JPH0789205B2 - Silver halide emulsion - Google Patents

Silver halide emulsion

Info

Publication number
JPH0789205B2
JPH0789205B2 JP63251215A JP25121588A JPH0789205B2 JP H0789205 B2 JPH0789205 B2 JP H0789205B2 JP 63251215 A JP63251215 A JP 63251215A JP 25121588 A JP25121588 A JP 25121588A JP H0789205 B2 JPH0789205 B2 JP H0789205B2
Authority
JP
Japan
Prior art keywords
crystal
silver halide
plane
grain
agx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63251215A
Other languages
Japanese (ja)
Other versions
JPH0234A (en
Inventor
光雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63251215A priority Critical patent/JPH0789205B2/en
Publication of JPH0234A publication Critical patent/JPH0234A/en
Publication of JPH0789205B2 publication Critical patent/JPH0789205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain

Description

【発明の詳細な説明】 (技術分野) 本発明は写真の分野において有用であるハロゲン化銀
(以後AgXとよぶ)乳剤に関し、特に分散媒と1つのAgX
粒子表面上に、少なくとも{100}と{111}結晶表面を
有するAgX粒子とからなるAgX乳剤に関する。
TECHNICAL FIELD The present invention relates to a silver halide (hereinafter referred to as AgX) emulsion useful in the field of photography, and particularly to a dispersion medium and one AgX.
It relates to an AgX emulsion consisting of AgX grains having at least {100} and {111} crystal surfaces on the grain surface.

(先行技術とその問題点) 一般に高感度の感光性AgX粒子を作る為には、感光中心
となる化学増感核の位置や数を制御してやる必要があ
る。その限定方法としては 吸着剤の吸着あり、もしくはなしの状態でAgx粒子
の角部や、エッジ部に、ハロゲンコンバージョン法もし
くはAgNO3とハロゲン化アルカリ液の添加により、エピ
タキシャル粒子を成長させ、吸着剤を吸着させて安定化
した後、化学増感し、潜像形成位置をエピタキシャル部
に限定する方法。
(Prior Art and its Problems) In general, in order to make highly sensitive photosensitive AgX particles, it is necessary to control the position and number of chemically sensitized nuclei that are the photosensitized centers. As a limiting method, epitaxial particles are grown at the corners or edges of Agx particles with or without adsorbent adsorption by the halogen conversion method or by adding AgNO 3 and an alkali halide solution to the adsorbent. Is adsorbed and stabilized, and then chemically sensitized to limit the latent image forming position to the epitaxial part.

これについては、特開昭58-108526号、同57-133540号、
同62-32443号の記載を参考にすることができる。
Regarding this, JP-A-58-108526, 57-133540,
The description in No. 62-32443 can be referred to.

粒子形成中に増感色素等の添加剤を加え、粒子に欠
陥部を導入し、その欠陥部にのみ優先的に化学増感核を
形成する方法。
A method in which an additive such as a sensitizing dye is added during grain formation to introduce a defective portion into the grain and preferentially form a chemically sensitized nucleus only in the defective portion.

この方法は、粒子に欠陥を導入することにより、化学増
感核の数を制御する方法である。これらについては、米
国特許2,735,766、同3,628,960、同4,183,756、同4,22
5,660、リサーチ・ディスクロージャー、アイテム1922
7、192巻、P.155(1980年)の記載を参考にすることが
できる。
This method is a method of controlling the number of chemically sensitized nuclei by introducing defects into grains. Regarding these, U.S. Patents 2,735,766, 3,628,960, 4,183,756, and 4,22
5,660, Research Disclosure, Item 1922
Volume 7, 192, P.155 (1980) can be referred to.

1つのAgX粒子上に二種以上の結晶面を有するAgX粒
子を用い、それらの結晶面に対する硫黄増感剤の反応性
の違いを利用して、ある一つの結晶面上のみに化学増感
核を形成する方法。例えば40℃でpH6.4、pAg8.4の乳剤
を用いた場合ハイポによる硫黄増感の反応性が、{11
1}面>{100}面であることを利用して14面体粒子の
{111}面上にのみ化学増感核を形成する方法。この場
合{111}面積と{100}面積、比率の異なる14面体粒子
を用いることにより、化学増感核の位置と数を制御する
方法である。これについてはJ.Phot.Sci.23、249(197
5)日本写真学会誌、47巻、P.255(1984)の図3を参考
にすることができる。
By using AgX particles having two or more kinds of crystal planes on one AgX grain and utilizing the difference in reactivity of the sulfur sensitizer to those crystal planes, the chemical sensitization nucleus is present only on one crystal plane. How to form. For example, when an emulsion with pH 6.4 and pAg 8.4 at 40 ° C is used, the reactivity of sulfur sensitization by hypo is
A method of forming chemically sensitized nuclei only on the {111} plane of a tetrahedral grain by utilizing the fact that 1} plane> {100} plane. In this case, the position and number of chemically sensitized nuclei are controlled by using tetradecahedral grains having different {111} area and {100} area and ratio. About this, J.Phot.Sci.23, 249 (197
5) You can refer to Figure 3 of the Journal of the Photographic Society of Japan, Volume 47, P.255 (1984).

AgX粒子に吸着剤(増感色素、かぶり防止剤、安定
剤等の添加剤)を吸着させておいてから、化学増感剤を
加えて化学増感する方法がある。この方法では、化学増
感核は吸着剤の吸着していない場所にのみ形成される
為、化学増感核の数は制御されるが、位置は制御されな
い。この方法については、例えば特開昭58-113926号、
同58-113927号、同58-113928号、米国特許4,439,520
号、同4,435,501号、Research Disclosure,Item.17643.
Section III、特開昭62-6251、特開昭58-126526、特開
昭62-56949、特開昭62-43644に記載されている。
There is a method in which an adsorbent (additive such as a sensitizing dye, an antifoggant and a stabilizer) is adsorbed to AgX particles and then a chemical sensitizer is added to perform chemical sensitization. In this method, the number of chemically sensitized nuclei is controlled, but the position is not controlled, because the chemically sensitized nuclei are formed only in the places where the adsorbent is not adsorbed. For this method, for example, JP-A-58-113926,
58-113927, 58-113928, U.S. Patent 4,439,520
Issue 4,435,501, Research Disclosure, Item.17643.
Section III, JP-A-62-6251, JP-A-58-126526, JP-A-62-56949, and JP-A-62-43644.

1つのAgX粒子表面上に二種以上の結晶面を有するA
gX粒子を用い、それらの結晶面に対する吸着に選択性を
もつ吸着剤(面選択性吸着剤)を加え、吸着剤が高密度
に吸着した結晶面と、吸着剤が疎に吸着した結晶面を形
成した後、化学増感剤を加えて化学増感し、吸着剤が疎
に吸着した結晶面上に化学増感核を形成する方法。
A having two or more crystal planes on the surface of one AgX particle
Using gX particles, an adsorbent (face-selective adsorbent) that has selectivity for adsorbing on those crystal faces is added, and the crystal face where the adsorbent is adsorbed at a high density and the crystal face where the adsorbent is adsorbed loosely are added. After the formation, a chemical sensitizer is added to perform chemical sensitization, and a chemical sensitization nucleus is formed on the crystal surface where the adsorbent is loosely adsorbed.

これについては、特開昭58-113928号に、「分光増感色
素が平板状粒子の主要表面を形成する結晶表面に優先的
に吸着されることによって、化学増感が平板状粒子の互
いに異なる結晶表面で起り得る」という短かい記述があ
る。
Regarding this, JP-A-58-113928 describes that "chemical sensitization is different from that of tabular grains due to preferential adsorption of a spectral sensitizing dye to a crystal surface forming a major surface of tabular grains. It can occur on the crystal surface. "

この方法は化学増感核の数と位置を制御しようとする方
法である。
This method is an attempt to control the number and position of chemically sensitized nuclei.

本発明はこれらの方法の内、およびの方法の改良に
関するものである。
The present invention relates to improvements in and among these methods.

しかし、の方法には、次のような問題点が残つてい
る。
However, the method has the following problems.

(1) この場合、用いることのできる吸着剤は、AgX
への吸着能に晶癖依存性の大きい化合物にのみ限定さ
れ、用いる吸着剤の選択範囲が大きく制約される。
(1) In this case, the adsorbent that can be used is AgX.
It is limited only to the compounds having a large crystal habit-dependent adsorption capacity to the adsorbent, and the selection range of the adsorbent used is largely restricted.

(2) 化学増感核の形成サイトを限定する為には、吸
着剤の吸着は強固であることが好ましいが、これは、吸
着能が晶癖依存性をもつことと相反する。
(2) The adsorption of the adsorbent is preferably strong in order to limit the site where the chemically sensitized nuclei are formed, but this is contrary to the fact that the adsorption ability has a crystal habit dependency.

即ち、一般に強く吸着する添加剤はどのような面にも強
く吸着する為、晶癖依存性は少ない為である。
That is, an additive that strongly adsorbs strongly adsorbs strongly on any surface, and thus has little dependence on crystal habit.

一般に、吸着能の晶癖依存性の大きい色素や添加剤の吸
着力は弱いという問題がある。従って、増感色素や添加
剤が吸着した結晶面上にも、化学増感核が形成され、化
学増感核形成位置の制御が不十分である。
Generally, there is a problem that the adsorbing power of a dye or an additive having a large crystal habit-dependent adsorption ability is weak. Therefore, the chemically sensitized nuclei are formed on the crystal plane on which the sensitizing dye or the additive is adsorbed, and the control of the chemically sensitized nucleus forming position is insufficient.

(3) 一方、の方法にも、次のような問題点があ
る。硫黄増感剤の反応にも晶癖依存性のあることが知ら
れているが、その反応性の差が十分でない。例えば、ハ
イポを用いて、50℃、pH6.4、pAg8.5の乳剤条件で熟成
を行なった場合、ハイポの低濃度域では、{100}面上
に比べて{111}面上で選択的に反応が起こるが、金増
感剤を一緒に加えると、その差が小さくなってしまう。
(3) On the other hand, the above method also has the following problems. It is known that the reaction of the sulfur sensitizer also depends on crystal habit, but the difference in reactivity is not sufficient. For example, when ripening was performed using hypo at 50 ° C, pH 6.4, and pAg8.5 emulsion conditions, in the low concentration range of hypo, selective on the {111} plane as compared to the {100} plane. However, when the gold sensitizer is added together, the difference becomes small.

また、その逆の場合、例えば、トリエチルチオ尿素を用
いて{100}面上にのみ化学増感核を形成しようとする
と、その{100}と{111}面上での反応性の差が十分で
なく、また、金増感剤を併用して熟成すると、やはり、
その反応の面選択性が殆んどなくなるという情況にあ
る。
In the opposite case, for example, if triethylthiourea is used to form a chemically sensitized nucleus only on the {100} plane, the difference in reactivity between the {100} and {111} planes is sufficient. Not only that, but also when maturing with a gold sensitizer,
The situation is that the surface selectivity of the reaction is almost lost.

(発明の目的) 本発明の目的は、化学増感核の位置と数/cm2が十分に
制御されたハロゲン化銀乳剤を与えることにより、感
度、階調、相反則特性、現像進行性、経時安定性、粒状
性、シャープネス、解像力を改良することが可能なハロ
ゲン化銀乳剤を提供することにある。
(Object of the Invention) The object of the present invention is to provide a silver halide emulsion in which the position of the chemical sensitizing nuclei and the number / cm 2 are sufficiently controlled to obtain sensitivity, gradation, reciprocity characteristic, development progress, It is an object of the present invention to provide a silver halide emulsion capable of improving stability with time, graininess, sharpness and resolution.

4.発明の開示 本発明の目的は以下の1)又は2)により達成された。4. Disclosure of the Invention The object of the present invention has been achieved by the following 1) or 2).

1) 分散媒とハロゲン化銀粒子とからなるハロゲン化
銀乳剤であって、全ハロゲン化銀粒子の投影面積の70%
以上が1つのハロゲン化銀粒子表面上に少なくとも{10
0}と{111}の結晶表面を有し、該結晶表面の表面層の
ハロゲン組成が互いに異なり、かつ、次記a)〜c)の
特徴を有する14面体粒子であることを特徴とするハロゲ
ン化銀乳剤。
1) A silver halide emulsion comprising a dispersion medium and silver halide grains, 70% of the projected area of all silver halide grains
The above is at least {10 on one silver halide grain surface.
Halogen characterized by being tetradecahedral grains having 0} and {111} crystal surfaces, the halogen compositions of the surface layers of the crystal surfaces being different from each other, and having the characteristics of a) to c) below. Silver halide emulsion.

a) 〔{111}面の面積/{100}面の面積〕が20〜1/
20である。
a) [area of {111} plane / area of {100} plane] is 20 to 1 /
Twenty.

b) {100}と{111}の結晶表面の一方の結晶表面上
にのみ基質のハロゲン化銀粒子と異なるハロゲン組成の
ハロゲン化銀を、非エピタキシャル状(基礎と同一結晶
系層を基質上に単なる延長層として)に積層して形成さ
れており、該ハロゲン組成が沃度含率で互いに2〜40モ
ル%異なるか、またはCl-含率で互いに7〜100モル%異
なる。
b) Only on one of the {100} and {111} crystal surfaces, a silver halide having a halogen composition different from the silver halide grain of the substrate is non-epitaxial (the same crystal system layer as the base is placed on the substrate). The halogen compositions differ from each other in iodine content by 2 to 40 mol% or in Cl content by 7 to 100 mol%.

c) 化学増感核が一方の結晶面上に優先的に形成され
ており、〔(優先的に化学増感核が形成される結晶面上
の化学増感度核の数/cm2)/(優先的に化学増感核が
形成されない結晶面上の化学増感核の数/cm2)〕が2.5
以上である。
c) The chemically sensitized nuclei are preferentially formed on one of the crystal faces, and [(the number of chemically sensitized nuclei on the crystal face where the preferentially chemically sensitized nuclei are formed / cm 2 ) / ( The number of chemically sensitized nuclei on the crystal plane where preferentially no chemically sensitized nuclei are formed / cm 2 )] is 2.5.
That is all.

2) 分散媒とハロゲン化銀粒子とからなるハロゲン化
銀乳剤であって、全ハロゲン化銀粒子の投影面積の70%
以上が1つのハロゲン化銀粒子表面上に少くとも{10
0}と{111}の結晶表面を有し、該結晶表面の表面層の
ハロゲン組成が互いに異なり、かつ、次記a)〜c)の
特徴を有するアスペクト比が1.5以上の平行双晶面を有
する平板状粒子であることを特徴とするハロゲン化銀乳
剤。
2) A silver halide emulsion consisting of a dispersion medium and silver halide grains, which is 70% of the projected area of all silver halide grains.
Above is at least {10 on one silver halide grain surface.
Parallel twin planes having crystal planes of 0} and {111}, having different halogen compositions in the surface layers of the crystal surfaces, and having the characteristics of the following a) to c) and having an aspect ratio of 1.5 or more. A silver halide emulsion having tabular grains.

a) 〔該{111}結晶表面の面積/該{100}結晶表面
の面積〕が20〜1.0である。
a) [Area of the {111} crystal surface / area of the {100} crystal surface] is 20 to 1.0.

b) {100}と{111}の結晶表面の一方の結晶表面上
にのみ基質のハロゲン化銀粒子と異なるハロゲン組成の
ハロゲン化銀を、非エピタキシャル状(基質と同一結晶
系層を基質上に単なる延長層として)に積層して形成さ
れており、該ハロゲン組成が沃度含率で互いに2〜40モ
ル%異なるか、またはCl-含率で互いに7〜100モル%異
なる。
b) Only on one of the {100} and {111} crystal surfaces, a silver halide having a halogen composition different from that of the silver halide grain of the substrate is non-epitaxial (the same crystal system layer as the substrate is formed on the substrate). The halogen compositions differ from each other in iodine content by 2 to 40 mol% or in Cl content by 7 to 100 mol%.

c) 該平板状粒子の主表面が{111}結晶表面であ
り、該{100}結晶表面が該平板状粒子のエッジ部に存
在する。
c) The main surface of the tabular grain is a {111} crystal surface, and the {100} crystal surface is present at an edge portion of the tabular grain.

従来、例えば14面体粒子の{100}面もしくは{111}面
の一方の結晶面上に化学増感核を形成する場合、単に、
イ硫黄増感剤の{100}面と{111}面に対する反応性の
違いもしくはロ(吸着剤の{100}面と{111}面に対す
る吸着性の違い)+(硫黄増感剤の{100}面と{111}
面に対する反応性の違い)を利用して行なう方法に対
し、本発明の方法は、{100}面と{111}面の表面層の
ハロゲン組成を違えることにより、上記イ、ロの他に ハ有効な電子トラップとなる化学増感核形成能の違い、
もしくはニ(吸着剤の基質のハロゲン組成による吸着性
の違い)+(有効な電子トラップとなる化学増感核形成
能の違い)を利用するものであり、そのdiscrimination
因子が増すことにより、化学増感核の位置の制御をより
十分に行なうものである。
Conventionally, for example, in the case of forming a chemical sensitized nucleus on one crystal face of the {100} face or the {111} face of a tetrahedral grain, simply,
(A) Difference in reactivity of {100} plane and {111} plane of sulfur sensitizer or b (Difference in adsorption ability of {100} plane and {111} plane of adsorbent) + ({100 of sulfur sensitizer } Plane and {111}
In contrast to the method described above, the method of the present invention differs from the above-mentioned a and b in that the halogen composition of the surface layer of the {100} plane is different from that of the {111} plane. Difference in chemical sensitized nucleation ability, which is an effective electron trap,
Alternatively, the difference between the adsorbability of the adsorbent substrate depending on the halogen composition of the adsorbent + the difference of the chemical sensitized nucleation ability of an effective electron trap is used.
By increasing the factor, the position of the chemosensitized nucleus is more sufficiently controlled.

まず、本発明のAgX粒子の構造について詳述し、次に該A
gX粒子の製法について詳述する。
First, the structure of the AgX particles of the present invention will be described in detail.
The method for producing gX particles will be described in detail.

本発明のAgX粒子は、1つのAgX粒子表面上に少なくとも
{100}と{111}の結晶表面を有する粒子であるが、よ
り具体的には、14面体粒子と、平行双晶面を有する平板
状粒子である。
The AgX grain of the present invention is a grain having at least {100} and {111} crystal surfaces on one AgX grain surface, more specifically, a tetrahedral grain and a flat twin plate having parallel twin planes. It is a particle.

14面体粒子の外表面が{100}面と{111}面を有するこ
とはよく知られているが、平板状AgX粒子の場合、T.F.H
amilton and L.E.Brady(Journal of Applied Physics,
35巻、P414〜421、1964年)によると、平行な主外表面
も、エッジ部の外表面もともに{111}面である。即
ち、全表面が{111}面であるsingle twin粒子が単に積
み重なった構造と考えればよい。
It is well known that the outer surface of tetradecahedral grains has {100} and {111} faces, but in the case of tabular AgX grains, TFH
amilton and LEBrady (Journal of Applied Physics,
35, pp. 414-421, 1964), both the parallel main outer surface and the outer surface of the edge part are {111} planes. That is, it can be considered as a structure in which single twin particles whose entire surface is the {111} plane are simply stacked.

