above, since the high-voltage power supply of the present invention is constructed, the voltage of the first high-voltage power supply and the current of the second high-voltage power supply are output with high accuracy, and are small and inexpensive. And of great industrial value.

【図面の簡単な説明】 【図1】本発明の高圧電源装置の一実施の形態における
回路図 【図2】同一実施の形態における電流の流れを詳細にし
た回路図 【図3】従来の高圧電源装置の回路図 【符号の説明】 26 直流電源 27 高圧トランス 28 一次巻線 29 二次巻線 30 ダイオード 31 コンデンサ 32 放電抵抗 33 スイッチング素子 34 制御回路 35 電流検出抵抗 36 負荷 37 高圧トランス 38 一次巻線 39 二次巻線 40 ダイオード 41 コンデンサ 42 電圧検出抵抗 43 スイッチング素子 44 制御回路 45 端子 46 出力端子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of an embodiment of a high-voltage power supply device according to the present invention; FIG. 2 is a circuit diagram showing details of a current flow in the same embodiment; FIG. 26 DC power supply 27 High voltage transformer 28 Primary winding 29 Secondary winding 30 Diode 31 Capacitor 32 Discharge resistor 33 Switching element 34 Control circuit 35 Current detection resistor 36 Load 37 High voltage transformer 38 Primary winding Wire 39 Secondary winding 40 Diode 41 Capacitor 42 Voltage detection resistor 43 Switching element 44 Control circuit 45 Terminal 46 Output terminal

Claims (1)

(57)【特許請求の範囲】 【請求項1】 直流電源をスイッチング素子でスイッチ
ングし、高圧トランスの一次側に印加し、この高圧トラ
ンスの二次側に発生する交流出力を整流してなる直流高
圧電源において、定電圧の高電圧を発生し、かつ連続的
に動作させる第1の高圧電源と、この第1の高圧電源と
は逆極性で定電流の高電圧を発生し、かつ断続的に動作
させる第2の高圧電源を有し、前記第1の高圧電源の高
圧トランスの二次側の高圧側に、前記第2の高圧電源の
高圧トランスの二次側の低圧側を接続する直列接続と
し、前記第1の高圧電源の高圧トランスの二次側には出
力電圧を検出するための電圧検出抵抗を設け、この電圧
検出抵抗に発生する電圧を前記第1の高圧電源の制御回
路に帰還させることにより前記第1の高圧電源を定電圧
制御するととともに、前記第1の高圧電源の高圧トラン
スの二次側の低電位側と接地間に電流検出抵抗を設け、
この電流検出抵抗に発生する電圧を前記第2の高圧電源
の制御回路に帰還させることにより前記第2の高圧電源
を定電流制御し、前記電圧検出抵抗に流す電流を前記第
2の高圧電源から出力される出力電流の絶対値より大き
くするように構成した高圧電源装置。
(57) [Claims 1] DC power obtained by switching a DC power supply with a switching element, applying the DC power supply to a primary side of a high voltage transformer, and rectifying an AC output generated on a secondary side of the high voltage transformer. A first high-voltage power supply for generating a high voltage of a constant voltage and operating continuously in the high-voltage power supply; and generating a high-voltage of a constant current having a polarity opposite to that of the first high-voltage power supply, and intermittently. A second high-voltage power supply to be operated; a series connection for connecting a secondary low-voltage side of the high-voltage transformer of the second high-voltage power supply to a secondary high-voltage side of the high-voltage transformer of the first high-voltage power supply; and then, the first of the secondary side of the high voltage transformer of the high-voltage power supply is provided a voltage detection resistor for detecting the output voltage, the voltage
The voltage generated at the detection resistor is controlled by the control circuit of the first high-voltage power supply.
The first high-voltage power supply to a constant voltage
Controlling and providing a current detection resistor between the low potential side on the secondary side of the high voltage transformer of the first high voltage power supply and the ground,
The voltage generated at the current detection resistor is fed back to the control circuit for the second high-voltage power supply, thereby providing the second high-voltage power supply.
And the current flowing through the voltage detection resistor is
2 is larger than the absolute value of the output current output from the high-voltage power supply
A high-voltage power supply device configured to operate .
JP21725698A 1998-07-31 1998-07-31 High voltage power supply Expired - Lifetime JP3468114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21725698A JP3468114B2 (en) 1998-07-31 1998-07-31 High voltage power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21725698A JP3468114B2 (en) 1998-07-31 1998-07-31 High voltage power supply

Publications (2)

Publication Number Publication Date
JP2000050628A JP2000050628A (en) 2000-02-18
JP3468114B2 true JP3468114B2 (en) 2003-11-17

Family

ID=16701302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21725698A Expired - Lifetime JP3468114B2 (en) 1998-07-31 1998-07-31 High voltage power supply

Country Status (1)

Country Link
JP (1) JP3468114B2 (en)

Also Published As

Publication number Publication date
JP2000050628A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US6125046A (en) Switching power supply having a high efficiency starting circuit
KR20110095771A (en) Switch control device, power supply device comprising the same, and switch control method
US10476399B1 (en) Frequency control method for self-oscillating circuit
JP2007511995A (en) Switch mode power supply
JP3468114B2 (en) High voltage power supply
JP2001016851A (en) Switching power supply unit
JP3447975B2 (en) Switching power supply circuit
JPH11122920A (en) Switching power unit
JP3570246B2 (en) High voltage power supply
JP3508092B2 (en) Average value rectifier circuit and switching power supply circuit
JP4639437B2 (en) High voltage power supply
JP3262112B2 (en) Synchronous rectifier circuit and power supply
JP2000134924A (en) Power circuit
JP4180684B2 (en) Power supply
JPH05336747A (en) Switching power supply
JP3215273B2 (en) Switching power supply
JP3282309B2 (en) Power supply
JP3125336B2 (en) Electrophotographic equipment
JP2007330081A (en) Switching regulator
JPH06105545A (en) Switching power source apparatus
JP3548923B2 (en) Switching power supply
JPH09215331A (en) Switching power source apparatus
JPS645986Y2 (en)
JP2820258B2 (en) Combined power supply
JPH10304662A (en) Switching power supply equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

EXPY Cancellation because of completion of term