しかし、本発明者らによる特願昭62-203635号記載の平
板状粒子ではエッジ部に{100}面を有する。本発明で
いう平板状粒子の形態の1つはこのような形態の粒子で
ある。
However, the tabular grains described in Japanese Patent Application No. 62-203635 by the present inventors have {100} planes at the edges. One of the forms of tabular grains referred to in the present invention is a grain having such a form.

本発明のAgX粒子は、1つのAgX粒子上に少なくとも{10
0}面と{111}面を有するが、その{111}面の面積/
{100}面の面積の値が14面体粒子の場合は20〜1/20、
好ましくは10〜1/10であり、平板粒子の場合は20〜1.
0、好ましくは15〜2.0である。なお、この{111}面と
{100}面の面積比率は増感色素の吸着の{111}面と
{100}面依存性を利用した測定法〔T.Tani Journal of
Imaging Science,29,165(1985)〕を用いて測定する
ことができる。
The AgX particles of the present invention have at least {10
It has a 0} plane and a {111} plane, but the area of the {111} plane /
20 to 1/20 when the value of the area of {100} plane is a tetrahedral grain,
It is preferably 10 to 1/10, and 20 to 1 in the case of tabular grains.
It is 0, preferably 15 to 2.0. The area ratio between the {111} plane and the {100} plane is a measurement method using the dependence of the adsorption of the sensitizing dye on the {111} plane and the {100} plane [T. Tani Journal of
Imaging Science, 29 , 165 (1985)].

但し、この方法では求めた{100}面積%から約7%を
差し引いた値が実際の{100}面積%になる。それは該
色素の吸着被覆率の低い所では、{111}面であつても
J一会合体形成が起り難い為である。
However, in this method, the value obtained by subtracting about 7% from the calculated {100} area% becomes the actual {100} area%. This is because the formation of J-association body is difficult to occur even in the {111} plane at a place where the adsorption coverage of the dye is low.

但し、14面体粒子の如く、その電子顕微鏡写真像から、
該面積比率が明らかな場合は、電子顕微鏡写真より該面
積比率を求めることができる。
However, like the tetradecahedral grain, from its electron micrograph image,
When the area ratio is clear, the area ratio can be obtained from an electron micrograph.

本発明のAgX粒子の{100}と{111}結晶表面の表面層
のハロゲン組成は互いに異なることを特徴とするが、こ
の場合の結晶表面の表面層とは、表面から5格子分、好
ましくは20格子分の結晶層を指す。
The halogen compositions of the surface layers of the {100} and {111} crystal surfaces of the AgX grains of the present invention are different from each other, but the surface layer of the crystal surface in this case is 5 lattices from the surface, preferably A crystal layer of 20 lattices.

本発明のAgX粒子の{100}と{111}結晶表面の表面層
のハロゲン組成は互いに異なることを特徴とするが、そ
れは沃度含量および/またはCl含量で異なることが好ま
しい。ClとI含量が決まれば、Br含量は自動的に決ま
る。沃度含量を異ならせる場合には、互いに2〜40モル
%、好ましくは3〜30モル%異ならせることが好まし
い。この場合、化学増感核は該低沃度含量表面層を有す
る結晶表面上に優先的に形成されていることが好まし
い。また、化学増感核が優先的に形成される結晶表面
(以後、A面と呼ぶ)の表面層の沃度含量は5モル%以
下が好ましい。
The halogen compositions of the surface layers on the {100} and {111} crystal surfaces of the AgX grains of the present invention are different from each other, but it is preferable that they are different in iodine content and / or Cl content. If the Cl and I contents are determined, the Br content is automatically determined. When the iodide contents are different, it is preferable that they are different from each other by 2 to 40 mol%, preferably 3 to 30 mol%. In this case, the chemically sensitized nuclei are preferably formed preferentially on the crystal surface having the low iodine content surface layer. The iodine content of the surface layer of the crystal surface (hereinafter referred to as A-plane) on which the chemically sensitized nuclei are preferentially formed is preferably 5 mol% or less.

化学増感核が優先的に形成されない結晶表面(以後B面
と呼ぶ)の表面層の沃度含量は2モル%〜固溶限界が好
ましく、3〜35モル%がより好ましい。その理由は 一般に、シアニン色素の如き吸着剤は、高沃度含量
表面層を有する結晶表面上に優先的に強く吸着する為、
該高沃度含量表面層を有する結晶表面上に化学増感核が
より形成され難い為である。
The iodide content of the surface layer of the crystal surface (hereinafter referred to as B surface) on which chemical sensitized nuclei are not preferentially formed is preferably 2 mol% to the solid solution limit, and more preferably 3 to 35 mol%. The reason is that, in general, an adsorbent such as a cyanine dye preferentially and strongly adsorbs on a crystal surface having a high iodine content surface layer.
This is because chemical sensitization nuclei are more difficult to form on the crystal surface having the high iodine content surface layer.

高沃度含量層を有する結晶表面上に化学増感を行な
うと、Ag2S核やAg-Au−S核は形成されるが、それらが
有効な電子トラップとなりにくい為、結果的には有効な
化学増感核が形成され難いという傾斜がある為である。
When chemical sensitization is performed on the crystal surface having a high iodine content layer, Ag 2 S nuclei and Ag-Au-S nuclei are formed, but they are not effective electron traps, and as a result, they are effective. This is because there is an inclination that it is difficult to form a chemically sensitized nucleus.

これは、E.Moisar(I.C.P.S.Tokyo,1967年)やH.Hirsch
〔I.Phot.Sci.,20,187(1972年)〕の方法に従って、同
一粒子サイズで表面層の沃度含量を変化させた単分散正
常晶乳剤をイオウ増感、金−イオン−増感し、その反射
スペクトルを測定した結果である。
This is E. Moisar (ICPS Tokyo, 1967) and H. Hirsch
According to the method of [I.Phot.Sci., 20 , 187 (1972)], a monodisperse normal crystal emulsion having the same grain size and varying the iodine content of the surface layer was subjected to sulfur sensitization and gold-ion-sensitization. The results are obtained by measuring the reflection spectrum.

通常、高沃度含量層上の潜像の現像速度は、低沃度
含量層上の潜像の現像速度より遅い為、現像処理時間が
長くなり、好ましくない為である。
This is because the developing speed of the latent image on the high iodine content layer is usually slower than the developing speed of the latent image on the low iodine content layer, and the development processing time becomes long, which is not preferable.

また、Cl含量を異ならせる場合には、互いに7〜100モ
ル%、好ましくは10〜80モル%異ならせることが好まし
い。
Further, when the Cl contents are made different, it is preferable that they are made different from each other by 7 to 100 mol%, preferably 10 to 80 mol%.

一般にシアニン色素の吸着強度はAgCl<AgBr<AgBrIで
あることが知られている。従つて、その場合には、AgBr
I→AgBr→AgClの優先度で、その上に化学増感核を形成
することが好ましい。
It is generally known that the adsorption strength of a cyanine dye is AgCl <AgBr <AgBrI. Therefore, in that case, AgBr
It is preferable to form a chemically sensitized nucleus on the priority of I → AgBr → AgCl.

一方、かぶり防止剤や安定剤や、Ag+と親和性を有する
メロシアニン色素は、一般に酸の形(HL)で表され、そ
の溶解度積pksp=−log〔Ag+〕〔L-〕AgXのpkspを比較
した場合、AgXのpksp値より大きく、かつ、その差の大
きい方のAgX粒子上に優先的に吸着する為、その吸着量
はAgBrI<AgBr<AgClの順に多くなる。従つて、その場
合には、吸着量はAgBrI<AgBr<AgClの順となる。この
場合には、AgCl→AgBr-AgBrIの優先度でその上に化学増
感核を形成することが好ましい。
On the other hand, and antifoggants and stabilizers, merocyanine dyes with Ag + affinity is generally expressed in the form of acid (HL), the solubility product pKsp = -log [Ag +] [L -] of AgX pKsp When compared with each other, the amount of adsorption increases in the order of AgBrI <AgBr <AgCl, because they are preferentially adsorbed on the AgX particles that are larger than the pksp value of AgX and have a larger difference. Therefore, in that case, the adsorption amount is in the order of AgBrI <AgBr <AgCl. In this case, it is preferable to form a chemically sensitized nucleus on AgCl → AgBr-AgBrI with the priority.

本発明のAgX粒子においてはB面上には一種以上の吸着
剤を吸着させておくことが更に好ましい。この場合の吸
着剤としては、 (a) 基質のハロゲン組成により吸着力が異なる吸着
剤。
In the AgX particles of the present invention, it is more preferable to adsorb one or more adsorbents on the B surface. As the adsorbent in this case, (a) an adsorbent having different adsorption power depending on the halogen composition of the substrate.

(b) {111}と{100}結晶面に対する吸着力が異な
る吸着剤が好ましい。
(B) Adsorbents having different adsorption forces for {111} and {100} crystal faces are preferable.

具体的には、3,3′−bis(4−sulfobutyl)−9−meth
ylthiacarbo cyanineは{100}面に優先的に吸着し、3
−3′−dimethyl thiazolino dicarbo cyanine bromid
eやBr-は{111}面に優先的に吸着し、1,1′−diethyl
−2,2′−cyanine chloride,1,1′,3,3′−tetramethy
−2,2′−cyanine,アニオン性9−methylthia carbocya
nine等は基質の沃度含量の増加とともに、吸着強度が増
加する。
Specifically, 3,3'-bis (4-sulfobutyl) -9-meth
ylthiacarbo cyanine is preferentially adsorbed on the {100} surface and
-3'-dimethyl thiazolino dicarbo cyanine bromid
e and Br are preferentially adsorbed on the {111} plane, and 1,1′-diethyl
−2,2′−cyanine chloride, 1,1 ′, 3,3′−tetramethy
-2,2'-cyanine, anionic 9-methylthia carbocya
For nine and the like, the adsorption strength increases as the iodine content of the substrate increases.

かぶり防止剤の具体的化合物例として 1−phenyl−5−mercaprotetrazole(pksp=16.2),5
−Methlben zotriazole(pksp13.6),5−Bromobenzotri
azole(pksp12.7),4−Nitro−6− chlorobenzotriazo
le(pksp11.2),4−Hydroxy−6−methyl−1,3,3a,7−t
etraazaindene(pksp10.5)等を挙げることができる。
As a specific compound example of the antifoggant, 1-phenyl-5-mercaprotetrazole (pksp = 16.2), 5
−Methlben zotriazole (pksp13.6), 5-Bromobenzotri
azole (pksp12.7), 4-Nitro-6-chlorobenzotriazo
le (pksp11.2), 4-Hydroxy-6-methyl-1,3,3a, 7-t
Examples include etraazaindene (pksp10.5).

これらの基質のハロゲン組成や結晶面の違いによる吸着
特性についてはT.H.James,The Theory of the Photogra
phic Process,Fourth Edition,Macmillan,New York,197
7,Chap.1,Chap.9,Chap.13。
For the adsorption characteristics of these substrates due to the difference in halogen composition and crystal plane, see TH James, The Theory of the Photogra
phic Process, Fourth Edition, Macmillan, New York, 197
7, Chap.1, Chap.9, Chap.13.

A.Herz and J.Helling,J.Colloid Interface Sci.,22,3
91(1966)。S.L.Scrutton,J,Phot.Sci.,22,69(197
4)。
A. Herz and J. Helling, J. Colloid Interface Sci., 22 , 3
91 (1966). SLScrutton, J, Phot.Sci., 22 , 69 (197
Four).

J.Nys,Dye Sensitization,Bressanone Symposium,Focal
Press,London,1970,P.26〜43、57〜65。T.Tani,Journa
l of Imaging Science,29,165(1985)。特願昭62-1977
41、同62-219983、同62-219984、同62-231373、同62−2
5137号、同63-269779号の記載を参考にすることができ
る。
J.Nys, Dye Sensitization, Bressanone Symposium, Focal
Press, London, 1970, P.26-43, 57-65. T.Tani, Journa
l of Imaging Science, 29 , 165 (1985). Japanese Patent Application Sho 62-1977
41, 62-219983, 62-219984, 62-231373, 62-2
The descriptions in Nos. 5137 and 63-269779 can be referred to.

実質的には、立方体粒子や八面体粒子、ハロゲン組成の
異なる粒子に対する種々の吸着剤のLangmuir吸着等温曲
線を測定することにより調べることができ、これについ
ては上記のT.H.James編の本の第9章の記載を参考にす
ることができる。
In essence, it can be investigated by measuring Langmuir adsorption isotherms of various adsorbents for cubic particles, octahedral particles, and particles having different halogen compositions, which is described in Chapter 9 of the book by TH James above. Can be referred to.

本発明のAgX粒子の{100}と{111}結晶表面の表面層
のハロゲン組成は互いに異なるが、それはAgX粒子のEle
ctron Probe Microanalyser(EPMA)法等により調べる
ことができる。これにつては日本写真学会春季講演集P.
46(1987年)の記載等を参考にすることができる。
The halogen compositions of the surface layers of the {100} and {111} crystal surfaces of the AgX particles of the present invention are different from each other.
It can be examined by the ctron Probe Microanalyser (EPMA) method or the like. For this, please refer to the Spring Meeting of the Photographic Society of Japan P.
46 (1987) can be referred to.

A面として平板粒子の場合は、{111}面より{100}面
の方が好ましい。それは平板粒子においては、結晶表面
の面積割合が{100}面の方が小さく、従つて、化学増
感核の生成数/cm2と生成位置をより制御できる為であ
る。
In the case of tabular grains as the A face, the {100} face is preferable to the {111} face. This is because in tabular grains, the area ratio of the crystal surface is smaller on the {100} plane, and therefore the number of chemically sensitized nuclei / cm 2 and the position of generation can be controlled more.

一方、14面体粒子の場合、A面としては{111}面と{1
00}面のどちらでもよいが、一般に{100}面上の化学
増感核は{111}面上の化学増感核に比べてドット状で
あり、より化学増感核の生成位置と数を制御するという
見地からは{100}面上が好ましい。かぶりlevelを低く
するという見地からは{111}面上が好ましい。
On the other hand, in the case of tetradecahedral grains, the A faces are {111} faces and {1} faces.
The chemical sensitized nuclei on the {100} plane are generally dot-shaped as compared with the chemical sensitized nuclei on the {111} plane, and the number and position of chemical sensitized nuclei can be increased. From the viewpoint of controlling, the {100} plane is preferable. From the viewpoint of lowering the fogging level, the {111} plane is preferable.

この{111}面上と{100}面上に形成される化学増感核
の特性の違いについては、例えば、E.Moisar,S.P.S.E.T
okyo(1967),E.Moisar,Ber,Bunsenges.Phys.Chem.,72,
P.467〜474(1968)やG.C.Farnell,J,Phot.Sci.,23.249
(1975)の記載を参考にすることができる。
For the difference in the characteristics of the chemically sensitized nuclei formed on the {111} plane and the {100} plane, see, for example, E. Moisar, SPSET.
okyo (1967), E. Moisar, Ber, Bunsenges. Phys. Chem., 72 ,
P.467-474 (1968) and GCFarnell, J, Phot.Sci., 23.249
(1975) can be referred to.

また、1粒子あたりのA面の数という観点からは、第1
図に示す如く、八面体晶に近い14面体晶では、A面の数
は6つであり、一方、立方晶に地階14面体晶では、A面
の数は8つであり、1粒子あたりのA面の数を少なくす
るという観点からは八面体晶に近い14面体晶の方が好ま
しい。
From the viewpoint of the number of A-planes per particle, the first
As shown in the figure, the number of A-faces is 6 in the tetradecahedron which is close to the octahedron, while the number of A-faces is 8 in the cubic basement and the tetradecahedron is cubic. From the viewpoint of reducing the number of A-planes, a tetradecahedral crystal close to an octahedral crystal is preferable.

但し、第1図はA面の数を説明する為に用いた図であ
り、本発明の粒子を表すものではない 本発明のAgX粒子は1つのAgX粒子表面に少くとも{10
0}と{111}の結晶表面を有し、かつ、そのハロゲン組
成が異なることを特徴とするが、特に化学増感核が一方
の結晶面上に優先的に形成されていることが好ましい。
この場合の優先的とは(優先的に化学増感核が形成され
る結晶面上の化学増感核の数/cm2)/(優先的に化学
増感核が形成されない結晶面上の化学増感核の数/c
m2)が、2.5以上、好ましくは5以上を指す。
However, FIG. 1 is a diagram used for explaining the number of A faces, and does not represent the particles of the present invention. The AgX particles of the present invention have at least {10
It is characterized by having crystal planes of 0} and {111} and different halogen compositions, and it is particularly preferable that the chemical sensitization nuclei are preferentially formed on one crystal plane.
In this case, the priority is (the number of chemically sensitized nuclei on the crystal plane where preferentially chemical sensitized nuclei are formed / cm 2 ) / (the chemistry on the crystal face where preferentially chemically sensitized nuclei are not formed) Number of sensitized nuclei / c
m 2 ) means 2.5 or more, preferably 5 or more.

この比率を直接に観測することは難しい。しかし、ハロ
ゲン化銀乳化剤塗布物に露光(1秒露光、露光量は最大
濃度を与えはじめる露光量〜その10倍量の露光量)し、
その化学増感核(感光核)に潜像を形成し、抑制現像
し、その抑制現像核を電子顕微鏡観察で見えるようにし
てから、その抑制現像核の数を数えるという方法で、化
学増感核の上記比率を求めることができる。この手段に
関してはD.C.Birchら、Journal of Photographic Scien
ce,23巻,P.249〜256(1975年)に記載されている。
It is difficult to directly observe this ratio. However, it was exposed to a silver halide emulsifier coating (1 second exposure, the amount of exposure is the amount of exposure at which maximum density is started to 10 times the amount of exposure),
A latent image is formed on the chemically sensitized nuclei (photosensitive nuclei), suppressed development is performed, the suppressed development nuclei are made visible by an electron microscope observation, and then the number of the suppressed development nuclei is counted. The above ratio of nuclei can be determined. DC Birch et al., Journal of Photographic Scien
ce, 23, P.249-256 (1975).

ここで化学増感核とはイオウ、セレン、テルル、金およ
び第8族貴金属化合物の単独およびその組み合わせから
なる化学増感核で、最も好ましくは金−イオン増感核で
ある。通常、イオウ増感核、金増感核、貴金属増感核お
よびその組み合わせで呼ばれ、詳細は後述の文献を参考
にすることができる。
Here, the chemical sensitizing nucleus is a chemical sensitizing nucleus composed of sulfur, selenium, tellurium, gold and a noble metal compound of Group 8 alone or in combination, and most preferably a gold-ion sensitizing nucleus. It is usually called a sulfur sensitized nucleus, a gold sensitized nucleus, a noble metal sensitized nucleus, or a combination thereof, and the details can be referred to the literatures described later.

また、これらの粒子の内部は還元増感されていることが
好ましい。この還元増感銀核を有しているかどうかは、
ウェッジ露光し、常法により内部現像し、H−D曲線を
書くせた時、存在する内部かぶりの反転像が観察される
ことから、容易に判断することができる。
Further, it is preferable that the inside of these particles is reduction-sensitized. Whether or not it has this reduction-sensitized silver nucleus,
It can be easily judged from the fact that an inverted image of the existing internal fog is observed when wedge exposure is performed, internal development is carried out by a conventional method, and an HD curve is written.

粒子内部の結晶構造は一様なものでも、内部と外部が異
質なハロゲン組成からなるものでもよく、層状構造をな
していてもよい。その層間のハロゲン組成変化は漸増
型、漸減型、急峻型のいずれでもよく、使用目的に応じ
て使いわけることができるし、特開昭63-92942号記載の
結晶構造も参考にすることができる。
The crystal structure inside the grain may be uniform, may have different halogen compositions inside and outside, or may have a layered structure. The change in halogen composition between the layers may be any of gradually increasing type, gradually decreasing type, and steep type, and can be used properly according to the purpose of use, and the crystal structure described in JP-A-63-92942 can also be referred to. .

また、該結晶表面層とその内部との間のハロゲン組成変
化も、漸増型、漸減型、急峻型のいずれでもよいが、該
界面における電子トラップ性を少くするという観点から
は漸増感、漸減型が好ましい。
Further, the halogen composition change between the crystal surface layer and the inside thereof may be any of a gradually increasing type, a gradually decreasing type and a steep type, but from the viewpoint of decreasing the electron trapping property at the interface, a gradually increasing sense or a gradually decreasing type. Is preferred.

本発明でいうAgX粒子としては、沃臭化銀、塩臭化銀、
塩沃臭化銀であり、前記の表面層のハロゲン組成の制限
以外に特に制限はない。
The AgX grains in the present invention include silver iodobromide, silver chlorobromide,
It is silver chloroiodobromide, and there is no particular limitation other than the above-mentioned limitation of the halogen composition of the surface layer.

本発明のAgX粒子において、14面体粒子の粒子サイズ分
布は狭いことが好ましく、変動係数は20%以下が好まし
く、10%以下がより好ましい。
In the AgX particles of the present invention, the particle size distribution of the tetradecahedral particles is preferably narrow, and the coefficient of variation is preferably 20% or less, more preferably 10% or less.

本発明のAgX粒子において、平板状粒子の粒子サイズ分
布は狭いことが好ましく、変動係数は30%以下が好まし
く、15%以下がより好ましい。形状は三角形状でも六角
形状でもよいが、特願昭62-319740号、同63-153722号、
特開昭63-151618号記載の六角形状平板粒子や特願昭62-
203635号記載の円形平板粒子がより好ましい。
In the AgX grains of the present invention, the tabular grains preferably have a narrow grain size distribution, and the coefficient of variation is preferably 30% or less, more preferably 15% or less. The shape may be triangular or hexagonal, but Japanese Patent Applications Nos. 62-319740 and 63-153722,
Hexagonal tabular grains described in JP-A-63-151618 and Japanese Patent Application No. 62-
The circular tabular grains described in No. 203635 are more preferable.

本発明の平板状粒子の好ましいアスペクト比は1.0以上
であり、より好ましくは1.5〜16である。
The tabular grains of the present invention preferably have an aspect ratio of 1.0 or more, more preferably 1.5 to 16.

本発明のAgX乳剤は1つのAgX粒子表面上に少くとも{10
0}と{111}の結晶表面を有し、該結晶表面の表面層の
ハロゲン組成が互いに異なるAgX粒子からなるが、それ
らの粒子が占める投影面積割合は、全粒子の投影面積の
70%以上が好ましく、80%以上がより好ましく、90%以
上が更に好ましい。
The AgX emulsion of the present invention has at least {10
0X and {111} crystal surfaces, and the surface layers of the crystal surfaces are composed of AgX grains having different halogen compositions. The projected area ratio of these particles is
70% or more is preferable, 80% or more is more preferable, and 90% or more is further preferable.

特に14面体粒子で超硬調の階調のAgX乳剤が好ましい場
合には、本発明の該14面体粒子が全粒子の投影面積の98
%以上、より好ましくは99%以上であることが好まし
く、粒子サイズ分布の変動係数は5%以下であることが
特に好ましい。
Particularly, when an AgX emulsion having a tetrahedral grain and a super-high gradation is preferred, the tetrahedral grain of the present invention has a projected area of 98% of the total grain.
% Or more, more preferably 99% or more, and the coefficient of variation of the particle size distribution is particularly preferably 5% or less.

次に本発明のAgX粒子の製法について述べる。まず14面
体粒子の製法について述べ、次に平板状粒子の製法につ
いて述べる。
Next, a method for producing AgX particles of the present invention will be described. First, a method for producing tetradecahedral grains will be described, and then a method for producing tabular grains will be described.

1.14面体粒子 ゼラチン水溶液中でAgNO3水溶液とハロゲン化アルカリ
水溶液のC.D.J.添加により作ることができるが、14面体
晶が生成するC.D.J.のpBr(もしくはpAg)領域は、成長
するハロゲン組成、共存するAgX溶剤の量、成長時の過
飽和度に依存する。これらについてはK.Murofushiら、I
nternational Congress of Photographic Science,Toky
o(1967)J.Rodgers,Symposium Paper on Growth of Ph
otosensitive crystals,Cambridge(1978)T.G.Bogg
ら、J.Phot.Sci.,24,81(1976)笹井明、日写誌、47
巻、P.255(1984)の記載および特願昭62-219982号(以
下、出願(A))の参考例2を参考にすることができ
る。例えばAgBrで臨界成長速度の50〜80%の過飽和レベ
ルでpAg7.85〜7.4領域である。
1.14-sided grain It can be made by adding CDJ of AgNO 3 aqueous solution and alkaline halide aqueous solution in gelatin aqueous solution, but the pBr (or pAg) region of CDJ where tetrahedral crystal is formed is the growing halogen composition and coexisting AgX solvent. , And the degree of supersaturation during growth. For these, see K. Murofushi et al., I.
nternational Congress of Photographic Science, Toky
o (1967) J. Rodgers, Symposium Paper on Growth of Ph
otosensitive crystals, Cambridge (1978) TGBogg
Et al., J.Phot.Sci., 24 , 81 (1976) Akira Sasai, Nissha, 47.
Volume, P. 255 (1984) and Reference Example 2 of Japanese Patent Application No. 62-219982 (hereinafter referred to as Application (A)) can be referred to. For example, the pAg 7.85-7.4 region at a supersaturation level of 50-80% of the critical growth rate with AgBr.

この14面体粒子の{111}面積と{100}面積比率は、結
晶成長期のC.D.J.のpBr値によりかえることができる。
例えば、より立方体晶が生成するpBr値に近い電位でC.
D.J.添加すると、{111}面積比率の少ない14面体晶が
生成する。
The {111} area and {100} area ratio of this tetradecahedral grain can be changed by the pBr value of CDJ during the crystal growth period.
For example, C. at a potential closer to the pBr value that produces a cubic crystal.
When DJ is added, tetrahedral crystals with a small {111} area ratio are generated.

特に本発明の14面体粒子が投影面積で98%以上、好まし
くは99%以上であるAgX乳剤の作り方については、同
「出願(A)」、特願昭63-223739号の記載を参考する
ことができる。簡単に記すと、その重要ポイント該形成
条件にある。
For the method of preparing an AgX emulsion in which the tetradecahedral grains of the present invention have a projected area of 98% or more, preferably 99% or more, see the description in the same "Application (A)", Japanese Patent Application No. 63-223739. You can In brief, the important point lies in the formation conditions.

即ち、核形成は双晶面が形成されない条件で核形成する
ことが好ましい。双晶面の形成頻度は、種々の過飽和因
子〔核形成時の温度、ゼラチン濃度、銀塩水溶液とハロ
ゲン化アルカリ水溶液の添加速度、Br-濃度、攪拌回転
数、添加するハロゲン化アルカリ水溶液中のI-含量、ハ
ロゲン化銀溶剤量、pH、塩濃度(KNO3、NaNO3など)ゼ
ラチンの分子量、かぶり防止剤の共存などに依存し、そ
の依存性は本発明者らによる特願昭61-238808号の図に
示されている。従って、これらの依存性を見ながら、双
晶面が形成されない方向にこれらの条件因子を動かせば
よい。
That is, the nucleation is preferably carried out under the condition that twin planes are not formed. The frequency of formation of twin planes depends on various supersaturation factors (temperature during nucleation, gelatin concentration, addition rate of silver salt aqueous solution and alkali halide aqueous solution, Br - concentration, stirring rotation number, added alkali halide aqueous solution). I - content, amount of silver halide solvent, pH, salt concentration (KNO 3 , NaNO 3, etc.), molecular weight of gelatin, coexistence of an antifoggant, etc. It is shown in the diagram of 238808. Therefore, it is only necessary to move these conditional factors in the direction in which twin planes are not formed while observing these dependencies.

より具体的には最終的に生成したハロゲン化銀粒子のレ
プリカ像を透過型電子顕微鏡により観察しながら、核形
成時の前記過飽和因子の条件を双晶面が形成されにくい
方向に調節すればよい。
More specifically, while observing the replica image of the finally produced silver halide grain with a transmission electron microscope, the condition of the supersaturation factor at the time of nucleation may be adjusted to a direction in which twin planes are less likely to be formed. .

粒子形成中の反応溶液のpHは2〜10を用いることができ
るが、還元増感銀核を導入する場合は、8.0〜9.5が好ま
しい。
The pH of the reaction solution during grain formation can be 2 to 10, but when introducing reduction-sensitized silver nuclei, it is preferably 8.0 to 9.5.

反応溶液中のAgX溶剤の濃度としては、0〜1.5×10-1mo
l/lが好ましい。AgX溶剤としては後述のものを用いるこ
とができる。
The concentration of AgX solvent in the reaction solution is 0 to 1.5 × 10 -1 mo
l / l is preferred. As the AgX solvent, those described below can be used.

このようにして14面体粒子を形成した後、次に、該AgX
粒子の{100}結晶表面の表面層と{111}結晶表面の表
面層のハロゲン組成を異ならせるには、次の方法を用い
る。
After forming the dodecahedron grains in this way, the AgX
The following method is used to make the halogen composition of the surface layer of the {100} crystal surface of the grain different from that of the surface layer of the {111} crystal surface.

一般に14面体結晶を立方体晶生成領域のpBr下で、低過
飽和度下で成長させると、{111}面のみが成長する。
一方、14面体晶を八面体晶生成領域のpAg下で低過飽和
で成長させると、{100}面のみが成長する。従って、
この特性を利用する。
Generally, when a tetradecahedral crystal is grown under pBr in the cubic crystal formation region and under low supersaturation, only the {111} plane grows.
On the other hand, when tetrahedral crystals are grown at low supersaturation under pAg in the octahedral crystal formation region, only {100} faces grow. Therefore,
Take advantage of this property.

この場合の立方晶生成領域および八面体晶生成領域のpB
r領域については、同じく、前記のK.Murofushiら等の文
献の記載を参考にすることができる。
PB of cubic and octahedral crystal formation regions in this case
Regarding the r region, similarly, the description in the above-mentioned documents by K. Murofushi et al. can be referred to.

より具体的には、例えばハロゲン組成として表面層の沃
度含量を異ならせた沃臭化銀粒子の場合、次のように行
う。
More specifically, for example, in the case of silver iodobromide grains having different halogen contents, iodide contents of the surface layers are changed as follows.

全表面層が高沃度含量の14面体AgBrI粒子を形成
し、次いで、八面体晶領域のpAgもしくは立方晶領域のp
Ag領域で、低過飽和度下で低沃度含量のAgBrI層を結晶
成長させる。
The entire surface layer forms tetrahedral AgBrI grains with high iodine content, and then pAg in the octahedral region or pAg in the cubic region.
In the Ag region, an AgBrI layer having a low iodine content is grown under low supersaturation.

全表面層が低沃度含量の14面体AgBrI粒子を形成
し、次いで、八面体晶領域のpAgもしくは立方晶領域のp
Ag領域で、低過飽和度下で高沃度含量のAgBrI層を結晶
成長させる。
All surface layers form tetrahedral AgBrI grains with low iodine content, and then pAg in the octahedral region or pAg in the cubic region.
In the Ag region, a high iodine content AgBrI layer is grown under low supersaturation.

このようにして高沃度含量結晶面と低沃度含量結晶面か
らなる14面体粒子が形成される。
In this way, tetradecahedral grains composed of high-iodine content crystal faces and low-iodine content crystal faces are formed.

また、上記において、低沃度含量層と高沃度含量層間の
沃度含量は漸増型でもよい。その場合結晶成長とともに
添加するハロゲン化物塩の沃度含量を時間とともに変化
させればよい。
Further, in the above, the iodine content between the low iodine content layer and the high iodine content layer may be a gradually increasing type. In that case, the iodine content of the halide salt added with crystal growth may be changed with time.

この場合の全表面層とは、50格子分、好ましくは200格
子分の厚さを示す。また、これらの場合の低過飽和の程
度は、その条件における臨界成長速度の3〜50%、好ま
しくは5〜40%の添加速度で銀塩とハロゲン化物塩を添
加する程度を指す。
The total surface layer in this case indicates a thickness of 50 lattices, preferably 200 lattices. The degree of low supersaturation in these cases refers to the degree of addition of silver salt and halide salt at an addition rate of 3 to 50%, preferably 5 to 40% of the critical growth rate under the conditions.

より一般的に説明すると、例えば14面体粒子を立方体領
域のpAgの溶液中におくと、該{100}面と{111}面上
のそれぞれのAg+のchemical potentialの関係は第2図
の如く、{111}面上のAg+の方が低くなる。この場合該
{100}面と該{111}面上のAg+のchemical potential
をそれぞれE100、E111とする。この系に銀塩とハロゲン
化物塩を添加しているときの溶液中のAg+のchemical po
tentialをEAg +とする。銀塩とハロゲン化物塩の添加速
度を上げると溶液の過飽和比(S)が上昇し、EAg +はΔ
EAg +=kTlnS(但しk=Boltzmann定数、T=絶対温度)
に従って、上昇する。結晶成長のdriving forceはこのc
hemical potential差であり、このdriving forceのみに
注目すると、E100>EAg +>E111を満たす過飽和比で銀塩
とハロゲン化物塩を添加することが好ましく、これが、
具体的には、前述の添加速度に相当する。
More generally, for example, when tetradecahedral grains are placed in a pAg solution in the cubic region, the relationship between the chemical potentials of Ag + on the {100} face and the {111} face is as shown in FIG. , Ag + on the {111} plane is lower. In this case, the chemical potential of Ag + on the {100} plane and the {111} plane
Let E 100 and E 111 , respectively. Chemical po of Ag + in solution when silver salt and halide salt are added to this system
Let tential be E Ag + . When the addition rate of silver salt and halide salt is increased, the supersaturation ratio (S) of the solution increases, and E Ag + is Δ
E Ag + = kTlnS (where k = Boltzmann constant, T = absolute temperature)
Follow ascend. The driving force of crystal growth is this c
This is the difference in hemical potential. Focusing only on this driving force, it is preferable to add the silver salt and the halide salt at a supersaturation ratio satisfying E 100 > E Ag + > E 111 .
Specifically, it corresponds to the above-mentioned addition rate.

また、このハロゲン組成の異なる表面層を形成する時
に、互いの層間でオストワルド熟成が生じると好ましく
ない為その時の温度は低温であることが好ましい。この
場合の好ましい温度範囲は15〜65℃、より好ましくは20
〜60℃である。
Further, when the surface layers having different halogen compositions are formed, it is not preferable that Ostwald ripening occurs between the layers, so that the temperature at that time is preferably low. In this case, the preferred temperature range is 15 to 65 ° C, more preferably 20
~ 60 ° C.

また、結晶成長後、ただちに、前述の吸着剤を吸着さ
せ、互いの層感でのオストワルド熟成を防止することも
好ましい。
It is also preferable that the above-mentioned adsorbent is adsorbed immediately after crystal growth to prevent Ostwald ripening due to mutual layer feeling.

なお、1つのAgX粒子で異なるハロゲン組成のAgX表面を
有する粒子として特開昭55-124139号記載のAgX粒子があ
る。このAgX粒子は14面体のコーナー部に、本体部分と
異なるハロゲン組成のAgXを沈澱させ、この結果、立方
晶を形成した粒子であり、{100}の外表面のみを有す
る粒子であり、本発明のAgX粒子とは異なる。
Incidentally, there is AgX particle described in JP-A-55-124139 as a particle having AgX surface of different halogen composition in one AgX particle. The AgX particles are particles having a cubic crystal formed by precipitating AgX having a halogen composition different from that of the main body at the corners of the tetradecahedron, and are particles having only the outer surface of {100}. Different from AgX particles.

本発明のAgX粒子の製法として、その他、一方の結晶面
に優先的に吸着する吸着剤を吸着させた後、銀塩とハロ
ゲン化銀を添加し、他方の結晶面上に、本体部分と異な
るハロゲン組成のAgXを沈澱させる方法も有効である。
As a method for producing the AgX particles of the present invention, in addition, after adsorbing an adsorbent that preferentially adsorbs on one crystal face, a silver salt and a silver halide are added, and on the other crystal face, different from the main body part. A method of precipitating AgX having a halogen composition is also effective.

2.平板状粒子 従来の平板状粒子形成法については、特開昭58-113926
号、同58-113927号、および同58-113928号の記載を参考
にすることができる。
2. Tabular Grain For the conventional tabular grain forming method, see JP-A-58-113926.
No. 58-113927 and No. 58-113928 can be referred to.

一法、単分散性のよい平板状粒子形成法については特開
昭55-142329号、特願昭61-48950号、同61-299155号、同
61-238808号、同62-319740号の記載を参考にすることが
できる。
One method, a method for forming tabular grains having good monodispersity is disclosed in JP-A-55-142329, JP-A-61-48950, 61-299155,
Reference can be made to the descriptions in 61-238808 and 62-319740.

通常、このようにして作った平板状粒子は、前述の如
く、主平面も殆んどのエッジ面も{111}面であり、主
表面の形状は六角形であり(以後、六角平板粒子と呼
ぶ)、粒子サイズ分布は狭い。
Usually, the tabular grains thus prepared have, as described above, both the main planes and most of the edge faces are {111} faces, and the main surface has a hexagonal shape (hereinafter referred to as hexagonal tabular grains). ), The particle size distribution is narrow.

しかし、六角平板粒子を作った後、ひき続いて立方晶
もしくは14面体晶領域(より具体的には、AgBrの場合は
pAg8.0以下)で結晶成長させると、粒子は厚味を増しな
がら成長し、主表面は{111}面であるが、エッジ部に
{100}面があらわれてくる。これについては参考例1
を参考にすることができる。この時、AgX溶剤を共存さ
せると、この変化はより促進される。
However, after making hexagonal tabular grains, the cubic or tetradecahedral region (more specifically, in the case of AgBr,
When the crystal is grown with pAg 8.0 or less), the grains grow while increasing the thickness, and the main surface is the {111} plane, but the {100} plane appears at the edge part. Reference example 1
Can be used as a reference. At this time, the coexistence of the AgX solvent further promotes this change.

また、別の方法として、溶液中に存在する過剰ハロゲン
をCl-にし(乳剤の水洗、もしくはAgNO3の添加により過
剰Br-を減少させ、NaClを添加すればよい)、銀塩のハ
ロゲン化物塩の水溶液をダブルジェット添加することに
よっても、エッジ部に{100}面を形成することができ
る。この場合の過剰Cl-濃度としては、pCl=0.7〜2.5領
域が好ましい。
As another method, the excess halogen present in the solution is changed to Cl (the excess Br is reduced by washing the emulsion with water or adding AgNO 3 and then NaCl is added), and the silver halide salt is used. The {100} plane can also be formed at the edge portion by adding the double jet of the above aqueous solution. In this case, the excess Cl concentration is preferably pCl = 0.7 to 2.5.

六角平板粒子を作った後、次に立方晶もしくは14面
体晶領域のpAg下で熟成すると、エッジ部{100}面があ
らわれてくる。この時の熟成進行は、平板状粒子の粒子
サイズ、溶液のpBr、AgX溶剤の濃度に依存し、その依存
性は特願昭62-203635号の第7図を参考にすることがで
きる。図のカーブの斜線部側で{100}面を有する平板
状粒子が生成する。
After making hexagonal tabular grains, when they are aged under pAg in cubic or tetradecahedral regions, edge {100} faces appear. The aging progress at this time depends on the grain size of the tabular grains, the pBr of the solution, and the concentration of the AgX solvent, and the dependency can be referred to FIG. 7 of Japanese Patent Application No. 62-203635. Tabular grains having {100} faces are generated on the shaded side of the curve in the figure.

このようにして作った平板粒子のエッジ部の鈍角は、エ
ッジ部が完全に{100}面化した場合、従来の平板粒子
のそれが109.5°であるのに対し、125°の角度を有す
る。
The obtuse angle of the edge portion of the tabular grain thus prepared has an angle of 125 °, whereas that of the conventional tabular grain is 109.5 ° when the edge portion is completely made into {100} faces.

このようにして、エッジ部に{100}面を有する平板状
粒子を形成した後、立方体晶領域のpBr下で、低過飽和
度下で、これらの粒子の{111}面上に基質と異なるハ
ロゲン組成のAgXを積層させると、本発明の平板状粒子
ができる。
In this way, after forming tabular grains having {100} faces at the edges, halogens different from the substrate on the {111} faces of these grains were produced under low supersaturation under pBr in the cubic crystal region. By laminating AgX having the composition, the tabular grains of the present invention are produced.

この場合の低過飽和の程度は、前述の14面体粒子の場合
と同じで、その条件におけるAgX粒子の臨界成長速度の
3〜50%、好ましくは5〜40%の添加速度で銀塩とハロ
ゲン化物塩を添加する程度を指す。
The degree of low supersaturation in this case is the same as in the case of the above-mentioned tetradecahedral grains, and the silver salt and halide are added at 3 to 50%, preferably 5 to 40% of the critical growth rate of AgX grains under the conditions. Refers to the degree to which salt is added.

上記14面体粒子および平板状粒子において、一方の結晶
面上にのみ、基質と異なるハロゲン組成のAgXを積層さ
せる時に該選択成長性が完全でなく、他方の結晶面上に
も積層させた場合は、続いて該立方晶領域もしくは該八
面体晶領域で熟成を行うことにより、誤って積層したAg
X層は溶解し、一方の結晶面上に積出し、本発明のAgX粒
子を得ることができる。この時、AgX溶剤が存在する
と、より上記熟成は促進される。
In the above tetradecahedral grains and tabular grains, only on one crystal face, the selective growth property is not perfect when laminating AgX having a halogen composition different from the substrate, and when laminated on the other crystal face as well. , Followed by aging in the cubic crystal region or the octahedral crystal region, resulting in an accidentally stacked Ag
The X layer melts and is deposited on one crystal face to obtain the AgX particles of the present invention. At this time, if the AgX solvent is present, the aging is further promoted.

本発明では一方の結晶面上にのみ、基質と異なるハロゲ
ン組成のAgXを積層させるが、これは基質と同一結晶系
層を基質上に単なる延長層として積層させるのであり、
従って、エピタキシャル成長とは異なる。
In the present invention, only on one crystal plane, AgX having a halogen composition different from that of the substrate is laminated, but this is because the same crystal system layer as the substrate is laminated as a simple extension layer on the substrate,
Therefore, it is different from epitaxial growth.

結晶成長期に添加する銀イオンとハロゲンイオンの添加
方法としては銀塩水溶液を添加する方法、あらかじめ0.
1μmφ以下のサイズの超微粒子乳剤(AgCl、AgBr、AgI
および/またはそれらの混晶)を添加する方法、それら
の重ね合わせの方法を用いることができる。また、結晶
成長中に銀イオン、ハロゲンイオンの添加速度を増加さ
せる方法を用いることができる。これらに関しては特願
昭63-223739号の記載を参考にすることができる。
As a method of adding silver ions and halogen ions to be added during the crystal growth period, a method of adding an aqueous solution of silver salt, which is prepared in advance.
Ultrafine grain emulsion with a size of 1 μm or less (AgCl, AgBr, AgI
And / or a mixed crystal thereof and a method of superposing them. Further, a method of increasing the addition rate of silver ions and halogen ions during crystal growth can be used. Regarding these, the description in Japanese Patent Application No. 63-223739 can be referred to.

このようにして1つのAgX粒子表面上に少くとも{100}
と{111}の結晶表面を有し、かつ、該結晶表面の表面
層のハロゲン組成が互いに異なるAgX粒子を形成した
後、化学増感を行ない、一方の結晶面上に優先的に化学
増感核を形成することが好ましい。その化学増感の代表
的なプロセスは次の2つである。
Thus at least {100} on one AgX particle surface
Chemical sensitization is performed after forming AgX grains having a {111} crystal surface and having different halogen compositions in the surface layer of the crystal surface, and preferentially chemical sensitizing on one crystal surface. It is preferable to form nuclei. The two typical processes of the chemical sensitization are as follows.

粒子形成→吸着剤の特定結晶面上への吸着→(硫黄
+金)増感 粒子形成→(硫黄+金)増感 但し、上記工程において乳剤の水洗過程を粒子形成後の
どこへ入れてもよい。即ち、粒子形成後でもよいし、吸
着剤を吸着させた後でもよいし、硫黄増感と金増感の間
でもよい、金増感後でもよい。水洗工程は1回でも、2
回でもよい。
Grain formation → Adsorption of an adsorbent on a specific crystal plane → (sulfur + gold) sensitization Grain formation → (sulfur + gold) sensitization However, in the above process, the emulsion washing process may be performed anywhere after grain formation. Good. That is, it may be after grain formation, after adsorbing an adsorbent, between sulfur sensitization and gold sensitization, or after gold sensitization. Even one washing step, 2
It may be times.

まず、の過程について説明する。First, the process of will be described.

粒子形成後、直ちに、もしくは乳剤を水洗した後、吸着
剤を添加し、該AgX粒子に吸着剤を吸着させることが好
ましい。それは、異なるハロゲン組成の結晶面間でオス
トワルド熟成が生じることを防ぐ意味からも好ましい。
It is preferable to add an adsorbent immediately after the grain formation or after washing the emulsion with water to adsorb the adsorbent on the AgX grains. It is also preferable from the viewpoint of preventing Ostwald ripening between crystal planes having different halogen compositions.

吸着剤としては前述の如く、 (a) 基質のハロゲン組成により吸着力が異なる吸着
剤 (b) {111}と{100}結晶面に対する吸着力が異な
る吸着剤 が好ましい。
As described above, the adsorbent is preferably (a) an adsorbent having a different adsorbing power depending on the halogen composition of the substrate, and (b) an adsorbent having a different adsorbing power with respect to {111} and {100} crystal faces.

具体的には、そのような吸着剤は、同一粒子表面積でハ
ロゲン組成または晶癖の異なる種々のAgX乳剤粒子に対
する種々の吸着剤の吸着等温曲線を調べることにより、
選択することができる。
Specifically, such an adsorbent is obtained by examining adsorption isotherms of various adsorbents for various AgX emulsion grains having different halogen compositions or crystal habits in the same grain surface area,
You can choose.

このようにして上記(a)もしくは(a)+(b)の吸
着剤の選択吸着特性を利用して、化学増感核が優先的に
形成されない結晶面上に選択的に吸着剤を吸着させる。
In this way, by utilizing the selective adsorption property of the adsorbent of (a) or (a) + (b), the adsorbent is selectively adsorbed on the crystal plane where the chemical sensitized nuclei are not preferentially formed. .

また、一般的に、吸着力が強くなる程、増感色素は、J
凝集体を形成しやすくなり、J凝集体はより十分に化学
増感核の形成を阻止する為、好ましい。
Further, generally, the stronger the adsorption force, the more
Aggregates are easily formed, and J aggregates are preferable because they can more sufficiently prevent the formation of chemically sensitized nuclei.

これらの基質のハロゲン組成や結晶面の違いによる吸着
剤の吸着特性についてはT.H.James,The Theory of the
Photographic Process,Fourth Edition,Macmillan,New
York,1977,Chap.9,Chap.1,Chap.13。
For the adsorption characteristics of adsorbents due to differences in halogen composition and crystal plane of these substrates, see TH James, The Theory of the
Photographic Process, Fourth Edition, Macmillan, New
York, 1977, Chap.9, Chap.1, Chap.13.

A.Herz and J.Helling,J.Colloid Interface Sci.,22,3
91(1966)。
A. Herz and J. Helling, J. Colloid Interface Sci., 22 , 3
91 (1966).

S.L.Scrutton,J.Phot.Sci.,22.69(1974)。 SLScrutton, J.Phot.Sci., 22 .69 ( 1974).

J.Nys,Dye Sensitization,Bressanone Symposium,Focal
Press,London,1970,P.26〜43、57〜65。
J.Nys, Dye Sensitization, Bressanone Symposium, Focal
Press, London, 1970, P.26-43, 57-65.

T.Tani,Journal of Imaging Science,29、165(198
5)。
T. Tani, Journal of Imaging Science, 29 , 165 (198
Five).

および前記、「出願(A)」、特願昭63-223739号の記
載を参考にすることができる。
Also, the above-mentioned “Application (A)” and Japanese Patent Application No. 63-223739 can be referred to.

また、増感色素や添加剤のハロゲン化銀への吸着力は、
substrateの晶癖やハロゲン組成以外に乳剤の種々の雰
囲気(乳剤のpH、pAg、吸着促進剤の共存等)に依存す
ることが知られている。従って、その知見を利用して、
増感色素や添加剤の吸着強度を調節することができる。
Also, the adsorption power of sensitizing dyes and additives to silver halide is
It is known that in addition to the crystal habit and halogen composition of the substrate, it depends on various atmospheres of the emulsion (emulsion pH, pAg, coexistence of adsorption promoter, etc.). Therefore, using that knowledge,
The adsorption strength of sensitizing dyes and additives can be adjusted.

これらについては、例えばT.H.James,The Theory of th
e Photographic Process,Fourth Edition,Macmillan,Ne
w York,1977,Chap.9,Chap.1,Chap.13の記載を参考にす
ることができる。
About these, for example TH James, The Theory of th
e Photographic Process, Fourth Edition, Macmillan, Ne
The description of w York, 1977, Chap.9, Chap.1, Chap.13 can be referred to.

吸着剤としては増感色素、かぶり防止剤、安定剤の他、
前記「出願(A)」に記載したペンダント色素(増感色
素とかぶり防止剤もしくは安定剤と化学的に結合させた
化合物)も有効である。
As adsorbents, in addition to sensitizing dyes, antifoggants, stabilizers,
The pendant dyes (compounds chemically bonded to the sensitizing dyes and the antifoggants or stabilizers) described in the above "Application (A)" are also effective.

これらの吸着剤の添加方法としては、増感色素、かぶり
防止剤、安定剤、ペンダント色素の一種のみを添加して
もよく、二種以上の添加剤を混合して添加してもよく、
別々に添加してもよい。
As a method of adding these adsorbents, only one kind of sensitizing dye, antifoggant, stabilizer, and pendant dye may be added, or two or more kinds of additives may be mixed and added,
You may add separately.

また、化学増感剤を添加する前に全量を添加してもよい
し、1部を加えて、残りを後で加えてもよい。1部とは
全量の1/10〜1である。
Further, the whole amount may be added before adding the chemical sensitizer, or 1 part may be added and the rest may be added later. One part is 1/10 to 1 of the total amount.

吸着剤の添加量は特に制限はないが、通常はAgX粒子の
飽和吸着量の0〜120%、好ましくは0〜100%である。
The amount of the adsorbent added is not particularly limited, but is usually 0 to 120%, preferably 0 to 100% of the saturated adsorption amount of AgX particles.

このようにして、一方の結晶面上に選択的に吸着剤を吸
着させた後、化学増感剤を加えて熟成し他方の結晶面上
に優先的に化学増感核を形成する。
In this way, after the adsorbent is selectively adsorbed on one of the crystal faces, the chemical sensitizer is added and aged to preferentially form the chemical sensitized nuclei on the other crystal face.

この場合の化学増感法としては、次の2つの化学増感法
を用いることができる。
As the chemical sensitization method in this case, the following two chemical sensitization methods can be used.

〔1〕 通常用いられている化学増感法(乳剤の温度を
40°〜75℃にし、硫黄増感剤を加えた後、2〜5分後に
金増感剤を加えて、20〜80分間、熟成する方法)で化学
増感を行なっても、一方の結晶面上には吸着剤が優先的
に吸着している為、該結晶面上には化学増感核は殆んど
形成されず、他方の結晶面上に化学増感核が優先的に形
成される。
[1] Commonly used chemical sensitization method (
Even if chemical sensitization is carried out at a temperature of 40 ° to 75 ° C, a sulfur sensitizer is added, and then a gold sensitizer is added 2 to 5 minutes later and aging is performed for 20 to 80 minutes. Since the adsorbent is preferentially adsorbed on the surface, almost no chemically sensitized nuclei are formed on the crystal face, and chemically sensitized nuclei are preferentially formed on the other crystal face. It

〔2〕 化学増感剤として、特定の結晶面上で選択的に
反応する面選択性化学増感剤を用いる。具体的には、硫
黄増感剤として、特定の結晶面上で選択的に反応する面
選択性硫黄増感剤を用いる。上記の場合には、吸着剤が
優先的に吸着していない結晶面上で選択的に反応する硫
黄増感剤を用いることが好ましい。この硫黄増感剤の面
選択反応性については、前記「出願(A)」の記載およ
びその参考例1を参考にすることができる。
[2] As the chemical sensitizer, a plane-selective chemical sensitizer that selectively reacts on a specific crystal plane is used. Specifically, a face-selective sulfur sensitizer that selectively reacts on a specific crystal face is used as the sulfur sensitizer. In the above case, it is preferable to use a sulfur sensitizer that selectively reacts on the crystal plane where the adsorbent is not preferentially adsorbed. Regarding the surface-selective reactivity of this sulfur sensitizer, the description in the above-mentioned “Application (A)” and its Reference Example 1 can be referred to.

例えば、乳剤の条件が、pH6.5、pAg8.5、50℃、60分熟
成の時、ハイポは{100}面に比べて{111}面上で大変
よく選択的に反応し、イオウ増感核を形成する。
For example, when the emulsion conditions are pH 6.5, pAg8.5, 50 ° C., and ripening for 60 minutes, hypo reacts very well selectively on the {111} plane as compared to the {100} plane, and sulfur sensitization is performed. Form a nucleus.

Triethyl thioureaは{111}面に比べて{100}面上で
大変よく選択的に反応し、{100}面上にイオウ増感核
を選択的に形成する。
Triethyl thiourea reacts very selectively on the {100} plane as compared with the {111} plane, and selectively forms sulfur sensitized nuclei on the {100} plane.

しかし、他の条件、例えば(pH6.5、pAg8.5℃、65℃、6
0分)熟成や(pH6.5、pAg7.7、50℃、60分)熟成の条件
では、その選択性は小さい為、好ましくない。他のイオ
ウ増感剤も含めて、一般に低温および高pAg条件下で
は、その面選択性は大きくなる。
However, under other conditions such as (pH6.5, pAg8.5 ℃, 65 ℃, 6 ℃,
Under the conditions of aging (0 minutes) and aging (pH 6.5, pAg 7.7, 50 ° C, 60 minutes), the selectivity is low, which is not preferable. The area selectivity of the compound including other sulfur sensitizers is generally high under low temperature and high pAg conditions.

また、この場合、金増感剤を同時に加えて化学増感する
と、その面選択反応性は小さくなる為、前記「出願
(A)」の方法(硫黄増感を行なった後、水洗し、残留
硫黄増感剤を除去した後、金増感剤を加える方法、また
は添加した硫黄増感剤の80%以上が反応した後、金増感
剤を加える方法)を用いることが好ましい。
Further, in this case, when the gold sensitizer is added at the same time and chemically sensitized, the area-selective reactivity thereof becomes small. Therefore, the method of the above-mentioned “Application (A)” (after sulfur sensitization, washing with water, residual It is preferable to use a method of adding the gold sensitizer after removing the sulfur sensitizer, or a method of adding the gold sensitizer after 80% or more of the added sulfur sensitizer has reacted.

このようにして一方の結晶面上に優先的に有効な化学増
感核が形成され、本発明のAgX粒子が形成される。
In this way, the effective chemical sensitization nuclei are preferentially formed on one of the crystal faces to form the AgX grains of the present invention.

また、本発明においてB面の表面層のハロゲン組成とし
て高沃度含量のAgBrIを用いた場合、該結晶面上に形成
される化学増感核は前述の如く、有効な電子トラップと
なり難い為、この場合、化学増感程度におけるdiscrimi
nation factorとして、(結晶面の違い+ハロゲン組成
の違い)を利用することができ、より有効にdiscrimina
tionを行えるというメリットを有する為、特に好まし
い。
Further, in the present invention, when AgBrI having a high iodine content is used as the halogen composition of the surface layer on the B side, the chemical sensitized nuclei formed on the crystal face are difficult to be an effective electron trap as described above. In this case, discrimi in the degree of chemical sensitization
As the nation factor, (difference in crystal plane + difference in halogen composition) can be used, and more effectively discrimina
It is particularly preferable because it has the merit of being able to perform an optional treatment.

次にの過程について述べる。この場合、一方の結晶面
上に優先的に吸着する吸着剤が存在しない為、有効な化
学増感核の生成位置の制御は、化学増感剤の反応性の
(結晶面の違い+表面層のハロゲン組成の違い)のみに
よってなされる。従ってそのdiscriminationはの過程
より劣る。
The following process will be described. In this case, since there is no adsorbent that preferentially adsorbs on one of the crystal planes, the control of the effective chemical sensitization nucleus generation position is controlled by the reactivity of the chemical sensitizer (difference in crystal plane + surface layer). Difference in halogen composition)). Therefore, its discrimination is inferior to that of.

しかし、従来のの方法(結晶面の違い)に比べ、表面
層のハロゲン組成の違いもdiscrimination factorとし
て入ってくる為、従来法よりも有効に化学増感核の生成
位置を制御できるというメリットをもつ。また、特願昭
63-26979号に記載の如く、該吸着剤を機能分離型で用い
ることはより好ましい。
However, compared to the conventional method (difference in crystal plane), the difference in halogen composition of the surface layer is also included as a discrimination factor, so there is a merit that the position of chemically sensitized nuclei can be controlled more effectively than the conventional method. Hold. Also,
As described in 63-26979, it is more preferable to use the adsorbent in a function-separated type.

本発明のAgX粒子の化学増感法としては、その他特願昭6
1-299155の補正書の記載を参考にすることができる。
As the chemical sensitization method of AgX grains of the present invention, other Japanese Patent Application No.
The description in the amendment of 1-299155 can be referred to.

本発明のハロゲン化銀粒子は、上記のハロゲン化銀粒子
それ自体で乳剤として使用できるが、その粒子をコアと
してコア/シェル型直接反転乳剤を形成し、それを用い
てもよい。これについては特願昭61-299155の実施例1
3、および米国特許第3,761,276号、同4,269,927号、同
3,367,778号を参考にすることができる。
The silver halide grain of the present invention can be used as an emulsion by the above-mentioned silver halide grain itself, but a core / shell type direct inversion emulsion can be formed by using the grain as a core and used. Regarding this, Example 1 of Japanese Patent Application No. 61-299155
3, and U.S. Patent Nos. 3,761,276, 4,269,927, and
You can refer to No. 3,367,778.

また、該粒子をコアとして、浅内潜型乳剤を形成して用
いてもよい。これについては、特開昭59-133542号、米
国特許第3,206,313号、同3,317,322号を参考にすること
ができる。
Further, a shallow inner latent emulsion may be formed and used by using the grains as a core. For this, reference can be made to JP-A-59-133542, US Pat. Nos. 3,206,313, and 3,317,322.

また該粒子をホスト粒子とし、エピタキシャル粒子を形
成して用いてもよい。これについては特開昭58-108526
号、同59-133540号、特願昭60-172966号を参考にするこ
とができる。
Alternatively, the particles may be used as host particles to form epitaxial particles. Regarding this, JP-A-58-108526
No. 59-133540 and Japanese Patent Application No. 60-172966 can be referred to.

また、該粒子をサブストレート粒子とし、ラッフルド粒
子を形成して用いてもよい。これについては、米国特許
4643966号を参考にすることができる。
Further, the particles may be used as substrate particles to form ruffled particles. U.S. Patent
You can refer to issue No. 4643966.

該平板粒子を高硬膜系で用いることもできる。これにつ
いては特開昭58-11392Research Disclosure,184巻、197
9年8月、アイテム18431、K項を参考にすることができ
る。
The tabular grains can also be used in a highly hardened system. Regarding this, JP-A-58-11392 Research Disclosure, Volume 184, 197
August 18th, Item 18431, Item K can be referred to.

また、該粒子の金増感熟成が終了するまでにH2O2、ペル
オキシ酸等の酸化剤を添加その後、還元性物質を添加す
る方法や、金増感熟成後、感材中のフリーな金イオンを
少なくする方法を用いることができる。これについては
特願昭59-122981号、同59-122984号、同60-96237号、同
60-61429号、同60−61430号、同61-184890号、同61-183
949号を参考にすることができる。該平板粒子をアンテ
ナ色素で分光増感してもよい。これについては特願61-5
1396号、同61-284271号、同61-284272号の記載を参考に
することができる。
Further, a method of adding an oxidizing agent such as H 2 O 2 or peroxy acid before the gold-sensitized ripening of the grains is completed, and then adding a reducing substance, or a method in which the sensitized material is free after the gold-sensitized ripening is performed. A method of reducing gold ions can be used. Regarding this, Japanese Patent Application Nos. 59-122981, 59-122984, 60-96237, and
60-61429, 60-61430, 61-184890, 61-183
You can refer to No. 949. The tabular grains may be spectrally sensitized with an antenna dye. About this, Japanese Patent Application 61-5
Reference can be made to the descriptions of 1396, 61-284271, and 61-284272.

該平板粒子の光干渉性を利用することに関して、および
上記事項の詳細やその他の事項については、特願昭61-2
99155号を参考にすることができる。
Regarding the utilization of the optical coherence of the tabular grains, and the details of the above matters and other matters, Japanese Patent Application No. 61-2
You can refer to issue No. 99155.

本発明の熟成過程においては、熟成を促進するために、
また、この熟成後の結晶成長期間において、結晶成長を
促進するためにハロゲン化銀溶剤を用いてもよい。
In the aging process of the present invention, in order to promote aging,
A silver halide solvent may be used to promote crystal growth during the crystal growth period after ripening.

しばしば用いられるハロゲン化銀溶剤としては、チオシ
アン酸塩、アンモニア、チオエーテル、チオ尿素類など
を挙げることが出来る。
Examples of the silver halide solvent often used include thiocyanate, ammonia, thioether, thioureas and the like.

例えばチオシアン酸塩(米国特許第2,222,264号、同第
2,448,534号、同第3,320,069号など)、アンモニア、チ
オエーテル化合物(例えば米国特許第3,271,157号、同
第3,574,628号、同第3,704,130号、同第4,297,439号、
同第4,276,347号など)、チオン化合物(例えば特開昭5
3-144319号、同53-82408号、同55-77737号など)、アミ
ン化合物(例えば特開昭54-100717号など)などを用い
ることができる。
For example, thiocyanate (U.S. Pat.
2,448,534, 3,320,069, etc.), ammonia, thioether compounds (e.g., U.S. Pat.Nos. 3,271,157, 3,574,628, 3,704,130, 4,297,439,
No. 4,276,347, etc.), thione compounds (for example, JP-A-5
No. 3-144319, No. 53-82408, No. 55-77737, etc.), amine compounds (for example, JP-A No. 54-100717, etc.) and the like can be used.

本発明の吸着剤および分光増感色素として用いられる増
感色素としては、シアニン色素、メロシアニン色素、複
合シアニン色素、複合メロシアニン色素、ホロポーラー
シアニン色素、ヘミシアニン色素、スチリル色素、ヘミ
オキソノール色素、オキソノールメロスチリルおよびス
トレプトシアニンを含むポリメチン染料を挙げることが
できる。
Examples of the sensitizing dye used as the adsorbent and the spectral sensitizing dye of the present invention include cyanine dyes, merocyanine dyes, complex cyanine dyes, complex merocyanine dyes, holopolar cyanine dyes, hemicyanine dyes, styryl dyes, hemioxonol dyes, and oxo dyes. Mention may be made of polymethine dyes containing normerostyryl and streptocyanin.

具体的には、1,1′−diethyl−2,2′−cyanine chlorid
e,1,1′,3,3′−tetramethyl−2,2′−cyanine,アニオ
ン性9−メチルチアカルボシアニン3,3′−dimethylthi
azolinodicar-bocyanine bromideなどであり、詳細は、
特願昭62-197741号、同62-219983号、同62-231373号お
よび後述の文献を参考にすることができる。
Specifically, 1,1'-diethyl-2,2'-cyanine chlorid
e, 1,1 ', 3,3'-tetramethyl-2,2'-cyanine, anionic 9-methylthiacarbocyanine 3,3'-dimethylthi
azolinodicar-bocyanine bromide etc.
Reference can be made to Japanese Patent Application Nos. 62-197741, 62-219983, 62-231373, and the below-mentioned documents.

その他、前記「出願(A)」に記載のペンダント色素
(増感色素とかぶり防止剤または安定剤を、その置換期
間で化学結合した化合物)も用いることができる。
In addition, the pendant dye (a compound in which a sensitizing dye and an antifoggant or stabilizer are chemically bonded during the substitution period) described in the above “Application (A)” can also be used.

また、吸着剤およびかぶり防止剤、安定剤として用いら
れるかぶり防止剤、安定剤としては、例えばテトラザイ
ンデン類、アゾール類、例えばベンゾチアゾリウム塩、
ニトロインダゾール類、ニトロベンズイミダゾール類、
クロロベンズイミダゾール類、プロモベンズイミダゾー
ル類、メルカプトチアゾール類、メルカプトベンズイミ
ダゾール類、アミノトリアゾール類、ベンゾトリアゾー
ル類、ニトロベンゾトリアゾール類、メルカプトテトラ
ゾール類(特に1−フェニル−5−メルカプトテトラゾ
ール)など、またメルカプトピリミジン類、メルカプト
トリアジン類、例えばオキサゾリチオンのようなチオケ
ト化合物、更にはベンゼンチオスルフィン酸、ベンゼン
スルフィン酸、ベンゼンスルフォン酸アミド、ハイドロ
キノン誘導体、アミノフェノール誘導体、没食子酸誘導
体、アスコルビン酸誘導体等を挙げることができる。
Further, the adsorbent and the antifoggant, the antifoggant used as a stabilizer, the stabilizer, for example, tetrazaindenes, azoles, for example, benzothiazolium salt,
Nitroindazoles, nitrobenzimidazoles,
Chlorobenzimidazoles, promobenzimidazoles, mercaptothiazoles, mercaptobenzimidazoles, aminotriazoles, benzotriazoles, nitrobenzotriazoles, mercaptotetrazoles (especially 1-phenyl-5-mercaptotetrazole), etc., and mercapto Examples include pyrimidines, mercaptotriazines, thioketo compounds such as oxazolithion, and further benzenethiosulfinic acid, benzenesulfinic acid, benzenesulfonic acid amide, hydroquinone derivatives, aminophenol derivatives, gallic acid derivatives, and ascorbic acid derivatives. it can.

本発明に用いられるイオウ増感剤としては、参考例1の
イオウ増感剤の他、米国特許第1,574,944号、同第2,27
8,947号、同第2,410,689号、同第3,189,458号、同第3,5
01,313号、フランス特許第2,059,245号等に記載されて
いる化合物など、または活性ゼラチンを用いることがで
きる。
As the sulfur sensitizer used in the present invention, in addition to the sulfur sensitizer of Reference Example 1, US Patent Nos. 1,574,944 and 2,27
No. 8,947, No. 2,410,689, No. 3,189,458, No. 3,5
The compounds described in 01,313, French Patent 2,059,245 and the like, or active gelatin can be used.

本発明のハロゲン化銀写真感光材料の乳剤層のその他の
構成については特に制限はなく、必要に応じて種々の添
加剤を用いることができる。
The other constitution of the emulsion layer of the silver halide photographic light-sensitive material of the present invention is not particularly limited, and various additives can be used if necessary.

添加することのできる化学増感剤、分光増感色素、かぶ
り防止剤、金属イオンドープ、ハロゲン化銀溶剤、安定
剤、染料、カラーカプラー、DIRカプラー、バインダ
ー、硬膜剤、塗布助剤、増粘剤、乳剤沈降剤、可塑剤、
寸度安定改良剤、帯電防止剤、蛍光増白剤、滑剤、艶消
剤、界面活性剤、紫外線吸収剤、散乱または吸収材料、
硬化剤、接着防止、写真特性改良剤(例えば現像促進
剤、硬調化剤など)、現像剤等写真的に有用なフラグメ
ント(現像抑制剤または促進剤、漂白促進剤、現像剤、
ハロゲン化銀溶剤、トナー、硬膜剤、かぶり防止剤、競
争カプラー、化学または分光増感剤および減感剤等)を
放出するカプラー、像色素安定剤、自己抑制現像剤、お
よびその使用法、また、分光増感における超増感、分光
増感色素のハロゲン受容体効果や電子受容体効果、かぶ
り防止剤、安定剤、現像促進剤または抑制剤の作用、そ
の他、本発明の乳剤の製造に用いる製造装置、反応装
置、攪拌装置、塗布、乾燥法、露光法(光源、露光雰囲
気、露光方法)、そして写真支持体、微孔性支持体、下
塗り層、表面保護層、マット剤、中間層、ハレーション
防止層および写真処理剤、写真処理方法についてはリサ
ーチ・ディスクロージャー誌、176巻、1978年、12月号
(アイテム17643)、同184巻1979年8月号(アイテム18
431号)、同134巻1975年6月(アイテム13452)プロダ
クト・ライセンシング インデックス誌92巻107〜110
(1971年12月)、特開昭58-113926号、同58-113927号、
同58-113928号、同61-3134号、同62-6251号日化協月報1
984年、12月号、P.118〜27T.H.James,The Theory of th
e Photographic Process,Fourth Edition,Macmillan,Ne
w York,1977年、V.L.Eelikman et al.著Making and Coa
ting Photographic Emulsion(The Focal Press刊、196
4年)の記載を参考にすることができる。
Chemical sensitizers, spectral sensitizing dyes, antifoggants, metal ion dopes, silver halide solvents, stabilizers, dyes, color couplers, DIR couplers, binders, hardening agents, coating aids, sensitizers that can be added. Sticky agent, emulsion precipitation agent, plasticizer,
Dimension stability improver, antistatic agent, optical brightener, lubricant, matting agent, surfactant, ultraviolet absorber, scattering or absorbing material,
Hardening agents, anti-adhesion agents, photographic property improving agents (for example, development accelerators, contrast enhancers, etc.), developers, and other photographically useful fragments (development inhibitors or accelerators, bleaching accelerators, developers,
Silver halide solvents, toners, hardeners, antifoggants, competitive couplers, couplers that release chemical or spectral sensitizers and desensitizers, image dye stabilizers, self-inhibiting developers, and their use, In addition, supersensitization in spectral sensitization, halogen acceptor effect and electron acceptor effect of spectral sensitizing dye, action of antifoggant, stabilizer, development accelerator or inhibitor, and others, in the production of the emulsion of the present invention. Manufacturing equipment used, reaction equipment, stirring equipment, coating, drying method, exposure method (light source, exposure atmosphere, exposure method), photographic support, microporous support, undercoat layer, surface protective layer, matting agent, intermediate layer , Antihalation layer, photographic processing agent, and photographic processing method, Research Disclosure Magazine, Volume 176, December 1978, December issue (item 17643), Volume 184, August 1979 issue (item 18
No. 431), Vol. 134, June 1975 (Item 13452), Product Licensing Index, Vol. 92, 107-110.
(December 1971), JP-A-58-113926, JP-A-58-113927,
58-113928, 61-3134, 62-6251 JCIA Monthly Report 1
984, December issue, P.118-27 T.H.James, The Theory of th
e Photographic Process, Fourth Edition, Macmillan, Ne
w York, 1977, VLEelikman et al., Making and Coa
ting Photographic Emulsion (The Focal Press, 196
4 years) can be referred to.

本発明のハロゲン化銀乳剤は必要により他の乳剤や保護
層、中間層、フィルター層と共に支持体上に一層もしく
はそれ以上(例えば2層、3層)設けることができる。
また、支持体の片側に限らず両面に設けることもでき
る。また、異なる感色性の乳剤として重層することもで
きる。
If necessary, the silver halide emulsion of the present invention can be provided on the support together with other emulsions, protective layers, intermediate layers and filter layers in one or more layers (for example, two layers or three layers).
Further, it is not limited to one side of the support, and may be provided on both sides. It is also possible to superimpose emulsions having different color sensitivities.

この層構成については、その他、特開昭61-3134号、特
願昭61-299155の記載を参考にすることができる。
Regarding the layer structure, the descriptions in JP-A-61-3134 and Japanese Patent Application No. 61-299155 can be referred to.

その他、本発明のAgX乳剤は、従来の既知技術とのあら
ゆる組み合わせ構成を用いることができる。
In addition, the AgX emulsion of the present invention can be used in any combination with conventional known techniques.

この従来の既知技術に関して、および本発明のAgX乳剤
のその他の構成に関しては特願昭63-153722号およびそ
の補正書の記載を参考にすることができる。
With respect to this conventional known technique and other constitutions of the AgX emulsion of the present invention, the description of Japanese Patent Application No. 63-153722 and its amendment can be referred to.

本発明のハロゲン化銀乳剤は、黒白ハロゲン化銀写真感
光材料〔例えば、Xレイ感材、印刷用感剤、印画紙、ネ
ガフイルム、マイクロフイルム、直接ポジ感材〕、カラ
ー写真感光材料(例えばネガフイルム、印画紙、反転フ
イルム、直接ポジカラー感材、銀色素漂白法写真など)
に用いることができる。更に拡散転写用感光材料(例え
ば、カラー拡散転写要素、銀塩拡散転写要素)、熱現像
感光材料(黒白、カラー)、高密度digital記録感材、
ホログラフイー用感材などにも用いることができる。
The silver halide emulsion of the present invention is a black-and-white silver halide photographic light-sensitive material [eg, X-ray sensitive material, printing sensitizer, photographic paper, negative film, microfilm, direct positive sensitive material], color photographic light-sensitive material (eg, (Negative film, photographic paper, reversal film, direct positive color photosensitive material, silver dye bleaching method photo, etc.)
Can be used for. Further, a light-sensitive material for diffusion transfer (for example, a color diffusion transfer element, a silver salt diffusion transfer element), a photothermographic material (black and white, color), a high-density digital recording photosensitive material,
It can also be used as a sensitive material for holographic materials.

本発明の乳剤は特開昭62-269958号の実施例1、同62-14
1112号、同63-151618号の実施例13、14、同60-95533
号、同59-142539、同62-253159、特願昭62-203635号の
実施例9、同61-109773号、同62-54640号、同62-208241
号、同62-263319号の実施例の構成乳剤として好ましく
用いることができる。
The emulsion of the present invention is described in Examples 1 and 62-14 of JP-A-62-269958.
1112, 63-151618, Examples 13, 14, 60-95533
No. 59-142539, No. 62-253159, Japanese Patent Application No. 62-203635, Example 9, No. 61-109773, No. 62-54640, No. 62-208241.
No. 62-263319, and can be preferably used as the constituent emulsions of Examples.

(本発明の効果) このようにして得られる、1つのAgX粒子上の化学増感
核の位置と数が制御された本発明のAgX粒子は次のよう
な特徴をもつ。
(Effect of the present invention) The thus obtained AgX particles of the present invention in which the position and the number of chemically sensitized nuclei on one AgX particle are controlled have the following characteristics.

1.化学増感核の形成が、一方の結晶面上により十分に限
定される。この為より潜像分散の少ない、高感度は現像
進行性のよいハロゲン化銀乳剤が得られる。この効果は
特に、潜像分散を生じやすい粒径1.0μm以上のAgX粒子
で特に大きい効果をもつ。
1. The formation of chemically sensitized nuclei is well limited on one crystal plane. Therefore, a silver halide emulsion with less latent image dispersion and high sensitivity and good development progress can be obtained. This effect is particularly great with AgX particles having a particle size of 1.0 μm or more, which tends to cause latent image dispersion.

2.吸着剤の吸着力の結晶面依存性のみで化学増感核の形
成位置を制御する方法に比べ、次のような利点をもつ。
2. It has the following advantages over the method of controlling the formation position of chemically sensitized nuclei only by the crystal plane dependence of the adsorption power of the adsorbent.

(i) 用いることのできる吸着剤(特に増感色素)が
面選択性吸着剤のみに限られていたものが、表面層のハ
ロゲン組成の違いによる吸着力の差を利用する為、用い
ることのできる吸着剤の選択範囲が広くなる。
(I) The adsorbents (especially sensitizing dyes) that can be used are limited to the surface-selective adsorbents, but since the difference in the adsorption force due to the difference in the halogen composition of the surface layer is used, The selection range of adsorbents that can be formed is widened.

(ii) 化学増感核形成を抑制するには、強く吸着する
吸着剤がより好ましいが、一般に、面選択性吸着剤は、
吸着力が弱く、両者は相反する要求であった。本発明で
は、表面層のハロゲン組成の違いによる吸着力の差も利
用する為、意図する結晶面には吸着剤を強く吸着させる
ことができ、上記問題が解決された。例えば該結晶表面
層に高沃度含量のAgBrI層を用い、他の結晶表面層にAgB
rもしくはAgBrCl層を用いた場合、該AgBrI結晶表面に吸
着剤は強く吸着する。
(Ii) In order to suppress the formation of chemically sensitized nuclei, an adsorbent that strongly adsorbs is more preferable, but in general, a surface-selective adsorbent is
The adsorptive power was weak, and both requirements were contradictory. In the present invention, since the difference in the adsorption force due to the difference in the halogen composition of the surface layer is also utilized, the adsorbent can be strongly adsorbed on the intended crystal plane, and the above problems have been solved. For example, a high iodine content AgBrI layer is used for the crystal surface layer and AgBI layer is used for other crystal surface layers.
When the r or AgBrCl layer is used, the adsorbent is strongly adsorbed on the surface of the AgBrI crystal.

(iii) 吸着剤が強く吸着した状態で化学熟成する
為、化学熟成中の粒子変形は少ない。
(Iii) Since the chemical aging is performed in a state where the adsorbent is strongly adsorbed, the particle deformation during the chemical aging is small.

3.潜像形成サイトと色増感サイトの分離 一般に吸着剤(増感色素)を多量に多く吸着させると現
像抑制作用が強くなるが、本発明のAgX粒子では、現像
開始点となる潜像核は、増感色素が疎に吸着した結晶面
に形成される為、その現像抑制作用は小さい。
3. Separation of Latent Image Forming Site and Color Sensitizing Site Generally, when a large amount of an adsorbent (sensitizing dye) is adsorbed, the development suppressing action becomes strong, but in the case of AgX particles of the present invention, the latent image serving as a development starting point is formed. Since the nuclei are formed on the crystal surface on which the sensitizing dye is loosely adsorbed, the development suppressing effect is small.

一方、これまで、現像抑制の観点から増感色素を多量に
吸着させることができなかったが、増感色素を多量に吸
着させる結晶面上には潜像核が殆んどない為、現像抑制
の心配がなく、この結晶面へは多量の増感色素を吸着さ
せることができ、マイナスブルー感度を高くすることが
できる。
On the other hand, up to now, it was not possible to adsorb a large amount of the sensitizing dye from the viewpoint of development suppression, but since there are almost no latent image nuclei on the crystal faces that adsorb a large amount of the sensitizing dye, development suppression It is possible to adsorb a large amount of the sensitizing dye onto the crystal surface without increasing the concern that the minus blue sensitivity can be increased.

即ち、AgX粒子表面における増感色素の吸着分布は、必
要な所へ必要な量の増感色素が吸着され、吸着して有害
な場所には少量の増感色素しか吸着しない形になってお
り、従って、高感度で現像進行性のよい写真性が得られ
る。
That is, the adsorption distribution of the sensitizing dye on the surface of the AgX particles is such that the necessary amount of the sensitizing dye is adsorbed to the necessary place, and only a small amount of the sensitizing dye is adsorbed to the harmful place. Therefore, it is possible to obtain a photographic property with high sensitivity and good development progress.

4.感光過程、現像過程に対する効果 また、本発明の好ましい形態として、一方の結晶面が高
沃度含量AgBrIを表面層として有し、他方の結晶面が低
沃度含量AgBrIもしくはAgBr、AgBrClを表面層として有
する場合には、次のような特徴をもつ。
4. Photosensitization process, effects on the development process Further, as a preferred embodiment of the present invention, one crystal plane has a high iodine content AgBrI as a surface layer, the other crystal plane low iodine content AgBrI or AgBr, AgBrCl When it is used as a surface layer, it has the following features.

(i) 色素正孔による増感効果 マイナスブルー露光した場合、色素の励起電子はAgXの
伝導帯に注入され、低沃度含量結晶面上の化学増感核に
トラップされ、潜像を形成し、色素正孔と位置的に電荷
分離される。
(I) Sensitization effect due to dye holes When exposed to minus blue, excited electrons of the dye are injected into the conduction band of AgX and trapped in the chemical sensitized nuclei on the low-iodine content crystal face to form a latent image. , And the charge is spatially separated from the dye holes.

一方、色素正孔は高沃度含量層に注入され、高沃度含量
層中の還元増感核と次のように反応し、電子を放出す
る。
On the other hand, the dye holes are injected into the high iodine content layer and react with the reduction sensitized nuclei in the high iodine content layer as follows to emit electrons.

Ag2+正孔→Ag++Ag→2Ag++e この電子は潜像核にトラップされ、写真感度を高める働
らきをする。
Ag 2 + hole → Ag + + Ag → 2Ag + + e This electron is trapped in the latent image nucleus and acts to enhance photographic sensitivity.

高沃度含量層の価電子帯はより高い位置にある為、この
色素正孔注入はより効率よくAgXに注入され、上記反応
がより促進され、高感となる。
Since the valence band of the high iodine content layer is located at a higher position, this dye hole injection is more efficiently injected into AgX, the above reaction is further promoted, and the sensitivity is enhanced.

即ち、潜像核と色素正孔の分離による再結合防止効果
と、色素正孔→伝導電子への変換効率が高いことによる
高感度化の効果が得られる。これをAgXと色素のエネル
ギー準位図で表わすと、第3図のようになる。
That is, the effect of preventing recombination due to the separation of latent image nuclei from the dye holes and the effect of increasing the sensitivity due to the high efficiency of conversion from dye holes to conduction electrons can be obtained. The energy level diagram of AgX and dye is shown in Fig. 3.

(ii) 1つのAgX粒子上に低沃度含量結晶面と高沃度
含量結晶面を有する効果 これまでAgX粒子表面の沃度含量については初期現像速
度をはやくするという観点からは、低沃度含量AgXが好
まれ、一方、増感色素の吸着性、色増感効率(強く吸着
しているとAgXの伝導帯と色素の励起準位間の波動関数
の重なりがより大きくなり、色素からAgXへの電子注入
効率が高くなること)、正孔のAgXへの注入効率の点か
らは高沃度含量層が好まれ、両者は相反する要求であっ
た。
(Ii) Effect of having a low-iodine content crystal face and a high-iodine content crystal face on one AgX grain Until now, with respect to the iodine content of the AgX grain surface, from the viewpoint of accelerating the initial development rate, low iodine The content AgX is preferred, on the other hand, the adsorption of the sensitizing dye, the color sensitization efficiency (when strongly adsorbed, the wave function overlap between the conduction band of AgX and the excited level of the dye becomes larger, and The high iodine content layer is preferred from the viewpoint of the efficiency of electron injection into AgX) and the efficiency of hole injection into AgX.

本発明のAgX粒子では、初期現像速度をはやくする為
に、現像開始点(潜像核形成位置)は低沃度含量結晶面
上にあり、色素を多量に強く吸着させ、色増感効率をよ
くする為に、色素吸着結晶面は高沃度含量AgXになって
おり、この相反する要求を、共に満足して実現した形に
なっている。
In the AgX particles of the present invention, in order to accelerate the initial development speed, the development starting point (latent image nucleation position) is on the low iodine content crystal face, and a large amount of dye is strongly adsorbed to improve the color sensitization efficiency. For the sake of improvement, the dye-adsorbed crystal face has a high iodine content of AgX, which satisfies both of these conflicting requirements.

5.ブルー光吸収性と現像活性 一般にAgX乳剤粒子のブルー光吸収の大きさはAgCl<AgB
r<AgIであり、一方、現像進行性は、AgCl<AgBr<AgI
であり、両者を満足させることは、相反する要求であ
る。しかし、本発明のAgX粒子では現像開始点となる潜
像核は低沃度含量結晶面上にあり、現像速度の点で問題
なく、他方、光吸収の点に関しては、粒子内部、および
他の結晶面を高沃度含量のAgBrIにすることができる
為、問題がなく、両者の要求を満足することができる。
5. Blue light absorption and development activity Generally, the magnitude of blue light absorption of AgX emulsion particles is AgCl <AgB.
r <AgI, while development progress is AgCl <AgBr <AgI
And satisfying both is a conflicting requirement. However, in the AgX grains of the present invention, the latent image nuclei that are the development starting point are on the low iodine content crystal plane, and there is no problem in terms of development rate, while regarding the point of light absorption, inside the grain, and other Since the crystal plane can be made to have a high iodine content AgBrI, there is no problem and both requirements can be satisfied.

かくして得られた本発明のAgX粒子からなる感光材料
は、感度、現像進行性、粒状性、相反則特性、シャープ
ネス、解像力、階調、画質に優れたハロゲン化銀乳剤を
提供する。
The thus obtained light-sensitive material comprising AgX grains of the present invention provides a silver halide emulsion excellent in sensitivity, development progress, graininess, reciprocity law property, sharpness, resolution, gradation and image quality.

本発明の好ましい実施態様は次の通りである。Preferred embodiments of the present invention are as follows.

1) 全AgX粒子の投影面積の70%以上、好ましくは80
%以上、より好ましくは90%以上が特許請求範囲第1項
もしくは2項記載のAgX粒子からなることを特徴とするA
gX乳剤。
1) 70% or more of the projected area of all AgX grains, preferably 80
% Or more, and more preferably 90% or more is composed of AgX particles according to claim 1 or 2.
gX emulsion.

2) (優先的に化学増感核が形成される結晶面上の化
学増感核の数/cm2)/(優先的に化学増感核が形成さ
れない結晶面上の化学増感核の数/cm2)が2.5以上であ
る特許請求範囲第2〜3項記載のハロゲン化銀乳剤 3) {111}面の面積/{100}面の面積の平均値が20
〜1/20、好ましくは10〜1/10である14面体粒子からなる
ことを特徴とする特許請求の範囲第1、2項記載のAgX
乳剤。
2) (Number of chemically sensitized nuclei on the crystal plane where preferentially chemical sensitized nuclei are formed / cm 2 ) / (Number of chemically sensitized nuclei on the crystal faces where preferentially chemically sensitized nuclei are not formed) / Cm 2 ) is 2.5 or more, the silver halide emulsion according to claims 2 to 3 3) The average value of {111} plane area / {100} plane area is 20
AgX according to claims 1 and 2, characterized in that it consists of tetradecahedral grains of -1/20, preferably 10-1 / 10.
emulsion.

4) {111}面の面積/{100}面の面積の平均値が20
〜1.0、好ましくは15〜2.0である平行双晶面を有する平
板状粒子からなることを特徴とする特許請求範囲第1、
2項記載のAgX乳剤。
4) Average value of {111} plane area / {100} plane area is 20
Claims 1, characterized in that they consist of tabular grains having parallel twin planes of ~ 1.0, preferably 15-2.0.
The AgX emulsion according to item 2.

5) {100}と{111}結晶表面の表面層のハロゲン組
成が、沃度含量で互いに2〜40モル%、好ましくは3〜
30モル%異なり、かつ、化学増感核が該低沃度含量表面
層を有する結晶表面上に優先的に形成されていることを
特徴とする特許請求の範囲第2項記載のAgX乳剤。
5) The halogen composition of the surface layers on the {100} and {111} crystal surfaces is 2 to 40 mol%, preferably 3 to 40% in terms of iodine content.
The AgX emulsion according to claim 2, wherein the chemical sensitized nuclei differ by 30 mol% and are preferentially formed on the crystal surface having the low iodine content surface layer.

6) 化学増感核が優先的に形成される結晶表面の表面
層の沃度含量が5モル%以下、であることを特徴とする
特許請求範囲第2項記載のAgX乳剤。
6) The AgX emulsion according to claim 2, wherein the iodine content of the surface layer on the crystal surface where the chemically sensitized nuclei are preferentially formed is 5 mol% or less.

7) {100}と{111}結晶表面の表面層のハロゲン組
成が、Cl含量で互いに7〜100モル%、好ましくは10〜8
0モル%異なり、かつ、化学増感核が該高Cl含量層を有
する結晶表面上、もしくは該低Cl含量層を有する結晶表
面上に優先的に形成されていることを特徴とする特許請
求範囲第2項記載のAgX乳剤。
7) The halogen composition of the surface layers on the {100} and {111} crystal surfaces is 7 to 100 mol%, preferably 10 to 8 in terms of Cl content.
Claims characterized in that the chemical sensitized nuclei differ by 0 mol% and are preferentially formed on the crystal surface having the high Cl content layer or on the crystal surface having the low Cl content layer. The AgX emulsion according to item 2.

8) 特許請求の範囲第4項の方法で製造したAgX乳剤
粒子に、(結晶面の違い+表面層のハロゲン組成の違
い)による有効な化学増感核形成能の違いを利用して一
方の結晶面上に優先的に有効な化学増感核を形成するこ
とを特徴とするAgX乳剤の製造方法。
8) By utilizing the difference in effective chemical sensitized nucleation ability due to (difference in crystal plane + difference in halogen composition of surface layer), the AgX emulsion grains produced by the method of claim 4 A method for producing an AgX emulsion, which comprises forming preferentially effective chemically sensitized nuclei on a crystal plane.

9) 特許請求の範囲4項の方法で製造したAgX乳剤
に、優先的に化学増感核を形成しない方の結晶面上に、
(結晶面の違い+表面層のハロゲン組成の違い)を利用
して優先的に吸着する吸着剤を吸着させた後、化学増感
することを特徴とするAgX乳剤の製造方法。
9) In the AgX emulsion produced by the method of claim 4, on the crystal plane of which the chemical sensitization nucleus is not preferentially formed,
A method for producing an AgX emulsion, which comprises chemically sensitizing after adsorbing an adsorbent that preferentially adsorbs by utilizing (difference in crystal plane + difference in halogen composition of surface layer).

以下に参考例及び実施例を挙げて本発明をさらに説明す
るが、本発明の実施態様はこれに限定されるものではな
い。
The present invention will be further described below with reference to Reference Examples and Examples, but the embodiments of the present invention are not limited thereto.

参考例1 4lの容積を有する反応容器中にゼラチン水溶液〔水1000
ml、ゼラチン7g、KBr4.5g、pH8.0)を入れ、溶液温度を
30℃に保ちつつ、AgNO3水溶液25ml(AgNO38.0gを含む)
と、KBr水溶液25ml(KBr5.8gを含む)を同時に1分間か
けて(流速25ml/分)添加し、1分間攪拌した後、その
内の350mlを種晶とし、そこへゼラチン水溶液(水650m
l、ゼラチン20g、KBr0.5g、pH8.0)を加え、温度を75℃
に上げる。昇温後、45分間熟成した後、AgNO3水溶液(1
00ml中に30gのAgNO3を含む)とKBr水溶液を用いて、は
じめの10分間は7ml/分で、次の20分間は13ml/分でpBr1.
8(但し、これはAgX粒子に吸着したBr-も含めて、AgX乳
剤中に存在する過剰量のKBrが1.6g/lであることを示
す。銀電位は−15mVを示した。) 次の20分間は20ml/分で、C.D.J.添加した。Aは(−4m
V)、Bは+10mV、Cは+40mV、Dは+70mV、Eは+100
mVのC.D.J.添加を行なった。得られたAgBr平板状粒子の
{100}面の面積割合を前述のT.Taniの方法で求める
と、A(2%),B(2.6%),C(8.5%),D(18%),E
(51%)であり、C.D.J.電位が高くなるにつれ、平板状
粒子の{100}面積割合が増加した。
Reference Example 1 An aqueous solution of gelatin [water 1000
ml, gelatin 7g, KBr4.5g, pH8.0)
25ml of AgNO 3 solution (including AgNO 3 8.0g) while keeping at 30 ℃
And 25 ml of KBr aqueous solution (including 5.8 g of KBr) were added simultaneously over 1 minute (flow rate 25 ml / min), and after stirring for 1 minute, 350 ml of the solution was used as a seed crystal and the gelatin aqueous solution (water 650 m
l, gelatin 20g, KBr0.5g, pH8.0), and the temperature is 75 ℃.
Raise to. After raising the temperature and aging for 45 minutes, the AgNO 3 aqueous solution (1
30 ml AgNO 3 in 00 ml) and an aqueous KBr solution, using pBr1.at 7 ml / min for the first 10 minutes and 13 ml / min for the next 20 minutes.
8 (However, this was Br adsorbed on the AgX grains -.., Including also excess KBr present in the AgX emulsion indicates that the 1.6 g / l silver potential showed -15 mV) in the following CDJ was added at 20 ml / min for 20 minutes. A is (-4m
V), B +10 mV, C +40 mV, D +70 mV, E +100
mV of CDJ was added. The area ratio of {100} planes of the obtained AgBr tabular grains was calculated by the method of T. Tani mentioned above, and A (2%), B (2.6%), C (8.5%), D (18%) , E
(51%), and the {100} area ratio of tabular grains increased as the CDJ potential increased.

実施例1 4lの容積を有する反応容器中にゼラチン水溶液〔水1000
ml、脱イオン化アルカリ処理ゼラチン30g、KBr0.5g、NH
4NO31g、NH3(25重量%)2ml〕を入れ、溶液温度を60℃
に保ちつつ、AgNO3水溶液とハロゲン化物水溶液を添加
した。AgNO3の添加速度ははじめの10分間は3.3×10-4M/
min.で、AgNO3水溶液とKBr水溶液のダブルジェット添加
をした。添加中のpBr値は2.53であった。次に添加速度
6.0×10-4M/min.で7分間AgNO3水溶液とKBr水溶液を添
加した後、続けて初期添加速度6.0×10-4M/min.、終期
添加速度8×10-3M/min.85分間の直線加速添加法でpAg
7.7のC.D.J.添加をした。この時点で得られた14面体粒
子(以後E1と呼ぶ)の{111}面対間距離は0.90μm、
{111}面積が17%であった。
Example 1 A gelatin aqueous solution [water 1000
ml, deionized alkali treated gelatin 30g, KBr0.5g, NH
4 NO 3 1 g, NH 3 (25 wt%) 2 ml] and put the solution temperature at 60 ° C.
While maintaining the above, the AgNO 3 aqueous solution and the halide aqueous solution were added. AgNO 3 addition rate is 3.3 × 10 -4 M / for the first 10 minutes.
At min., double jet addition of AgNO 3 aqueous solution and KBr aqueous solution was performed. The pBr value during the addition was 2.53. Next addition speed
After adding AgNO 3 aqueous solution and KBr aqueous solution at 6.0 × 10 -4 M / min for 7 minutes, the initial addition rate is 6.0 × 10 -4 M / min. And the final addition rate is 8 × 10 -3 M / min. PAg by the 85-minute linear acceleration addition method
7.7 CDJ additions were made. The distance between the {111} plane pairs of the tetradecahedral grains (hereinafter referred to as E1) obtained at this point is 0.90 μm,
The {111} area was 17%.

次にKBrを加えてpAg8.6にした後、初期添加速度1.5×10
-3M/min.、終期添加加速度2×10-3M/min、添加時間20
分でAgNO3水溶液とKI含量6モル%の(KBr+KI)水溶液
pAg8.6のC.D.J.添加した。この時得られた14面体粒子の
{111}面対間距離は0.90μmで上記とかわりがなく、
添加したAgBrI(6モル%)は14面体の{100}面上の
み、積層したことを示している。
Next, KBr was added to make pAg 8.6, and then the initial addition rate was 1.5 × 10
-3 M / min., Final addition acceleration 2 × 10 -3 M / min, addition time 20
Minute aqueous solution of AgNO 3 and 6 mol% KI content (KBr + KI) aqueous solution
CDJ of pAg8.6 was added. The {111} face-to-face distance of the tetradecahedral grains obtained at this time was 0.90 μm, which is the same as above.
It is shown that the added AgBrI (6 mol%) is laminated only on the {100} plane of the tetradecahedron.

この乳剤の温度を30℃に下げ、水洗をし、再分散させ、
pAg8.6、pH6.5、温度40℃にし、3,3′−bis(4−sulfo
butyl)−9−methtylthiacarbocyanine dyeを飽和吸着
量の75%を吸着させた後、乳剤条件をpAg8.6、pH6.5、
温度50℃にし、Na2S2O3・5H2Oを0.9×10-5モル/モルAgB
rだけ加え、3分遅れて金増感剤(金チオシアン酸錯
体)を0.3×10-5モル/モルAgBrだけ加えて、70分間熟
成した。
Lower the temperature of this emulsion to 30 ° C, wash with water, redisperse,
pAg8.6, pH6.5, temperature 40 ℃, 3,3'-bis (4-sulfo
butyl) -9-methtylthiacarbocyanine dye after adsorbing 75% of the saturated adsorption amount, the emulsion conditions were pAg8.6, pH6.5,
The temperature 50 ℃, Na 2 S 2 O 3 · 5H 2 O of 0.9 × 10 -5 mol / mol AgB
r was added, and after a delay of 3 minutes, a gold sensitizer (gold thiocyanate complex) was added in an amount of 0.3 × 10 −5 mol / mol AgBr, followed by aging for 70 minutes.

温度を40℃にし、かぶり防止剤{TAI(4−hydroxy−6
−methyl−1,3,3a,7−tetraazaindene)を3g/モルAg〕
塗布助剤を加えて、銀1.5g/m2で透明ベース上に塗布し
た。
The temperature was raised to 40 ° C and the antifoggant {TAI (4-hydroxy-6
-Methyl-1,3,3a, 7-tetraazaindene) 3 g / mol Ag)
A coating aid was added and silver 1.5 g / m 2 was coated on the transparent base.

実施例2 実施例1で14面体粒子に色素を吸着させ、乳剤条件をpA
g8.6、pH6.5、温度50℃にする所までは同じである。次
にNa2S2O3・5H2Oを0.9×10-5モル/モルAgBrだけ加え、4
0分間熟成した後、前述の金増感剤を0.3×10-5モル/モ
ルAgBrだけ加えて、更に40分間熟成した。次に温度を40
℃に下げ、かぶり防止剤、塗布助剤を加えて、透明ベー
ス上に銀1.5g/m2で塗布した。
Example 2 In Example 1, the dye was adsorbed on the tetradecahedral grains and the emulsion conditions were adjusted to pA.
It is the same until g8.6, pH6.5 and temperature 50 ℃. Then Na 2 S 2 O 3 · 5H 2 O of 0.9 × 10 -5 mol / mol AgBr only addition, 4
After aging for 0 minutes, 0.3 × 10 −5 mol / mol AgBr of the above-mentioned gold sensitizer was added and aging was continued for 40 minutes. Then set the temperature to 40
The temperature was lowered to ℃, antifoggants and coating aids were added, and silver was coated on the transparent base at 1.5 g / m 2 .

比較例1 実施例1でE1のAgX粒子を作る所までは同じにする。次
にKBrを加えてpAg8.6にした後、初期添加速度1.5×10-3
M/min.終期添加速度2×10-3M/min、添加時間20分でAgN
O3水溶液とKBr水溶液をpAg8.6のC.D.J.添加した。この
時得られた14面体粒子の{111}面対間距離は0.9μm
で、添加したAgBrは14面体の{100}面上にのみ積層し
たことを示している。この後、実施例1と同じ工程を通
した。
Comparative Example 1 The procedure is the same as in Example 1 until E1 AgX particles are prepared. Next, KBr was added to make pAg 8.6, and then the initial addition rate was 1.5 × 10 -3
M / min. Final addition rate 2 × 10 -3 M / min, addition time 20 minutes AgN
An aqueous solution of O 3 and an aqueous solution of KBr were added to pJg8.6 of CDJ. The distance between the {111} faces of the tetradecahedral grains obtained at this time is 0.9 μm.
In addition, it is shown that the added AgBr was laminated only on the {100} face of the tetradecahedron. After that, the same steps as in Example 1 were performed.

実施例1,2、および比較例1、の乳剤塗布物を青光で1
秒露光(露光量は最大濃度を与える露光量の10倍量)
し、前述のBirchらの抑制現像液で20℃、6分間現像し
た後、ゼラチンを除去し、レプリカ法で粒子のTEM像を
観察した。粒子の現像開始点が14面体粒子の{111}面
に存在する割合は表1に示す通りであった。
The emulsion coatings of Examples 1, 2 and Comparative Example 1 were exposed to blue light 1
Second exposure (exposure is 10 times the exposure that gives maximum density)
Then, after development was carried out at 20 ° C. for 6 minutes with the above-mentioned suppression developing solution of Birch et al., Gelatin was removed, and TEM images of the particles were observed by the replica method. The proportion of the development starting points of the grains existing on the {111} faces of the tetradecahedral grains was as shown in Table 1.

また、実施例1,2と比較例1の乳剤塗布物をブルーフィ
ルターを通して10-3秒間、ウェッジ露光し、MAA−1現
像液で20℃、10分間現像した。得られた特性曲線とAgX
粒子の光吸収率より求めた相対量子感度は表1の通りで
あり、比較例1に対する本発明の効果が確認された。
The emulsion coatings of Examples 1 and 2 and Comparative Example 1 were subjected to wedge exposure through a blue filter for 10 -3 seconds and developed with MAA-1 developer at 20 ° C for 10 minutes. The obtained characteristic curve and AgX
The relative quantum sensitivities obtained from the light absorptance of the particles are shown in Table 1, and the effect of the present invention on Comparative Example 1 was confirmed.

実施例3 4lの容積を有する反応容器中にゼラチン水溶液(水1000
ml、ゼラチン7g、KBr4.5g、pH8.0)を入れ、溶液温度を
30℃に保ちつつ、AgNO3水溶液25ml(AgNO38.0gを含む)
と、KBr水溶液25ml(KBr5.8gを含む)を同時に1分間か
けて(流速25ml/分)添加し、1分間攪拌した後、その
内の300mlを種晶とし、そこへゼラチン水溶液(水650m
l、ゼラチン20g、KBr0.6g、pH8.0)を加え、温度を75℃
に上げる。昇温後、45分間熟成した後、AgNO3水溶液(1
00ml中に40gのAgNO3を含む)とKBr水溶液を用いて、は
じめの10分間は6ml/分で、次の20分間は12ml/分で、pBr
1.7のC.D.J.添加した。次に6ml/分で7分間pAg6.8でC.
D.J.添加した。この時点で得られた平板状粒子を前述の
T.Taniの方法で{100}面積比率を求めると、13%であ
った。平均粒径は1.1μmであった。
Example 3 An aqueous solution of gelatin (water 1000
ml, gelatin 7g, KBr4.5g, pH8.0)
25ml of AgNO 3 solution (including AgNO 3 8.0g) while keeping at 30 ℃
Then, 25 ml of KBr aqueous solution (containing 5.8 g of KBr) was added simultaneously over 1 minute (flow rate 25 ml / min) and stirred for 1 minute, 300 ml of which was used as a seed crystal, and the gelatin aqueous solution (water 650 m
l, gelatin 20g, KBr0.6g, pH8.0), and the temperature is 75 ℃.
Raise to. After raising the temperature and aging for 45 minutes, the AgNO 3 aqueous solution (1
Using KBr aqueous solution containing) the AgNO 3 40g of in 100 ml, the first 10 minutes at 6 ml / min, following 20 min at 12 ml / min, pBr
1.7 CDJ was added. Then C at 6 ml / min for 7 minutes with pAg6.8.
DJ added. The tabular grains obtained at this point were treated as described above.
The {100} area ratio obtained by the method of T. Tani was 13%. The average particle size was 1.1 μm.

次に6ml/分で7分間、pAg6.5でAgNO3水溶液と沃度含量
6モル%の(KBr+KI)水溶液を添加した。最終的に得
られた平板状粒子の平均粒径は1.1μmであり、上記と
かわらなかった。従って、AgBrI(6モル%)は{111}
主平面上にのみ積層したことがわかる。この平板状粒子
は平均アスペクト比6、平板状粒子の投影粒径の変動係
数は15%であった。
Next, an aqueous solution of AgNO 3 with pAg 6.5 and an aqueous solution of (KBr + KI) having an iodine content of 6 mol% were added at 6 ml / min for 7 minutes. The average particle size of the finally obtained tabular grains was 1.1 μm, which was not the same as the above. Therefore, AgBrI (6 mol%) is {111}
It can be seen that the layers are stacked only on the main plane. The tabular grains had an average aspect ratio of 6 and the variation coefficient of the projected grain size of the tabular grains was 15%.

このようにして得られたAgX乳剤を水洗し、再分散し、
乳剤をpH6.5、pAg8.0、温度40℃にし、3,3′−dimethyl
thiazolinodicarbocyanine bromide色素を飽和吸着量の
80%の添加量を加え、pAg8.0に調節した。20分間経時さ
せた後、pAg8.5温度50℃にし、Triethyl-thioureaのメ
タノール溶液(0.005重量%)を1.0×10-5モル/モルAg
Brだけ添加し、3分遅れて、次に前述の金増感剤を0.4
×10-5モル/モルAgBrだけ添加し、更に40分間熟成し
た。温度を40℃に下げ、かぶり防止剤、塗布助剤を加え
て、透明ベース上に塗布した。
The AgX emulsion thus obtained was washed with water, redispersed,
The emulsion was adjusted to pH 6.5, pAg 8.0, and temperature 40 ° C, and 3,3'-dimethyl was added.
Saturated adsorption amount of thiazolinodicarbocyanine bromide dye
The added amount of 80% was added to adjust the pAg to 8.0. After aging for 20 minutes, pAg8.5 temperature was raised to 50 ℃ and methanol solution of Triethyl-thiourea (0.005% by weight) was added at 1.0 × 10 -5 mol / mol Ag.
Add Br only, delay 3 minutes, then add the above gold sensitizer to 0.4
Only × 10 -5 mol / mol AgBr was added, and the mixture was aged for 40 minutes. The temperature was lowered to 40 ° C., an antifoggant and a coating aid were added, and the mixture was coated on a transparent base.

比較例2 実施例3において、あとで積層させるAgBrI層をAgBrに
置きかえるだけで化学増感も含め他の条件はすべて同一
条件にしたAgX乳剤を調製し、かぶり防止剤、塗布助剤
を加えて透明ベース上に塗布した。
Comparative Example 2 In Example 3, an AgX emulsion was prepared in which the AgBrI layer to be laminated later was replaced by AgBr and all other conditions including chemical sensitization were the same, and an antifoggant and a coating aid were added. It was coated on a transparent base.

次に実施例3と比較例2の乳剤塗布物を、表1と同じ比
較をし、結果を表2に示した。比較例2に対する本発明
の効果が確認された。
Next, the emulsion coatings of Example 3 and Comparative Example 2 were compared in the same manner as in Table 1, and the results are shown in Table 2. The effect of the present invention on Comparative Example 2 was confirmed.

実施例4 参考例1のAの乳剤(平均投影粒径1.35μm)を0.22モ
ル含むゼラチン水溶液(水1、ゼラチン20g、KBr0.3g
を含む、pH6.0)を4lの反応容器中に入れ、温度を75℃
にし、NH4NO3を3g、NH3水(25重量%)を6ml添加し、2
分後にAgNO3水溶液(100ml中に10gのAgNO3を含む)とKB
r水溶液を銀電位+40mV、40分間のC.D.J.添加した。初
期流量は3.9ml/分で終期流量は13ml/分の直線加速添加
である。添加終了後、1分後にHNO3(3N)液を28ml添加
した。この時点における平板状粒子の平均投影粒径は1.
45μmであった。
Example 4 A gelatin aqueous solution (water 1, gelatin 20 g, KBr 0.3 g) containing 0.22 mol of the emulsion A of Reference Example 1 (average projected grain size 1.35 μm).
, PH 6.0) into a 4 liter reaction vessel and the temperature at 75 ° C.
And add 3 g of NH4NO3 and 6 ml of NH3 water (25% by weight),
Minutes later AgNO3 solution (containing 100g of 10g AgNO3 in 100ml) and KB
The rJ aqueous solution was added with CDJ for 40 minutes at a silver potential of +40 mV. The initial flow rate is 3.9 ml / min and the final flow rate is 13 ml / min. One minute after the addition was completed, 28 ml of HNO 3 (3N) solution was added. The average projected grain size of tabular grains at this point is 1.
It was 45 μm.

次にAgNO3水溶液(100ml中に10gのAgNO3を含む)とKI含
量が6モル%の(KBr+KI)水溶液を2.5ml/分で30分
間、銀電位120mVで添加した。温度を30℃に下げ、乳剤
を水洗し、再分散させた。この時点における平板状粒子
の平均投影粒径は、1.45μmであった。従って、最終に
添加したAgBrIは、平均状粒子のエッジ上には沈積せ
ず、{111}主表面上に積層したことを示す。この粒子
のエッジ形状を第4図に示した。(倍率21,000倍)。
(111)主表面に対し、125°の鈍角を有する{100}エ
ッジ面を有する平板状粒子であることを示している。平
均{100}面積比率は23%であつた。該AgX乳剤に1,1′
−diethyl−2,2′−cyanine chloride色素を飽和吸着量
の65%で吸着させ、次にtriethyl-thioureaを0.6×10-5
モル/モルAgだけ添加し、20分後に金−チオシアン酸錯
体を0。2×10-5モル/モルAgだけ加え、50°で40分間
熟成した。温度を40℃に下げ、かぶり防止剤、塗布助剤
を加えて、透明ベース上に塗布した。露光し、現像した
所、相反則特性の優れた写真性を示した。
Then, an AgNO 3 aqueous solution (containing 100 g of AgNO 3 in 100 ml) and an aqueous solution of (KBr + KI) having a KI content of 6 mol% were added at 2.5 ml / min for 30 minutes at a silver potential of 120 mV. The temperature was lowered to 30 ° C., the emulsion was washed with water and redispersed. The average projected grain size of the tabular grains at this time was 1.45 μm. Therefore, it is shown that the finally added AgBrI did not deposit on the edge of the average particle but was laminated on the {111} major surface. The edge shape of these particles is shown in FIG. (Magnification 21,000 times).
It is shown that they are tabular grains having {100} edge faces having an obtuse angle of 125 ° with respect to the (111) main surface. The average {100} area ratio was 23%. 1,1 'in the AgX emulsion
-Diethyl-2,2'-cyanine chloride dye was adsorbed at 65% of the saturated adsorption amount, and then triethyl-thiourea was added at 0.6 × 10 -5.
Only 20 mol / mol Ag was added, and after 20 minutes, 0.2 × 10 −5 mol / mol Ag of gold-thiocyanate complex was added, and the mixture was aged at 50 ° for 40 minutes. The temperature was lowered to 40 ° C., an antifoggant and a coating aid were added, and the mixture was coated on a transparent base. When exposed and developed, it showed excellent reciprocity law photographic properties.

実施例5 参考例1のAの乳剤を0.26モル含むゼラチン水溶液(水
1、NaCl5g、ゼラチン20gを含む)4lの反応容器中に
入れ、温度を75℃にし、AgNO3水溶液(100ml中にAgNO31
0gを含む)とNaCl含量25モル%の(KBr+NaCl)水溶液
を用いて、初期流量4.0ml/分、終期流量20ml/分の直線
加速添加で、pCl=1.07に保ちながら添加した。温度を3
0℃に下げ、乳剤を水洗し、再分散させた。この時点に
おける平板状粒子の平均投影粒径は1.30μmであり、添
加したAgBrClは平板状粒子の{111}主表面上にのみ積
層したことを示す。この粒子の形状を第5図に示す。
(倍率19,000倍)。{111}主表面に対し125℃の鈍角を
有する{100}エッジ面を有する平板状粒子であること
を示している。平均{100}面積比率は43%であつた。
該AgX乳剤に5−Bromobenzotriazoleを飽和吸着量の65
%で吸着させ、次にtriethyl-thioureaを0.6×10-5モル
/モルAgだけ添加し、20分後に金−チオシアン酸錯体を
0.2×10-5モル/モルAgだけ加え、50℃で40分間熟成し
た。温度を40℃に下げ、かぶり防止剤、塗布助剤を加え
て、透明ベース上に塗布した。露光し、現像した所、優
れた相反則特性の写真性を示した。
Example 5 Reference Example gelatin aqueous solution containing 0.26 moles of Emulsion A in 1 (water 1, NaCl 5 g, containing gelatin 20 g) were placed in a reaction vessel 4l, the temperature was brought to 75 ° C., AgNO 3 in aqueous AgNO 3 solution (100ml 1
(Including 0 g) and an aqueous solution of (KBr + NaCl) having a NaCl content of 25 mol% were added while maintaining pCl = 1.07 by linear acceleration addition of an initial flow rate of 4.0 ml / min and a final flow rate of 20 ml / min. Temperature 3
The temperature was lowered to 0 ° C., the emulsion was washed with water and redispersed. The average projected grain size of the tabular grains at this time was 1.30 μm, indicating that the added AgBrCl was laminated only on the {111} main surface of the tabular grains. The shape of these particles is shown in FIG.
(Magnification 19,000 times). It is shown that the grains are tabular grains having {100} edge faces having an obtuse angle of 125 ° C. with respect to the {111} main surface. The average {100} area ratio was 43%.
A saturated adsorption amount of 5-Bromobenzotriazole of 65 was added to the AgX emulsion.
%, Then triethyl-thiourea was added at 0.6 × 10 -5 mol / mol Ag, and after 20 minutes, the gold-thiocyanate complex was added.
Only 0.2 × 10 −5 mol / mol Ag was added, and the mixture was aged at 50 ° C. for 40 minutes. The temperature was lowered to 40 ° C., an antifoggant and a coating aid were added, and the mixture was coated on a transparent base. When exposed and developed, it showed excellent reciprocity law photographic properties.

実施例6 4lの容積を有する反応容器中にゼラチン水溶液〔水1000
ml、ゼラチン30g、KBr0.5g、NH3(25重量%)を2ml、NH
4NO3(50重量%)2ml〕を入れ、溶液温度を60℃に保ち
つつ、AgNO3水溶液(1000ml中にAgNO3を0.93g含む)と
ハロゲン化塩水溶液を添加した。
Example 6 In a reaction vessel having a volume of 4 l, an aqueous gelatin solution [water 1000
ml, gelatin 30 g, KBr 0.5 g, NH 3 (25 wt%) 2 ml, NH
4 NO 3 (50 wt%) 2 ml] was added, and an aqueous solution of AgNO 3 (containing 0.93 g of AgNO 3 in 1000 ml) and an aqueous solution of a halide salt were added while keeping the solution temperature at 60 ° C.

AgNO3の添加速度は、はじめの10分間は3.3×10-4M/分
で、次の9分間は8.9×10-4M/分でAgNO3液と(KBr+K
I)水溶液(KI含量は6モル%)をダブルジェット添加
した。添加中のpBr値は2.4であった。
The addition rate of AgNO 3 was 3.3 × 10 -4 M / min for the first 10 minutes, and 8.9 × 10 -4 M / min for the next 9 minutes with AgNO 3 solution (KBr + K
I) Aqueous solution (KI content 6 mol%) was added by double jet. The pBr value during the addition was 2.4.

次に初期添加速度9.0×10-4M/分、終期添加速度7.8×10
-3M/分、60分間の直線加速添加法で銀電位125mVのC.D.
J.添加をした。この時点で得られた14面体粒子は第6a図
に示す如くの14面体粒子であった。
Next, the initial addition rate of 9.0 × 10 -4 M / min, the final addition rate of 7.8 × 10
CD with silver potential of 125 mV by linear acceleration addition method at -3 M / min for 60 minutes
J. added. The tetradecahedral grains obtained at this point were the tetrahedral grains as shown in FIG. 6a.

次に、銀電位を+170mVにし、AgNO3液(100ml中にAgNO3
10gを含む)とKBr液を用い、初期添加速度1.8×10-3M/
分、終期3.25×10-3M/分、20分間の直線加速添加法で、
銀電位180mVのC.D.J.添加をした。この時点で得られた1
4面体粒子は第6b図に示す如くの14面体粒子であった。
Then, the silver potential to + 170 mV, AgNO 3 in AgNO 3 solution (100ml
(Including 10 g) and KBr solution, initial addition rate 1.8 × 10 -3 M /
Minute, final 3.25 × 10 -3 M / min, 20 minutes linear acceleration addition method,
CDJ with a silver potential of 180 mV was added. 1 obtained at this point
The tetrahedral grains were tetrahedral grains as shown in Figure 6b.

両14面体粒子のエッジ長はともに0.63μmであり、最後
に添加したAgBrは14面体のコーナー部のみに沈澱したこ
とを示している。TEM像より求めたこの粒子の{100}面
積:{111}面積=15:85であった。
The edge lengths of both dodecahedron grains were both 0.63 μm, indicating that AgBr added last was precipitated only at the corners of the dodecahedron. The {100} area: {111} area = 15: 85 of this grain obtained from the TEM image.

この乳剤に3,3′−bis(4−sulfobutyl)−9−methyt
hiacarbocyanine dyeを飽和吸着量の75%吸着させた
後,乳剤条件をpAg8.6、pH6.5、温度50℃にし、Na2S2O3
・5H2Oを0.9×10-5モル/モルAgBrだけ加え、3分後れて
金増感剤〔金−チオシアン酸錯体〕を0.3×10-5モル/
モルAgBrだけ加えて、70分間熟成した。温度を35℃に下
げ、乳剤を水洗し、再分散させ、乳剤をpH6.5、pAg8.5
に調節した。
To this emulsion was added 3,3'-bis (4-sulfobutyl) -9-methyt.
After adsorbing 75% of the saturated adsorption amount of hiacarbocyanine dye, the emulsion conditions were adjusted to pAg 8.6, pH 6.5, and temperature 50 ° C, and Na 2 S 2 O 3 was added.
5H 2 O was added only at 0.9 × 10 -5 mol / mol AgBr, and after 3 minutes, the gold sensitizer [gold-thiocyanate complex] was added at 0.3 × 10 -5 mol / mol.
Mole AgBr alone was added and aged for 70 minutes. The temperature was lowered to 35 ° C, the emulsion was washed with water and redispersed, and the emulsion was adjusted to pH 6.5, pAg8.5
Adjusted to.

温度を40℃にし、かぶり防止剤、塗布助剤を加えて、銀
1.5g/m2透明ベース上に塗布した。
Bring the temperature to 40 ° C, add antifoggants and coating aids, and
1.5g / m 2 It was applied on a transparent base.

比較例3 実施例6で第6a図のAgX粒子を作る所までは同じにす
る。次に銀電位を+90mVにし、AgNO3液(100ml中にAgNO
310gを含む)とKBr液を用い、初期添加速度1.8×10-3M/
分、終期添加速度3.25×10-3M/分、20分間の直線加速添
加法で、銀電位90mVのC.D.J.添加をした。この時点で得
られた14面体粒子の形状は、第6a図の14面体粒子とほぼ
相似形で、最後に添加したAgBrは、該14面体粒子のほぼ
全表面上に均一に積層し、いわゆる内部高沃度型の2重
構造粒子であることを示している。
Comparative Example 3 The procedure is the same as in Example 6 until the AgX particles shown in FIG. Next, the silver potential was set to +90 mV, and AgNO 3 solution (AgNO
3 including 10 g) and using the KBr solution, the initial addition rate 1.8 × 10 -3 M /
CDJ with a silver potential of 90 mV was added by the linear acceleration addition method for 20 minutes at a final addition rate of 3.25 × 10 −3 M / min. The shape of the tetradecahedral grains obtained at this point is almost similar to that of the tetradecahedral grains of FIG. 6a, and AgBr added last is uniformly laminated on almost all surfaces of the tetradecahedral grains, so-called internal It is shown that they are high-iodity type double-structured grains.

この乳剤を水洗し、再分散させ、3,3′−bis(4−sulf
obutyl)−9−methylthiacarbocyanine dyeを飽和吸着
量の75%吸着させた後、乳剤条件をpAg8.6、pH6.5、濃
度50℃にし、Na2S2O3・5H2Oを1.5×10-5モル/モルAgBr
だけ加え、3分遅れて前述の金増感剤を0.5×10-5モル
/モルAgBrだけ加え、60分間熟成した。
This emulsion was washed with water and redispersed to obtain 3,3'-bis (4-sulf
Obutyl) a -9-methylthiacarbocyanine dye After 75% adsorption of the saturation adsorption amount, the emulsion conditions PAg8.6, pH 6.5, to a concentration 50 ℃, Na 2 S 2 O 3 · 5H 2 O of 1.5 × 10 - 5 mol / mol AgBr
Then, after a delay of 3 minutes, 0.5 × 10 −5 mol / mol AgBr of the above-mentioned gold sensitizer was added, followed by aging for 60 minutes.

次に温度を40℃に下げ、かぶり防止剤、塗布助剤を加え
て、銀1.5g/m2で透明ベース上に塗布した。
Next, the temperature was lowered to 40 ° C., an antifoggant and a coating aid were added, and silver 1.5 g / m 2 was coated on a transparent base.

次に、実施例6と比較例3の乳剤を、表1と同じ比較を
し、結果を表3に示した。比較例3に対する本発明の効
果が確認された。
Next, the emulsions of Example 6 and Comparative Example 3 were compared in the same manner as in Table 1, and the results are shown in Table 3. The effect of the present invention on Comparative Example 3 was confirmed.

【図面の簡単な説明】[Brief description of drawings]

第1図は化学増感核の生成する位置を模式的に示すもの
であり、(a)は立方体に近い十四面体粒子の場合を、
(b)は八面体に近い十四面体粒子の場合を示す。 第2図は本発明のAgX粒子の製法に於て立方晶雰囲気下
における(100)面と(111)面のケミカルポテンシャル
に対する溶液中の銀イオンのケミカルポテンシャルの関
係を示す模式図である。 第3図は本発明の特に好ましいAgX粒子のバンド構造を
示すものである。 たて軸はポテンシャルを示し横軸は幾何学的座標を示
す。黒丸は電子を、白丸は正孔を示す。 第4図及び第5図は実施例−4及び5で調製されたハロ
ゲン化銀粒子の結晶の構造を表わす電子顕微鏡写真であ
る。倍率はそれぞれ21,000倍及び19,000倍である。 第6図は実施例−6のAgXの構造を模式的に表わしたも
のであり(a)はホスト粒子の十四面体粒子を、(b)
はホスト粒子の上に異なったハロゲン組成のAgXを成長
させた十四面体粒子を示す。
FIG. 1 schematically shows the positions where chemically sensitized nuclei are generated. (A) shows the case of tetradecahedral grains close to a cube,
(B) shows a case of tetradecahedral grains close to an octahedron. FIG. 2 is a schematic diagram showing the relationship between the chemical potentials of the (100) plane and the (111) plane in the cubic crystal atmosphere in the method for producing AgX particles of the present invention and the chemical potential of silver ions in the solution. FIG. 3 shows a band structure of AgX particles which is particularly preferable in the present invention. The vertical axis represents potential and the horizontal axis represents geometrical coordinates. Black circles represent electrons and white circles represent holes. 4 and 5 are electron micrographs showing the crystal structure of the silver halide grains prepared in Examples 4 and 5. The magnification is 21,000 times and 19,000 times, respectively. FIG. 6 schematically shows the structure of AgX of Example-6. (A) shows tetradecahedral grains of host grains, (b) shows
Indicates tetradecahedral grains obtained by growing AgX having different halogen compositions on the host grains.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】分散媒とハロゲン化銀粒子とからなるハロ
ゲン化銀乳剤であって、全ハロゲン化銀粒子の投影面積
の70%以上が1つのハロゲン化銀粒子表面上に少なくと
も{100}と{111}の結晶表面を有し、該結晶表面の表
面層のハロゲン組成が互いに異なり、かつ、次記a)〜
c)の特徴を有する14面体粒子であることを特徴とする
ハロゲン化銀乳剤。 a) 〔{111}面の面積/{100}面の面積〕が20〜1/
20である。 b) {100}と{111}の結晶表面の一方の結晶表面上
にのみ基質のハロゲン化銀粒子と異なるハロゲン組成の
ハロゲン化銀を、非エピタキシャル状(基質と同一結晶
系層を基質上に単なる延長層として)に積層して形成さ
れており、該ハロゲン組成が沃度含率で互いに2〜40モ
ル%異なるか、またはCl-含率で互いに7〜100モル%異
なる。 c) 化学増感核が一方の結晶面上に優先的に形成され
ており、〔(優先的に化学増感核が形成される結晶面上
の化学増感核の数/cm2)/(優先的に化学増感核が形
成されない結晶面上の化学増感核の数/cm2)〕が2.5以
上である。
1. A silver halide emulsion comprising a dispersion medium and silver halide grains, wherein 70% or more of the projected area of all silver halide grains is at least {100} on the surface of one silver halide grain. Have a {111} crystal surface, the halogen compositions of the surface layers of the crystal surface are different from each other, and the following a) to
A silver halide emulsion which is a tetradecahedral grain having the characteristics of c). a) [area of {111} plane / area of {100} plane] is 20 to 1 /
Twenty. b) Only on one of the {100} and {111} crystal surfaces, a silver halide having a halogen composition different from that of the silver halide grain of the substrate is non-epitaxial (the same crystal system layer as the substrate is formed on the substrate). The halogen compositions differ from each other in iodine content by 2 to 40 mol% or in Cl content by 7 to 100 mol%. c) Chemically sensitized nuclei are preferentially formed on one of the crystal faces, and [(number of chemically sensitized nuclei on the crystal face where preferentially chemically sensitized nuclei are formed / cm 2 ) / ( The number of chemically sensitized nuclei on the crystal plane where preferentially no chemically sensitized nuclei are formed / cm 2 )] is 2.5 or more.
【請求項2】該〔{111}面の面積/{100}面の面積〕
の値が10〜1/10であることを特徴とする特許請求の範囲
第1項記載のハロゲン化銀乳剤。
2. The [area of {111} plane / area of {100} plane]
The silver halide emulsion according to claim 1, wherein the value of is 10 to 1/10.
【請求項3】分散媒とハロゲン化銀粒子とからなるハロ
ゲン化銀乳剤であって、全ハロゲン化銀粒子の投影面積
の70%以上が1つのハロゲン化銀粒子表面上に少くとも
{100}と{111}の結晶表面を有し、該結晶表面の表面
層のハロゲン組成が互いに異なり、かつ、次記a)〜
c)の特徴を有するアスペクト比が1.5以上の平行双晶
面を有する平板状粒子であることを特徴とするハロゲン
化銀乳剤。 a) 〔該{111}結晶表面の面積/該{100}結晶表面
の面積〕が20〜1.0である。 b) {100}と{111}の結晶表面の一方の結晶表面上
にのみ基質のハロゲン化銀粒子と異なるハロゲン組成の
ハロゲン化銀を、非エピタキシャル状(基質と同一結晶
系層を基質上に単なる延長層として)に積層して形成さ
れており、該ハロゲン組成が沃度含率で互いに2〜40モ
ル%異なるか、またはCl-含率で互いに7〜100モル%異
なる。 c) 該平板状粒子の主表面が{111}結晶表面であ
り、該{100}結晶表面が該平板状粒子のエッジ部に存
在する。
3. A silver halide emulsion comprising a dispersion medium and silver halide grains, wherein 70% or more of the projected area of all silver halide grains is at least {100} on the surface of one silver halide grain. And a {111} crystal surface, the halogen compositions of the surface layers of the crystal surface are different from each other, and a) to
A silver halide emulsion characterized in that it is a tabular grain having parallel twin planes having an aspect ratio of 1.5 or more and having the characteristic of c). a) [Area of the {111} crystal surface / area of the {100} crystal surface] is 20 to 1.0. b) Only on one of the {100} and {111} crystal surfaces, a silver halide having a halogen composition different from that of the silver halide grain of the substrate is non-epitaxial (the same crystal system layer as the substrate is formed on the substrate). The halogen compositions differ from each other in iodine content by 2 to 40 mol% or in Cl content by 7 to 100 mol%. c) The main surface of the tabular grain is a {111} crystal surface, and the {100} crystal surface is present at an edge portion of the tabular grain.
【請求項4】化学増感核が一方の結晶面上に優先的に形
成されており、〔(優先的に化学増感核が形成される結
晶面上の化学増感核の数/cm2)/(優先的に化学増感
核が形成されない結晶面上の化学増感核の数/cm2)〕
が2.5以上であることを特徴とする特許請求の範囲第3
項記載のハロゲン化銀乳剤。
4. Chemically sensitized nuclei are preferentially formed on one of the crystal faces, and [(number of chemically sensitized nuclei on the crystal face where preferentially chemically sensitized nuclei are formed / cm 2 ) / (Number of chemically sensitized nuclei on the crystal plane where preferentially no chemically sensitized nuclei are formed / cm 2 )]
Is 2.5 or more, Claim 3
A silver halide emulsion as described in the above item.
【請求項5】該平板状粒子の主平面の形状が六角形であ
り、かつ、該粒子の粒子サイズ分布の変動係数が30%以
下であることを特徴とする特許請求の範囲第3項記載の
ハロゲン化銀乳剤。
5. The tabular grain according to claim 3, wherein the main plane of the tabular grain is hexagonal, and the variation coefficient of grain size distribution of the grain is 30% or less. Silver halide emulsion.
JP63251215A 1987-10-05 1988-10-05 Silver halide emulsion Expired - Fee Related JPH0789205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251215A JPH0789205B2 (en) 1987-10-05 1988-10-05 Silver halide emulsion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-251377 1987-10-05
JP25137787 1987-10-05
JP63251215A JPH0789205B2 (en) 1987-10-05 1988-10-05 Silver halide emulsion

Publications (2)

Publication Number Publication Date
JPH0234A JPH0234A (en) 1990-01-05
JPH0789205B2 true JPH0789205B2 (en) 1995-09-27

Family

ID=26540103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251215A Expired - Fee Related JPH0789205B2 (en) 1987-10-05 1988-10-05 Silver halide emulsion

Country Status (1)

Country Link
JP (1) JPH0789205B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0632792B1 (en) * 1990-03-23 1998-05-06 Vontech International Corporation Interground fiber cement
US5214215A (en) * 1990-03-30 1993-05-25 Union Carbide Chemicals & Plastics Technology Corporation Selective production of aminoethylethanolamine
JP2779719B2 (en) * 1991-10-07 1998-07-23 富士写真フイルム株式会社 Silver halide emulsion
KR100828948B1 (en) * 2006-10-30 2008-05-13 주식회사 이엠따블유안테나 Interdigital capacitor, inductor, and transmission line and coupler using them
KR20170000919U (en) 2015-09-02 2017-03-10 권영선 Top Cover for Combined (Combi) Blind

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445541B1 (en) * 1978-12-26 1986-10-24 Du Pont
JPS55149934A (en) * 1979-05-12 1980-11-21 Konishiroku Photo Ind Co Ltd Silver halide photographic emulsion
JPS5627134A (en) * 1979-08-14 1981-03-16 Konishiroku Photo Ind Co Ltd Manufacture of silver halide emulsion
BE894965A (en) * 1981-11-12 1983-05-09 Eastman Kodak Co HIGH FORM INDEX SILVER BROMOIIDE PHOTOGRAPHIC EMULSION AND PROCESS FOR PREPARING THE SAME
JPH0644133B2 (en) * 1985-04-17 1994-06-08 富士写真フイルム株式会社 Silver halide photographic light-sensitive material
JPS627040A (en) * 1985-07-03 1987-01-14 Fuji Photo Film Co Ltd Silver halide photographic emulsion

Also Published As

Publication number Publication date
JPH0234A (en) 1990-01-05

Similar Documents

Publication Publication Date Title
JP2670847B2 (en) Silver halide photographic emulsion and method for producing the same
JPH0659360A (en) Silver halide emulsion
JPH04318544A (en) Silver halide emulsion for processing of inclusion of physical development for dissolution
JPH0789205B2 (en) Silver halide emulsion
JP2559264B2 (en) Silver halide emulsion and method for producing the same
JP2604230B2 (en) Silver halide photographic emulsion
JP2794247B2 (en) Silver halide emulsion
JPH07146522A (en) Silver halide emulsion
JP2583445B2 (en) Silver halide emulsion and method for producing the same
JPH07113738B2 (en) Improved silver halide photographic light-sensitive material with less fog over time
US5420005A (en) Silver halide emulsion
JP2779719B2 (en) Silver halide emulsion
JP2840897B2 (en) Silver halide emulsion and method for producing the same
JP2002287280A (en) Silver halide emulsion and method for preparing the same
JP3626337B2 (en) Silver halide grains, photographic light-sensitive material and method for producing the same
JP2681529B2 (en) Silver halide emulsion
JP2778861B2 (en) Silver halide photographic emulsions and photographic materials
JP2835607B2 (en) Silver halide emulsion
JPH07101291B2 (en) Silver halide emulsion and method for producing the same
JP2709799B2 (en) Method for producing silver halide emulsion
JP3278227B2 (en) Silver halide photosensitive material
JP3637476B2 (en) Silver halide photographic emulsion
JPH11102042A (en) Silver halide photographic emulsion and its manufacture
JP2000066325A (en) Silver halide emulsion and silver halide photographic sensitive material
JPH08220664A (en) Silver halide photographic emulsion and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees