JPH0234A - Silver halide emulsion and its production - Google Patents

Silver halide emulsion and its production

Info

Publication number
JPH0234A
JPH0234A JP25121588A JP25121588A JPH0234A JP H0234 A JPH0234 A JP H0234A JP 25121588 A JP25121588 A JP 25121588A JP 25121588 A JP25121588 A JP 25121588A JP H0234 A JPH0234 A JP H0234A
Authority
JP
Japan
Prior art keywords
crystal
silver halide
agx
particle
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25121588A
Other languages
Japanese (ja)
Other versions
JPH0789205B2 (en
Inventor
Mitsuo Saito
光雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63251215A priority Critical patent/JPH0789205B2/en
Publication of JPH0234A publication Critical patent/JPH0234A/en
Publication of JPH0789205B2 publication Critical patent/JPH0789205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To obtain the silver halide emulsion having a high sensitivity and an excellent development progress by composing a silver halide particle contg. in an emulsion of a particle which has the crystal surface of crystal faces (100) and (111) on the surface of one of the particle and a different halogen composition. CONSTITUTION:The AgX emulsion contg. a dispersion medium and the silver halide AgX particle is composed of the particle which has crystal surfaces of the crystal faces (100) and (111) on the surface of >=70% of the total projected area and the different halogen composition on the surface layer of the particle respectively. The position of the chemical sensitizing nucleus of the particle is controlled by differing the halogen composition on the crystal surface of the particle or the formability of the chemical sensitizing nucleus composed of an effective electron trap and/or the absorbing property due to the halogen composition on the substrate of an adsorbent. Thus, the silver halide emulsion which has the excellent sensitivity, gradation, reciprocity law failure and development progress, is obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明は写真の分野において有用であるハロゲン化銀(
以後AgXとよぶ)乳剤に関し、特に分散媒と1つのA
gX粒子表面上に、少なくとも(100) と+111
1結晶表面を有するAgX粒子とからなるAgX乳剤に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention provides silver halide (silver halide) useful in the field of photography.
Regarding emulsions (hereinafter referred to as AgX), in particular, a dispersion medium and one A
On the gX particle surface, at least (100) and +111
The present invention relates to an AgX emulsion consisting of AgX grains having one crystal surface.

(先行技術とその問題点) 一般に高感度の感光性AgX粒子を作る為には、感光中
心となる化学増感核の位置や数を制御してやる必要があ
る。その限定方法としては■ 吸着剤の吸着あり、もし
くはなしの状態でAgX粒子の角部や、エツジ部に、ハ
ロゲンコンバージョン法もしくはA g N Ox と
ハロゲン化アルカリ液の添加により、エピタキシャル粒
子を成長させ、吸着剤を吸着させて安定化した後、化学
増感し、潜像形成位置をエピタキシャル部に限定する方
法。
(Prior art and its problems) Generally, in order to produce highly sensitive photosensitive AgX particles, it is necessary to control the position and number of chemically sensitizing nuclei that serve as photosensitive centers. The limiting method is: 1) Growing epitaxial particles on the corners and edges of AgX particles with or without adsorption using a halogen conversion method or by adding AgNOx and a halogenated alkali solution. , a method in which the adsorbent is adsorbed and stabilized, and then chemically sensitized to limit the latent image formation position to the epitaxial region.

これについては、特開昭58−108526号、同57
−133540号、同62−32443号の記載を参考
にすることができる。
Regarding this, please refer to JP-A-58-108526 and JP-A-58-108526.
-133540 and 62-32443 can be referred to.

■ 粒子形成中に増悪色素等の添加剤を加え、粒子に欠
陥部を導入し、その欠陥部にのみ優先的に化学増感核を
形成する方法。
■ A method in which additives such as aggravating dyes are added during particle formation to introduce defective areas into the particles, and chemical sensitization nuclei are preferentially formed only in these defective areas.

この方法は、粒子に欠陥を導入することにより、化学増
感核の数を制御する方法である。これらについては、米
国特許2.735,766、同3゜628.960、同
4,183,756、同4゜225.660、リサーチ
・ディスクロージャーアイテム19227.192巻、
P、155(1980年)の記載を参考にすることがで
きる。
This method is a method for controlling the number of chemically sensitized nuclei by introducing defects into particles. Regarding these, see U.S. Patent No. 2,735,766, U.S. Patent No. 3°628.960, U.S. Patent No. 4,183,756, U.S. Pat.
P, 155 (1980) may be referred to.

■ 1つのAgX粒子上に二種以上の結晶面を有するA
gX粒子を用い、それらの結晶面に対する硫黄増感剤の
反応性の違いを利用して、ある一つの結晶面上のみに化
学増感核を形成する方法。
■ A with two or more types of crystal planes on one AgX particle
A method of forming chemical sensitizing nuclei only on one crystal face using gX particles and taking advantage of the difference in reactivity of a sulfur sensitizer to those crystal faces.

例えば、40℃でpH6,4、pAg 8.4の乳剤を
用いた場合ハイポによる硫黄増感の反応性が、+111
1面>[1001面であることを利用して14面体粒子
の(111)面上にのみ化学増感核を形成する方法、こ
の場合(111)面積と1100)面積、比率の異なる
14面体粒子を用いることにより、化学増感核の位置と
数を制御する方法である。これについてはJ、 Pho
t、 Sci。
For example, when using an emulsion with pH 6.4 and pAg 8.4 at 40°C, the reactivity of sulfur sensitization by hypo is +111
A method of forming chemical sensitizing nuclei only on the (111) plane of a tetradecahedral particle using the fact that 1 plane>[1001 plane, in this case, a tetradecahedral particle with different ratios of (111) area and 1100) area. This is a method of controlling the position and number of chemically sensitized nuclei by using Regarding this, J, Pho
t, Sci.

23.249 (1975)日本写真学会誌、47巻、
P、255 (1984)の図3を参考にすることがで
きる。
23.249 (1975) Journal of the Photographic Society of Japan, vol. 47,
P, 255 (1984), Figure 3 may be referred to.

■ AgX粒子に吸着剤1(増感色素、かぶり防止剤、
安定剤等の添加剤)を吸着させておいてから、化学増感
剤を加えて化学増感する方法がある。
■ Adsorbent 1 (sensitizing dye, antifogging agent,
There is a method of chemical sensitization by adsorbing additives such as stabilizers and then adding a chemical sensitizer.

この方法では、化学増感核は吸着剤の吸着していない場
所にのみ形成される為、化学増感核の数は制御されるが
、位置は制御されない、この方法については、例えば特
開昭58−113926号、同58−113927号、
同58−113928号、米国特許4,439,520
号、同4,435.501号、Re5earch Di
sclosure、Itam、  17643 、5e
ction m、特開昭62−6251.特開昭58−
126526、特開昭62−56949、特開昭62−
43644に記載されている。
In this method, chemically sensitized nuclei are formed only in areas where no adsorbent is adsorbed, so the number of chemically sensitized nuclei is controlled, but the position is not controlled. No. 58-113926, No. 58-113927,
No. 58-113928, U.S. Patent No. 4,439,520
No. 4,435.501, Re5earch Di
sclosure, Itam, 17643, 5e
ction m, JP-A-62-6251. Japanese Unexamined Patent Publication No. 1983-
126526, JP-A-62-56949, JP-A-62-
43644.

■ 1つのAgX粒子表面上に二種以上の結晶面を有す
るAgX粒子を用い、それらの結晶面に対する吸着に選
択性をもつ吸着剤(面選択性吸着剤)を加え、吸着剤が
高密度に吸着した結晶面と、吸着剤が疎に吸着した結晶
面を形成した後、化学増感剤を加えて化学増感し、吸着
剤が疎に吸着した結晶面上に化学増感核を形成する方法
■ AgX particles with two or more types of crystal planes on the surface of one AgX particle are used, and an adsorbent that is selective for adsorption to those crystal planes (surface-selective adsorbent) is added to increase the density of the adsorbent. After forming an adsorbed crystal plane and a crystal plane on which the adsorbent is loosely adsorbed, a chemical sensitizer is added to chemically sensitize it, and chemically sensitized nuclei are formed on the crystal plane on which the adsorbent is loosely adsorbed. Method.

これについては、特開昭58−113928号に、「分
光増感色素が平板状粒子の主要表面を形成する結晶表面
に優先的に吸着されることによって、化学増感が平板状
粒子の互いに異なる結晶表面で起り得る」という短かい
記述がある。
Regarding this, JP-A-58-113928 describes that ``The spectral sensitizing dye is preferentially adsorbed on the crystal surfaces forming the main surfaces of the tabular grains, so that chemical sensitization differs from one another in the tabular grains. There is a short description that ``can occur on crystal surfaces''.

この方法は化学増感核の数と位置を制御しようとする方
法である。
This method attempts to control the number and location of chemically sensitized nuclei.

本発明はこれらの方法の内、■および■の方法の改良に
関するものである。
The present invention relates to improvements in methods (1) and (2) among these methods.

しかし、■の方法には、次のような問題点が残っている
However, the following problems remain with method (2).

(11この場合、用いることのできる吸着剤は、AgX
への吸着能に晶癖依存性の大きい化合物にのみ限定され
、用いる吸着剤の選択範囲が大きく制約される。
(11 In this case, the adsorbent that can be used is AgX
It is limited only to compounds whose adsorption ability is highly dependent on crystal habit, and the selection range of adsorbents to be used is greatly restricted.

(2)化学増感核の形成サイトを限定する為には、吸着
剤の吸着は強固であることが好ましいが、これは、吸着
能が晶癖依存性をもつことと相反する。
(2) In order to limit the formation sites of chemically sensitized nuclei, it is preferable that the adsorption of the adsorbent be strong, but this is contrary to the fact that the adsorption capacity is crystal habit dependent.

即ち、一般に強く吸着する添加剤はどのような面にも強
く吸着する為、晶癖依存性は少ない為である。
That is, in general, strongly adsorbing additives strongly adsorb to any surface, so dependence on crystal habit is small.

一般に、吸着能の晶癖依存性の大きい色素や添加剤の吸
着力は弱いという問題がある。従って、増感色素や添加
剤が吸着した結晶面上にも、化学増感核が形成され、化
学増感核形成能Wの制御が不十分である。
Generally, there is a problem that the adsorption power of dyes and additives whose adsorption ability is highly dependent on crystal habit is weak. Therefore, chemical sensitizing nuclei are also formed on the crystal planes on which the sensitizing dye and additives have been adsorbed, and the ability to form chemical sensitizing nuclei W is insufficiently controlled.

(3)  一方、■の方法にも、次のような問題点があ
る。硫黄増感剤の反応にも晶癖依存性のあることが知ら
れているが、その反応性の差が十分でない。例えば、ハ
イポを用いて、50℃、pH6,4、pAg8.5の乳
剤条件で熟成を行なった場合、ハイポの低濃度域では、
(l OO)面上に比べて+1111面上で選択的に反
応が起こるが、金増感剤を一緒に加えると、その差が小
さくなってしまう。
(3) On the other hand, method (■) also has the following problems. It is known that the reaction of sulfur sensitizers is also crystal habit dependent, but the difference in reactivity is not sufficient. For example, when ripening is performed using Hypo under emulsion conditions of 50°C, pH 6.4, and pAg 8.5, in the low concentration range of Hypo,
The reaction occurs selectively on the +1111 plane compared to the (l OO) plane, but when a gold sensitizer is added together, the difference becomes smaller.

また、これは公知ではないが、その逆の場合、例えば、
トリエチルチオ尿素を用いて+1001面上にのみ化学
増感核を形成しようとすると、その(100}と{11
11面上での反応性の差が十分でなく、また、金増感剤
を併用して熟成すると、やはり、その反応の面選択性が
殆んどなくなるという情況にある。
Also, although this is not known, the reverse case, for example,
When trying to form a chemically sensitized nucleus only on the +1001 plane using triethylthiourea, its (100} and {11
The situation is such that the difference in reactivity on the 11 faces is not sufficient, and if a gold sensitizer is used in combination for ripening, the face selectivity of the reaction is almost completely lost.

(発明の目的) 本発明の目的は、化学増感核の位置と数が十分に制御さ
れたハロゲン化銀乳剤を与えることにより、怒度、階調
、相反則特性、現像進行性、経時安定性、粒状性、シャ
ープネス、解像力を改良することが可能なハロゲン化銀
乳剤を提供することにある。
(Objective of the Invention) The object of the present invention is to provide a silver halide emulsion in which the position and number of chemically sensitizing nuclei are sufficiently controlled, thereby improving the degree of anger, gradation, reciprocity properties, development progress, and stability over time. The object of the present invention is to provide a silver halide emulsion capable of improving graininess, graininess, sharpness, and resolution.

4、発明の開示 本発明の目的は、分散媒とAgX粒子とからなるAgX
乳剤において、AgX粒子の全投影面積の70%以上、
好ましくは80%以上、より好ましくは90%以上が1
つのハロゲン化銀粒子表面上に少くとも+1001 と
(111)の結晶表面を存し、該結晶表面の表面層のハ
ロゲン組成が互いに異なり、かつ、化学増悪核が一方の
結晶面上に優先的に形成されていることを特徴とするA
gX乳剤によって達成された。
4. Disclosure of the Invention The purpose of the present invention is to produce an AgX material consisting of a dispersion medium and AgX particles.
In the emulsion, 70% or more of the total projected area of AgX grains,
Preferably 80% or more, more preferably 90% or more is 1
At least +1001 and (111) crystal surfaces exist on the surfaces of two silver halide grains, the halogen compositions of the surface layers of the crystal surfaces are different from each other, and the chemical aggravation nuclei are preferentially located on one crystal surface. A characterized by being formed
This was achieved with gX emulsion.

従来、例えば14面体粒子の+1001面もしくは+1
111面の一方の結晶面上に化学増感核を形成する場合
、単に、■硫黄増感剤のfl 00)面と+1111面
に対する反応性の違いもしくは@(吸着剤の+1001
面とfl 111面に対する吸着性の違い)+(硫黄増
感剤のfl 001面と+1111面に対する反応性の
違い)を利用して行なう方法に対し、本発明の方法は、
+1001面とT1111面の表面層のハロゲン組成を
違えることにより、上記■、Oの他に O有効な電子トラップとなる化学増感核形成能の違い、
もしくは■(吸着剤の基質のハロゲン組成による吸着性
の違い)+(有効な電子トラップとなる化学増感核形成
能の違い)を利用するものであり、そのdiscrim
ination因子が増すことにより、化学増感核の位
置の制御をより十分に行なうものである。
Conventionally, for example, the +1001 face or +1 face of a tetradecahedral particle
When forming chemical sensitizing nuclei on one of the 111 crystal faces, simply
In contrast to the method that utilizes the difference in adsorption to the fl 001 plane and the fl 111 plane) + (the difference in the reactivity of the sulfur sensitizer to the fl 001 plane and the +1111 plane), the method of the present invention
By changing the halogen composition of the surface layer of the +1001 plane and the T1111 plane, the above (■) difference in the ability to form chemically sensitized nuclei, which becomes an effective electron trap for O in addition to O;
Or, it utilizes (differences in adsorption properties due to the halogen composition of the adsorbent substrate) + (differences in the ability to form chemically sensitized nuclei that become effective electron traps), and its discrim
By increasing the ination factor, the position of the chemosensitizing nucleus can be more fully controlled.

まず、本発明のAgX粒子の構造について詳述し、次に
SiAgX粒子の製法について詳述する。
First, the structure of the AgX particles of the present invention will be explained in detail, and then the method for producing SiAgX particles will be explained in detail.

本発明のAgX粒子は、1つのAgX粒子表面上に少な
くともfl O01とfl 111の結晶表面を有する
粒子であるが、より具体的には、14面体粒子と、平行
双晶面を有する平板状粒子である。
The AgX grains of the present invention are grains having crystal surfaces of at least fl O01 and fl 111 on the surface of one AgX grain, but more specifically, they include tetradecahedral grains and tabular grains having parallel twin planes. It is.

14面体粒子の外表面が+1001面と(111)面を
有することはよく知られているが、平板状AgX粒子の
場合、T、 F、 Hamilton and L、 
E。
It is well known that the outer surface of a tetradecahedral grain has a +1001 face and a (111) face, but in the case of a tabular AgX grain, T, F, Hamilton and L,
E.

Brady (Journal of Applied
 Physics、 35巻、P。
Brady (Journal of Applied
Physics, Volume 35, P.

414〜421.1964年)によると、平行な主外表
面も、エツジ部の外表面もともに+1111面である。
414-421.1964), both the parallel main outer surfaces and the outer surfaces of the edge portions are +1111 planes.

即ち、全表面が[1111面であるsingle tw
in粒子が単に積み重なった構造と考えればよい。
In other words, the entire surface is [1111 planes, single tw
It can be thought of as a structure in which in particles are simply piled up.

しかし、本発明者らによる特願昭62−203635号
記載の平板状粒子ではエツジ部に(100)面を有する
0本発明でいう平板状粒子はこのような形態の粒子であ
る。
However, the tabular grains described in Japanese Patent Application No. 62-203635 by the present inventors have (100) faces in the edge portions.The tabular grains as used in the present invention are particles having such a form.

本発明のAgX粒子は、1つのAgX粒子上に少なくと
もTI O01面とfl 111面を有するが、その+
1111面の面積/+1001面の面積の平均値が14
面体粒子の場合は20〜1/20、好ましくはlO〜1
/10であり、平板粒子の場合は20〜1.0.好まし
くは15〜2.0である。なお、この(1113面と(
100)面の面積比率は増感色素の吸着の(1111面
と(100)面依存性を利用した測定法(T、 Tan
1 Journalofl+aaging 5cien
ce、29. 165 (1985) )を用いて測定
することができる。
The AgX particles of the present invention have at least a TI O01 plane and a fl 111 plane on one AgX particle, but the +
The average value of area of 1111 sides/+1001 areas is 14
In the case of facepiece particles, it is 20 to 1/20, preferably lO to 1
/10, and in the case of tabular grains it is 20 to 1.0. Preferably it is 15-2.0. In addition, this (1113 side and (
The area ratio of the 100) plane is measured using the dependence of the adsorption of the sensitizing dye on the (1111 plane and (100) plane (T, Tan
1 Journalofl+aaging 5cien
ce, 29. 165 (1985)).

但し、14面体粒子の如く、その電子顕微鏡写真像から
、該面積比率が明らかな場合は、電子顕微鏡写真より該
面積比率を求めることができる。
However, when the area ratio is clear from the electron micrograph image, such as a tetradecahedral particle, the area ratio can be determined from the electron micrograph.

本発明のAgX粒子の(100)と1111)結晶表面
の表面層のハロゲン組成は互いに異なることを特徴とす
るが、この場合の結晶表面の表面層とは、表面から5格
子分、好ましくは20格子分の結晶層を指す。
The AgX particles of the present invention are characterized in that the halogen compositions of the surface layers on the (100) and 1111) crystal surfaces are different from each other. Refers to the crystal layer of the lattice.

本発明のAgX粒子の(100}と{111)結晶表面
の表面層のハロゲン組成は互いに異なることを特徴とす
るが、それは浸度含量および/またはC1含量で異なる
ことが好ましい、浸度含量を異ならせる場合には、互い
に2〜40モル%、好ましくは3〜30モル%異ならせ
ることが好ましい、この場合、化学増感核は該低沃度含
量表面層を有する結晶表面上に優先的に形成されている
ことが好ましい、また、化学増感核が優先的に形成され
る結晶表面(以後、A面と呼ぶ)の表面層の浸度含量は
5モル%以下が好ましく、3モル%以下がより好ましい
The halogen composition of the surface layers of the (100} and {111) crystal surfaces of the AgX particles of the present invention is characterized by being different from each other, which preferably differs in the immersion content and/or the C1 content. If they are different, it is preferable that they differ from each other by 2 to 40 mol%, preferably from 3 to 30 mol%. In this case, the chemical sensitizing nuclei are preferentially located on the crystal surface having the low iodine content surface layer. Preferably, the surface layer of the crystal surface (hereinafter referred to as A-side) where chemically sensitized nuclei are preferentially formed has a immersion content of 5 mol% or less, and 3 mol% or less. is more preferable.

化学増感核が優先的に形成されない結晶表面(以後B面
と呼ぶ)の表面層の浸度含量は2モル%〜固溶限界が好
ましく、3〜35モル%がより好ましい、その理由は ■−瓜に、シアニン色素の如き吸着剤は、高沃度含量表
面層を有する結晶表面上に優先的に強く吸着する為、該
高沃度含量表面層を有する結晶表面上に化学増感核がよ
り形成され難い為である。
The immersion content of the surface layer of the crystal surface where chemical sensitizing nuclei are not preferentially formed (hereinafter referred to as B-side) is preferably 2 mol% to the solid solubility limit, and more preferably 3 to 35 mol%.The reason is (1) - In melon, adsorbents such as cyanine dyes preferentially and strongly adsorb onto crystal surfaces having a high iodine content surface layer, so that chemical sensitizing nuclei are formed on the crystal surface having a high iodine content surface layer. This is because it is more difficult to form.

■ 高沃度含量層を有する結晶表面上に化学増感を行な
うと、Ag寞S核やAg−Au−3核は形成されるが、
それらが有効な電子トラップとなりにくい為、結果的に
は有効な化学増悪核が形成され難いという傾向がある為
である。
■ When chemical sensitization is performed on a crystal surface with a high iodine content layer, Ag-S nuclei and Ag-Au-3 nuclei are formed;
This is because they are difficult to become effective electron traps, and as a result, it tends to be difficult to form effective chemical aggravation nuclei.

これは、E、 Mo1sar (1,C,P、S、 T
okyo+ 1967年)や11.旧rsch (1,
Phot、 Scr、、  20. 187(1972
年))の方法に従って、同一粒子サイズで表面層の浸度
含量を変化させた単分散正常晶乳剤をイオウ増悪、金−
イオウ−増感し、その反射スペクトルを測定した結果で
ある。
This is E, Mo1sar (1, C, P, S, T
OKYO+ 1967) and 11. old rsch (1,
Phot, Scr,, 20. 187 (1972
Monodisperse normal crystal emulsions with the same grain size and varying immersion content in the surface layer were prepared according to the method of 2010).
These are the results of sulfur-sensitization and measurement of its reflection spectrum.

また、C1含量を異ならせる場合には、互いに7〜10
0モル%、好ましくは10〜80モル%異ならせること
が好ましい、この場合、化学増感核は該高01含量層を
存する結晶表面上に優先的に形成されていることが好ま
しい。
In addition, when the C1 content is different, 7 to 10
The difference is preferably 0 mol %, preferably 10 to 80 mol %. In this case, it is preferable that the chemical sensitizing nuclei are preferentially formed on the crystal surface where the high 01 content layer is present.

その理由は一般にシアニン色素の如き吸着剤は、AgC
j!Br粒子においては、高Br含量表面層を有する結
晶表面上により強く吸着する為、該高Br含量表面層を
存する結晶表面上に化学増悪核がより形成され難い為で
ある。
The reason is that adsorbents such as cyanine dyes are generally AgC
j! This is because Br particles are more strongly adsorbed onto the crystal surface having a high Br content surface layer, so that chemical aggravation nuclei are less likely to be formed on the crystal surface having the high Br content surface layer.

一般にシアニン色素の吸着強度はAgC1→AgBr−
AgBr+の順に強くなることが知られている。
Generally, the adsorption strength of cyanine dye is AgC1→AgBr-
It is known that the strength increases in the order of AgBr+.

本発明のAgX粒子のti o o+ と(111)結
晶表面の表面層のハロゲン組成は互いに異なるが、それ
はAgX粒子のI!Iectron ProbeMic
roanalysar(E P M A )法等により
調べることができる。
The ti o o+ of the AgX particles of the present invention and the halogen composition of the surface layer on the (111) crystal surface are different from each other, but this is because the I! of the AgX particles is different from each other. Iectron ProbeMic
It can be investigated by the roanalysar (EPMA) method or the like.

本発明の°AgX粒子においては8面上には一種以上の
吸着剤を吸着させておくことが更に好ましい、この場合
の吸着剤としては、 (a)  基質のハロゲン組成により吸着力が異なる吸
着剤。
In the °AgX particles of the present invention, it is more preferable to have one or more adsorbents adsorbed on the 8 faces. In this case, the adsorbents include: (a) an adsorbent whose adsorption power varies depending on the halogen composition of the substrate; .

山1  (111)と(100)結晶面に対する吸着力
が異なる吸着剤が好ましい。
Mountain 1 Adsorbents having different adsorption powers for the (111) and (100) crystal planes are preferable.

一般にシアニン色素の吸着強度はAgC1−AgBr−
=AgBrlの順に強くなることが知られており、本発
明の目的と合致する。
Generally, the adsorption strength of cyanine dye is AgC1-AgBr-
It is known that the strength increases in the order of =AgBrl, which meets the purpose of the present invention.

これらの吸着剤の吸着特性については、T、 H,Ja
mes+ The Theory of the Ph
otographicProcess、 Fourth
 Edition、 Macmillan+ New 
York。
Regarding the adsorption properties of these adsorbents, T, H, Ja
mes+ The Theory of the Ph
otographicProcess, Fourth
Edition, Macmillan+ New
York.

1977 、 Chap、9. Chap、1. Ch
ap、13の記載を参考にすることができる。
1977, Chap, 9. Chap, 1. Ch
You can refer to the description in AP, 13.

A面としては平板粒子の場合は、(11,11面より 
+1001面の方が好ましい、それは平板粒子において
は、結晶、表面の面積割合が+1001面の方が圧倒的
に小さく、従って、化学増悪核の生成数と生成位置をよ
り制御できる為である。
In the case of tabular grains, the A-plane is (11, from the 11-plane
The +1001 plane is preferable because in tabular grains, the area ratio of the crystal to the surface of the +1001 plane is overwhelmingly smaller, and therefore the number and position of chemically aggravated nuclei can be more controlled.

一方、14面体粒子の場合、A面としては(111)面
と[1001面のどちらでもよいが、−最にfl 00
+面上の化学増悪核は[1111面上の化学増怒核に比
べてドツト状であり、より化学増感績の生成位置と数を
制御するという見地からはfI O01面上が好ましい
On the other hand, in the case of a tetradecahedral particle, the A plane may be either the (111) plane or the [1001 plane, but the -most fl 00
The chemical enhancement nuclei on the + side are dot-shaped compared to the chemical enhancement nuclei on the [1111 side, and from the standpoint of controlling the location and number of chemical sensitization formations, it is preferable to place them on the fI O01 side.

この(1111面上と+1001面上に形成される化学
増悪核の特性の違いについては、例えば、E、 Mo1
sar、 S、P、S、E、Tokyo(1967)、
E、 Mo1sarBer、  Bunsenges、
  Phys、  Chew、、7 2 +  P、4
 6 7 〜474 (1968)やG、 C,Far
nell+ J、PhoL。
Regarding the difference in the characteristics of chemically enhanced nuclei formed on the (1111 plane and +1001 plane), for example, E, Mo1
sar, S.P.S.E., Tokyo (1967),
E, Mo1sarBer, Bunsenges,
Phys, Chew,, 7 2 + P, 4
6 7-474 (1968) and G, C, Far
nell+ J, PhoL.

Sci、、23.249 (1975)の記載を参考に
することができる。
Sci., 23.249 (1975) may be referred to.

また、1粒子あたりのA面の数という観点からは、第1
図に示す如く、八面体界に近い14面体晶では、A面の
数は6つであり、一方、立方晶に近い14面体晶では、
A面の数は8つであり、1粒子あたりのA面の数を少な
くするという観点からは八面体界に近い14面体晶の方
が好ましい。
In addition, from the viewpoint of the number of A planes per particle, the first
As shown in the figure, in a tetradecahedral crystal close to an octahedral world, the number of A-planes is six, while in a tetradecahedral crystal close to a cubic crystal,
The number of A-planes is eight, and from the viewpoint of reducing the number of A-planes per particle, a tetradecahedral crystal close to an octahedral boundary is preferable.

本発明のAgX粒子は1つのAgX粒子表面に少くとも
+100}と{1111の結晶表面を存し、かつ、その
ハロゲン組成が異ることを特徴とする特許 的に形成されていることが好ましい.この場合の優先的
とは(優先的に化学増感績が形成される結晶面上の化学
増感績の数/cffl) / (優先的に化学増感績が
形成されない結晶面上の化学増感績の数/一)が、2.
5以上、好ましくは5以上を指す。
It is preferable that the AgX particles of the present invention have a patented structure characterized by having at least +100} and {1111 crystal surfaces on the surface of one AgX particle and having different halogen compositions. Preferential in this case means (number of chemical sensitizations on crystal faces where chemical sensitization is preferentially formed/cffl) / (chemical sensitization on crystal faces where chemical sensitization is not preferentially formed) The number of impressions/1) is 2.
5 or more, preferably 5 or more.

この比率を直接に観測することは難かしい.しかし、ハ
ロゲン化銀乳剤塗布物に露光し、その化学増感績(感光
核)に潜像を形成し、抑制現像し、その抑制現像核を電
子顕微鏡観察で見えるようにしてから、その抑制現像核
の数を数えるという方法で、化学増感績の上記比率を求
めることができる.この手段に関しては D. C. 
Birch ら、Journalof Photogr
aphic Science, 2 3巻,P.249
〜256 (1975年)に記載されている。
It is difficult to directly observe this ratio. However, when a silver halide emulsion coating is exposed to light, a latent image is formed on its chemically sensitized result (photosensitive nuclei), suppressed development is performed, and the suppressed development nuclei are made visible by electron microscopy, and then the suppressed development is performed. The above ratio of chemical sensitization can be determined by counting the number of nuclei. Regarding this method, D. C.
Birch et al., Journal of Photogr.
aphic Science, Volume 2 3, P. 249
~256 (1975).

ここで化学増悪核とはイオウ、セレン、テルル、金およ
び第8族貴金属化合物の単独およびその組み合わせから
なる化学増感績で、最も好ましくは合一イオウ増悪核で
ある.通常、イオウ増怒核、金増感核、貴金属増感績お
よびその組み合わせで呼ばれ、詳細は後述の文献を参考
にすることができる。
Here, the chemical enhancement nucleus is a chemical sensitization compound consisting of sulfur, selenium, tellurium, gold, and Group 8 noble metal compounds alone or in combination, and most preferably is a combined sulfur enhancement nucleus. It is usually called a sulfur sensitized nucleus, a gold sensitized nucleus, a noble metal sensitized nucleus, or a combination thereof, and for details, reference can be made to the literature mentioned below.

また、これらの粒子の内部は還元増感されていることが
好ましい.この還元増感銀核を有しているかどうかは、
ウェッジ露光し、常法により内部現像し、H−D曲線を
書かせた時、存在する内部かぶりの反転像が観察される
ことから、容易に判断することができる。
Furthermore, the inside of these particles is preferably reduction sensitized. Whether or not it has this reduction-sensitized silver nucleus is determined by
When wedge exposure is performed, internal development is carried out by a conventional method, and an HD curve is drawn, a reversal image of the existing internal fog is observed, so it can be easily determined.

粒子内部の結晶構造は一様なものでも、内部と外部が異
質なハロゲン組成からなるものでもよく、層状構造をな
していてもよい.その眉間のハロゲン組成変化は漸増型
、漸減型、急峻型のいずれでもよく、使用目的に応じて
使いわけることができるし、特願昭61−299155
記載の結晶構造も参考にすることができる。
The crystal structure inside the particle may be uniform, the inside and outside may have different halogen compositions, or it may have a layered structure. The halogen composition change between the eyebrows may be of a gradual increase type, a gradual decrease type, or a steep type, and can be used depending on the purpose of use.
The crystal structure described can also be referred to.

また、該結晶表面層とその内部との間のハロゲン組成変
化も、漸増型、漸減型、急峻型のいずれでもよいが、該
界面における電子トラップ性を少くするという観点から
は漸増悪、漸減型が好ましい。
Further, the halogen composition change between the crystal surface layer and its interior may be of a gradual increase type, a gradual decrease type, or a steep type, but from the viewpoint of reducing the electron trapping property at the interface, is preferred.

本発明でいうAgX粒子としては、沃臭化銀、塩沃臭化
銀であり、前記の表面層のハロゲン組成の制限以外に特
に制限はない。
The AgX grains used in the present invention are silver iodobromide and silver chloroiodobromide, and there are no particular limitations other than the aforementioned limitations on the halogen composition of the surface layer.

本発明のAgX粒子において、14面体粒子の粒子サイ
ズ分布は狭いことが好ましく、変動係数は20%以下が
好ましく、5%以下がより好ましい。
In the AgX particles of the present invention, the particle size distribution of the tetradecahedral particles is preferably narrow, and the coefficient of variation is preferably 20% or less, more preferably 5% or less.

本発明のAgX粒子において、平板状粒子の粒子サイズ
分布は狭いことが好ましく、変動係数は30%以下が好
ましく、15%以下がより好ましい.形状は三角形状で
も六角形状でもよいが、特願昭61−238808号記
載の六角形状平板粒子や特願昭62−203635号記
載の円形平板粒子がより好ましい。
In the AgX grains of the present invention, the grain size distribution of the tabular grains is preferably narrow, and the coefficient of variation is preferably 30% or less, more preferably 15% or less. Although the shape may be triangular or hexagonal, hexagonal tabular grains described in Japanese Patent Application No. 61-238808 and circular tabular grains described in Japanese Patent Application No. 62-203635 are more preferred.

本発明の平板状粒子の好ましいアスペクト比は1.0以
上であり、より好ましくは1.5〜16である。
The aspect ratio of the tabular grains of the present invention is preferably 1.0 or more, more preferably 1.5 to 16.

本発明のAgX乳剤は1つのAgX粒子表面上に少くと
も(100)と+11mlの結晶表面を有し、該結晶表
面の表面層のハロゲン組成が互いに異なるAgX粒子か
らなるが、それらの粒子が占める投影面積割合は、全粒
子の投影面積の70%以上が好ましく、80%以上がよ
り好ましく、90%以上が更に好ましい。
The AgX emulsion of the present invention has a crystal surface of at least (100) and +11 ml on the surface of one AgX grain, and is composed of AgX grains with different halogen compositions in the surface layer of the crystal surface, but these grains occupy The projected area ratio is preferably 70% or more of the projected area of all particles, more preferably 80% or more, and still more preferably 90% or more.

特に14面体粒子で超硬訓の階調のAgX乳剤が好まし
い場合には、本発明の3814面体粒子が全粒子の投影
面積の98%以上、より好ましくは99%以上であるこ
とが好ましく、粒子サイズ分布の変動係数は5%以下で
あることが特に好ましい。
In particular, when an AgX emulsion with 14-hedral grains and a superhard gradation is preferred, it is preferable that the 3814-hedral grains of the present invention account for 98% or more, more preferably 99% or more of the projected area of all grains. It is particularly preferable that the coefficient of variation of the size distribution is 5% or less.

次に本発明のAgX粒子の製法について述べる。Next, a method for producing AgX particles of the present invention will be described.

まず14面体粒子の製法について述べ、次に平板状粒子
の製法について述べる。
First, a method for producing tetradecahedral grains will be described, and then a method for producing tabular grains will be described.

/、/4’面体粒子 ゼラチン水溶液中でA g N O3水溶液とノ・ロゲ
ン化アルカリ水溶液のC,D、J、添加によシ作ること
ができるが、l1面体晶が生成するC、 D。
/, /4'hedral particles can be made by adding C, D, J, of an aqueous solution of A g N O 3 and an aqueous alkali solution of chloride in a gelatin aqueous solution, but C, D, in which 11-hedral crystals are formed.

J、のpBr(もしくはpAg)領域は、成長するハロ
ゲン組成、共存するAgX溶剤の量、成長時の過飽和度
に依存する。これらについてはに、 Murofush
iら、International  Congres
sof  Photographic  5cienc
e、Tokyo(/りA7)J、 Rodgers、 
Symposium Paper on Growth
of Photosensitive crystal
s、 Cambridge(/り7 r )  T、 
G、 Boggら、J、 Phot、 Sci、。
The pBr (or pAg) region of J depends on the halogen composition during growth, the amount of coexisting AgX solvent, and the degree of supersaturation during growth. For more information on these please visit Murofush
International Congress
sof Photographic 5cienc
e, Tokyo (/riA7) J, Rodgers,
Symposium Paper on Growth
of Photosensitive crystal
s, Cambridge (/ri7r) T,
G. Bogg et al., J. Phot, Sci.

x p 、、 r t (/り77)笹井明、日写誌、
4’7巻。
x p,, r t (/ri77) Akira Sasai, Nichishashi,
4'7 volumes.

p、211(/りr≠)の記載および特願昭62−コl
タタtコ号(以下、出願(A))の参考例コを参考にす
ることができる。例えばAgB rで臨界成長速度のj
0〜to%の過飽和レベルでpAg7 、r!〜7.参
領域である。
Description of p, 211 (/r≠) and patent application 1982-col.
The reference example of Tata T-co (hereinafter referred to as application (A)) can be referred to. For example, in AgB r, the critical growth rate j
At supersaturation levels from 0 to %, pAg7, r! ~7. This is a reference area.

この/≠面体粒子の(ll/)面積と(ioo)面積比
率は、結晶成長期のC,D、J、のpBr値によりかえ
ることができる0例えば、より立方体品が生成するpB
r値に近い電位でC,D、J。
The (ll/) area and (ioo) area ratio of this /≠hedral grain can be changed depending on the pBr values of C, D, J, during crystal growth.
C, D, J at a potential close to the r value.

添加すると、+1111面積比率の少ない14面体品が
生成する。
When added, a tetradecahedral product with a small area ratio of +1111 is produced.

特に本発明の14面体粒子が投影面積で98%以上、好
ましくは99%以上であるAgX乳剤の作り方について
は、同「出願(A)」の記載を参考にすることができる
。簡単に記すと、その重要ポイントは該形成条件にある
In particular, the description in "Application (A)" can be referred to regarding how to prepare the AgX emulsion of the present invention in which the projected area of the dodecahedral grains is 98% or more, preferably 99% or more. To put it simply, the important point lies in the formation conditions.

即ち、核形成は双晶面が形成されない条件で核形成する
ことが好ましい、双晶面の形成頻度は、種々の過飽和因
子〔核形成時の温度、ゼラチン濃度、銀塩水溶液とハロ
ゲン化アルカリ水溶液の添加速度、Br−濃度、攪拌回
転数、添加するハロゲン化アルカリ水溶?fft中の■
−含量、ハロゲン化iI?8剤量、pH,塩濃度(K 
N Os 、N a N O2など)ゼラチンの分子量
、かぶり防止剤の共存などに依存し、その依存性は本発
明者らによる特願昭6.1−238808号の図に示さ
れている。従ヮて、これらの依存性を見ながら、双晶面
が形成されない方向にこれらの条件因子を動かせばよい
In other words, it is preferable that nucleation be carried out under conditions in which twin planes are not formed.The frequency of formation of twin planes is determined by various supersaturation factors [temperature during nucleation, gelatin concentration, silver salt aqueous solution and alkali halide aqueous solution, etc. Addition speed, Br concentration, stirring rotation speed, aqueous alkali halide solution to be added? ■ in fft
-Content, halogenated iI? 8 Drug amount, pH, salt concentration (K
(N Os , Na N O2, etc.) depends on the molecular weight of gelatin, the presence of an antifoggant, etc., and this dependence is shown in the figure of Japanese Patent Application No. 6.1-238808 by the present inventors. Therefore, while looking at these dependencies, it is sufficient to move these conditional factors in a direction in which twin planes are not formed.

より具体的には最終的に生成したハロゲン化銀粒子のレ
プリカ像を透過型電子顕微鏡により観察しながら、核形
成時の前記過飽和因子の条件を双晶面が形成されにくい
方向に調節すればよい。
More specifically, while observing a replica image of the silver halide grains finally produced using a transmission electron microscope, the conditions for the supersaturation factor during nucleation may be adjusted to a direction in which twin planes are less likely to be formed. .

粒子形成中の反応溶液のpalは2〜lOを用いること
ができるが、還元増感銀核を導入する場合は、8.0〜
9.5が好ましい。
PAL of the reaction solution during particle formation can be 2 to 1O, but when introducing reduction-sensitized silver nuclei, it is 8.0 to 1O.
9.5 is preferred.

反応溶液中のAgXtl剤の濃度としては、O〜1.5
 X I O−’ mol/ 1が好ましい、AgX溶
剤としては後述のものを用いることができる。
The concentration of AgXtl agent in the reaction solution is O~1.5
X I O-' mol/1 is preferable, and as the AgX solvent, those described below can be used.

次に、該AgX粒子の(100)結晶表面の表面層と(
111)結晶表面の表面層のハロゲン組成を異ならせる
には、次の方法を用い条。
Next, the surface layer of the (100) crystal surface of the AgX particle and the (
111) The following method is used to vary the halogen composition of the surface layer on the crystal surface.

一般に14面体結晶を立方体晶生成頭域のpgr下で、
低過飽和度下で成長させると、(111)面のみが成長
する。一方、14面体品を八面体晶生成頭域のpAg下
で低過飽和で成長させると、[100)面のみが成長す
る。従って、この特性を利用する。
Generally, a tetradecahedral crystal is formed under pgr of a cubic crystal formation head region,
When grown under low supersaturation, only the (111) plane grows. On the other hand, when a tetradecahedral product is grown at low supersaturation under the pAg of the octahedral crystal formation head region, only the [100) plane grows. Therefore, this characteristic is utilized.

この場合の立方晶生成領域および八面体高生成領域のp
Br領域については、同じく、前記のK。
In this case, p of the cubic crystal production region and the octahedral high production region
Regarding the Br region, the above-mentioned K.

Murofushi ら等の文献の記載を参考にするこ
とができる。
Reference can be made to the description in the literature by Murofushi et al.

より具体的には、例えばハロゲン組成として表面層の法
度含量を異ならせた沃臭化銀粒子の場合、次のように行
う。
More specifically, for example, in the case of silver iodobromide grains having different halogen compositions in the surface layer, the method is as follows.

■ 全表面層が高沃度含量の14面体AgBrI粒子を
形成し、次いで、八面体高領域のpAgもしくは立方晶
領域のpAg領域で、低過飽和度下で低沃度含量のAg
Br1層を結晶成長させる。
■ The entire surface layer forms tetradecahedral AgBrI grains with high iodine content, and then Ag with low iodine content under low supersaturation in the pAg in the octahedral high region or the pAg region in the cubic region.
The Br1 layer is crystal grown.

■ 全表面層が低沃度含量の14面体AgBr+粒子を
形成し、次いで、八面体高領域のpAgもしくは立方晶
領域のpAg領域で、低過飽和度下で高沃度含量のAg
Br1ltiIを結晶成長させる。
■ The entire surface layer forms tetradecahedral AgBr+ grains with low iodine content, and then Ag with high iodine content under low supersaturation in the pAg in the octahedral high region or the pAg region in the cubic region.
Br1ltiI is grown as a crystal.

このようにして高沃度含量結晶面と低沃度含量結晶面か
らなる14面体粒子が形成される。
In this way, tetradecahedral grains consisting of high iodine content crystal faces and low iodine content crystal faces are formed.

また、上記において、低沃度含f#層と高沃度含量層間
の法度含量は漸増型でもよい、その場金精晶成長ととも
に添加するハロゲン化物塩の法度含量を時間とともに変
化させればよい。
Further, in the above, the critical content between the low iodine content f# layer and the high iodine content layer may be of a gradual increase type, or the critical content of the halide salt added with in-situ gold crystal growth may be changed over time.

この場合の全表面層とは、50格子分、好ましくは20
0格子分の厚さを示す、また、これらの場合の低過飽和
の程度は、その条件における臨界成長速度の3〜50%
、好ましくは5〜40%の添加速度で銀塩とハロゲン化
物塩を添加する程度を指す。
The total surface layer in this case means 50 grids, preferably 20 grids.
0 lattice thickness, and the degree of low supersaturation in these cases is 3-50% of the critical growth rate under those conditions.
, preferably at a rate of addition of 5 to 40% of the silver salt and halide salt.

より一般的に説明すると、例えば14面体粒子を立方体
領域のpAgの溶液中におくと、咳(1001面と+1
111面上のそれぞれのAg’のchemical p
otentialの関係は第2図の如く、(1111面
上のAg”の方が低くなる。この場合の該+1001面
と咳(1111面上のAg”のchas+Ical p
otentialをそれぞれE16 SE+++ とす
る、この系に銀塩とハロゲン化物塩を添加して、1いる
ときの溶液中のAg”のchemical poten
tialをEAI”とする、銀塩とハロゲン化物塩の添
加速度を上げると溶液の過飽和比(S)が上昇し、EA
、◆は△EA、◆−kTJns(但しk −Bol t
zmanr+定数、T=絶対温度)に従って、上昇する
。結晶成長のdriving forceはこのche
n+tcal potential差であり、このdr
iving forceのみに注目すると、E16゜>
 E ag” 〉E1□を満たす過飽和比で銀塩とハロ
ゲン化物塩を添加することが好ましく、これが、具体的
には、前述の添加速度に相当する。
To explain more generally, for example, when a tetradecahedral particle is placed in a solution of pAg in the cubic area, the cough (1001 plane and +1 plane)
The chemical p of each Ag' on the 111 plane
As shown in Figure 2, the relationship between
By adding a silver salt and a halide salt to this system, the chemical poten of Ag'' in the solution when 1 is
When the addition rate of silver salt and halide salt is increased, the supersaturation ratio (S) of the solution increases, and EA
, ◆ is △EA, ◆-kTJns (however, k-Bolt
zmanr+constant, T=absolute temperature). This is the driving force for crystal growth.
n+tcal potential difference, and this dr
If we focus only on the iving force, E16゜>
It is preferable to add the silver salt and the halide salt at a supersaturation ratio satisfying E ag''>E1□, which specifically corresponds to the above-mentioned addition rate.

また、このハロゲン組成の異なる表面層を形成する時に
、互いの層間でオストワルド熟成が生じると好ましくな
い為その時の温度は低温であることが好ましい、この場
合の好ましい温度範囲は15〜65℃、より好ましくは
20〜60℃である。
In addition, when forming surface layers with different halogen compositions, it is undesirable if Ostwald ripening occurs between the layers, so the temperature at that time is preferably low. In this case, the preferable temperature range is 15 to 65°C, and Preferably it is 20-60°C.

また、結晶成長後、ただちに、前述の吸着剤を吸着させ
、互いの眉間でオストワルド熟成を防止することも好ま
しい。
It is also preferable to adsorb the above-mentioned adsorbent immediately after crystal growth to prevent Ostwald ripening between the eyebrows.

なお、1つのAgX粒子で異なるハロゲン組成のAgX
表面を存する粒子として特開昭55−124139号記
載のAgX粒子がある。このAgX粒子は14面体のコ
ーナ一部に、本体部分と異なるハロゲン組成のAgXを
沈澱させ、この結果、立方晶を形成した粒子であり、+
1001の外表面のみを存する粒子であり、本発明のA
gX粒子とは異なる。
In addition, AgX with different halogen compositions in one AgX particle
AgX particles described in JP-A-55-124139 are examples of particles having a surface. This AgX particle is a particle in which AgX with a halogen composition different from that of the main body is precipitated in a part of the corner of the tetradecahedron, and as a result, a cubic crystal is formed.
A of the present invention is a particle having only the outer surface of 1001.
Different from gX particles.

本発明のAgX粒子の製法として、その他、−方の結晶
面上に優先的に吸着する吸着剤を吸着させた後、銀塩と
ハロゲン化銀を添加し、他方の結晶面上に、本体部分と
異なるハロゲン組成のAgXを沈澱させる方法も有効で
あ゛る。
In addition, as a method for producing AgX particles of the present invention, after adsorbing an adsorbent that preferentially adsorbs onto the - side crystal face, silver salt and silver halide are added, and the main body portion is placed on the other crystal face. It is also effective to precipitate AgX with a halogen composition different from the halogen composition.

又−玉仮伏n± 従来の平板状粒子形成法については、特開昭58−11
3926号、同58−113927号、および同58−
113928号の記載を参考にすることができる。
Regarding the conventional method for forming tabular grains, see Japanese Unexamined Patent Application Publication No. 58-11.
No. 3926, No. 58-113927, and No. 58-
The description in No. 113928 can be referred to.

一方、単分散性のよい六角平板状粒子形成法については
特開昭55−142329号、特願昭61−48950
号、同61−299155号、同61、−238808
号の記載を参考にすることができる。
On the other hand, regarding a method for forming hexagonal tabular grains with good monodispersity, Japanese Patent Application Laid-Open No. 55-142329 and Japanese Patent Application No. 61-48950
No. 61-299155, No. 61-238808
You can refer to the description in the issue.

通常、このようにして作った平板状粒子は、前述の如く
、主平面も殆んどのエツジ面も[1111面であり、主
表面の形状は六角形であり(以後、六角平板粒子と呼ぶ
)、粒子サイズ分布は狭い。
Usually, as mentioned above, the tabular grains produced in this way have a [1111 plane as the main plane and most of the edge faces, and the shape of the main surface is hexagonal (hereinafter referred to as a hexagonal tabular grain). , the particle size distribution is narrow.

しかし、■六角平板粒子を作った後、ひき続いて立方晶
もしくは14面面体類域(より具体的には、AgBrの
場合は9Ag8.0以下)で結晶成長させると、粒子は
厚味を増しながら成長し、主表面は(111)面である
が、エツジ部に(100)面があられれてくる。これに
ついては参考例1を参考にすることができる。この0時
、AgX溶剤を共存させると、この変化はより促進され
る。
However, after producing hexagonal tabular grains, if the crystals are subsequently grown in the cubic or tetradecahedral region (more specifically, in the case of AgBr, 9Ag8.0 or less), the grains become thicker. The main surface is a (111) plane, but the (100) plane begins to appear at the edges. Regarding this, reference example 1 can be referred to. If an AgX solvent is present at this time, this change will be further promoted.

また、別の方法として、溶液中に存在する過剰ハロゲン
をCI−にしく乳剤の水洗、もしくはA g N O!
の添加により過剰Br−を減少させ、NaCjを添加す
ればよい)、銀塩とハロゲン化物塩の水溶液をダブルジ
ェット添加することによっても、エツジ部に(100)
面を形成することができる。
Another method is to wash the emulsion with water to remove excess halogen present in the solution, or to remove the excess halogen present in the solution.
(100) can be added to the edge by double-jet addition of an aqueous solution of a silver salt and a halide salt.
A surface can be formed.

この場合の過剰C!−濃度としては、pcj−0,7〜
2.5碩域が好ましい。
Excessive C in this case! -The concentration is pcj-0,7~
2.5 square range is preferred.

■六角平板粒子を作った後、次に立方晶もしくは14面
面体類域のpAg下で熟成すると、エツジ部に(100
1面があられれてくる。この時の熟成進行は、平板状粒
子の粒子サイズ、溶液のpBr、AgX溶剤の濃度に依
存し、その依存性は特願昭62−203635号の第7
図を参考にすることができる0図のカーブの斜線部側で
(100)面を有する平板状粒子が生成する。
■After producing hexagonal tabular grains, when ripened under pAg in the cubic or tetradecahedral range, the edges (100
The first page is covered with rain. The progress of ripening at this time depends on the particle size of the tabular grains, the pBr of the solution, and the concentration of the AgX solvent, and this dependence is described in Japanese Patent Application No.
Tabular grains having (100) planes are produced on the shaded side of the curve in Figure 0, which can be referred to.

このようにして作った平板粒子のエツジ部の鈍角は、エ
ツジ部が完全に(100)固化した場合、従来の平板粒
子のそれが109.5°であるのに対し、125°の角
度を有する。
The obtuse angle of the edge of the tabular grain produced in this way is 125° when the edge is completely solidified (100), whereas that of the conventional tabular grain is 109.5°. .

このようにして、エツジ部に目00)面を有する平板状
粒子を形成した後、立方体島領域のpBr下で、低過飽
和度下で、これらの粒子の(111)面上に基質と異な
るハロゲン組成のAgXを積層させると、本発明の平板
状粒子ができる。
After forming tabular grains having 00) planes at the edges in this way, halogens different from the substrate are formed on the (111) planes of these grains under pBr in the cubic island region and under low supersaturation. When AgX having the composition is laminated, the tabular grains of the present invention are produced.

この場合の低過飽和の程度は、前述の14面体粒子の場
合と同じで、その条件におけるAgX粒子の臨界成長速
度の3〜50%、好ましくは5〜40%の添加速度で銀
塩とハロゲン化物塩を添加する程度を指す。
The degree of low supersaturation in this case is the same as in the case of the tetradecahedral grains described above, and silver salts and halides are added at an addition rate of 3 to 50%, preferably 5 to 40%, of the critical growth rate of AgX grains under the conditions. Refers to the degree to which salt is added.

上記14面体粒子および平板状粒子において、一方の結
晶面上にのみ、基質と異なるハロゲン組成のAgXを積
層させる時に誤って、他方の結晶面上にも積層させた場
合は、続いて該立方晶領域もしくは該八面体島領域で熟
成を行うことにより、誤って積層したAgX層は溶解し
、一方の結晶面上に積出し、本発明のAgX粒子を得る
ことができる。この時、AgX溶剤が存在すると、より
上記熟成は促進される。
In the above-mentioned tetradecahedral grains and tabular grains, if AgX with a halogen composition different from that of the substrate is laminated only on one crystal plane, and if it is also laminated on the other crystal plane by mistake, then the cubic crystal By performing ripening in the region or the octahedral island region, the mistakenly stacked AgX layer is dissolved and deposited on one crystal face, making it possible to obtain the AgX particles of the present invention. At this time, the presence of AgX solvent further promotes the above-mentioned ripening.

このようにして1つのAgX粒子表面上に少くとも(1
00}と{I L 11の結晶表面を有し、かつ、該結
晶表面の表面層のハロゲン組成が互いに異なるAgX粒
子を形成した後、化学増感を行ない、一方の結晶面上に
優先的に化学増悪績を形成することが好ましい、その化
学増感の代表的なプロセスは次の2つである。
In this way, at least (1
After forming AgX particles having crystal surfaces of 00} and {I L 11 and different halogen compositions in the surface layers of the crystal surfaces, chemical sensitization is performed to preferentially form particles on one crystal surface. There are two representative processes of chemical sensitization that preferably produce chemical sensitization.

■粒子形成−吸着剤の特定結晶面上への吸着=(硫黄千
金)増悪 ■粒子形成−(硫黄千金)増悪 但し、上記工程において乳剤の水洗過程を粒子形成後の
どこへ入れてもよい、即ち、粒子形成後でもよいし、吸
着剤を吸着させた後でもよいし、硫黄増感と金増感の間
でもよいし、金増悪後でもよい、水洗工程は1回でも、
2回でもよい。
■ Grain formation - Adsorption of adsorbent onto a specific crystal plane = (sulfur-rich gold) aggravation ■ Particle formation - (sulfur-rich gold) aggravation However, in the above process, the water-washing process of the emulsion may be performed anywhere after grain formation. That is, the water washing step may be carried out after particle formation, after the adsorbent has been adsorbed, between sulfur sensitization and gold sensitization, or after gold sensitization, or even once.
Even twice is fine.

まず、■の過程について説明する。First, the process (■) will be explained.

粒子形成後、直ちに、もしくは乳剤を水洗した後、吸着
剤を添加し、該AgX粒子に吸着剤を吸着させることが
好ましい、それは、異なるハロゲン組成の結晶面間でオ
ストワルド熟成が生じることを防ぐ意味からも好ましい
Immediately after grain formation or after washing the emulsion with water, it is preferable to add an adsorbent and allow the adsorbent to be adsorbed to the AgX grains. This is to prevent Ostwald ripening between crystal faces with different halogen compositions. It is also preferable.

吸着剤としては前述の如く、 (al基質のハロゲン組成により吸着力が異なる吸着剤 (bl(111)と(100)結晶面に対する吸着力が
異なる吸着剤 が好ましい。
As mentioned above, the adsorbent is preferably an adsorbent (which has different adsorbing powers depending on the halogen composition of the Al substrate) (an adsorbent which has different adsorbing powers for bl (111) and (100) crystal faces).

具体的には、そのよう吸着剤は、同一粒子表面積でハロ
ゲン組成または晶癖の異なる種々のAgX乳剤粒子に対
する種々の吸着剤の吸着等温曲線を調べることにより、
選択することができる。
Specifically, such adsorbents were determined by examining the adsorption isotherm curves of various adsorbents on various AgX emulsion grains with the same grain surface area but different halogen compositions or crystal habits.
You can choose.

このようにして上記(a)もしくは(al + (b)
の吸着剤の選択吸着特性を利用して、化学増感核が優先
的に形成されない結晶面上に選択的に吸着剤を吸着させ
る。
In this way, the above (a) or (al + (b)
Utilizing the selective adsorption characteristics of the adsorbent, the adsorbent is selectively adsorbed onto crystal faces where chemically sensitized nuclei are not preferentially formed.

また、−船釣に、吸着力が強くなる程、増感色素は、J
凝集体を形成しやすくなり、J4を集体はより十分に化
学増感核の形成を阻止する為、好ましい。
- In boat fishing, the stronger the adsorption power, the more the sensitizing dye is J
Aggregates of J4 are more likely to form, and aggregates of J4 are preferred because they more effectively inhibit the formation of chemically sensitized nuclei.

これらの基質のハロゲン組成や結晶面の違いによる吸着
剤の吸着特性についてはT、 tl、JamestTh
e Theory of the Photograp
hic Process+Fourth Editio
n、 Macmillan+ New York+ 1
977 。
Regarding the adsorption characteristics of adsorbents due to differences in the halogen composition and crystal plane of these substrates,
e Theory of the Photography
hic Process+Fourth Editio
n, Macmillan+ New York+ 1
977.

Chap、9. Chap、1. Chap、13 。Chap, 9. Chap, 1. Chap, 13.

A、IIerz and J、 Helling、J、
 Co11oid InterfaceSci−+主2
,391 (1966)。
A, IIerz and J, Helling, J.
Co11oid InterfaceSci-+Main 2
, 391 (1966).

S、 L、 5cruLLon、 J、 Phol S
ci、+22. 69 (1974)。
S, L, 5cruLLon, J, Phol S
ci, +22. 69 (1974).

J、  Nys、  Dye  5ensitizat
ion、  Bressanone  Sympos*
ulI+Focal  Press、  London
、  1 9 7 0.  P、2 6〜4 3.57
〜65゜ T、  丁ani、  Journal  of  I
maging  5cience、2 5し、  16
5  (1985)。
J, Nys, Dye 5ensitizat
ion, Bressanone Sympos*
ulI+Focal Press, London
, 1 9 7 0. P, 2 6-4 3.57
~65°T, Dingani, Journal of I
imagining 5science, 2 5, 16
5 (1985).

および前記、「出願(A)」の記載を参考にすることが
できる。
Also, the description in the above-mentioned "Application (A)" can be referred to.

また、増悪色素や添加剤のハロゲン化銀への吸着力は、
5ubstrateの晶癖やハロゲン組成以外に乳剤の
種々の雰囲気(乳剤のp)(、PAg、吸着促進剤の共
存等)に依存することが知られている。
In addition, the adsorption power of aggravating dyes and additives to silver halide is
It is known that in addition to the crystal habit of the 5ubstrate and the halogen composition, it depends on various atmospheres of the emulsion (p of the emulsion, PAg, coexistence of adsorption promoters, etc.).

従って、その知見を利用して、増悪色素や添加剤の吸着
強度を!1節することができる。
Therefore, use this knowledge to improve the adsorption strength of aggravating dyes and additives! You can write one verse.

これらについては、例えばT、 Il、 James、
 TheTheory of the Photogr
aphic Process、 FourthEdit
ion、 Mac+l1illan、 New Yor
k+  1977 、 Chap、9+Chap、1.
 Chap、13の記載を参考にすることができる。
For these, see, for example, T. Il. James,
The Theory of the Photographer
aphic Process, FourthEdit
ion, Mac+l1illan, New Year
k+ 1977, Chap, 9+Chap, 1.
Chap., 13 may be referred to.

吸着剤としては増感色素、かぶり防止剤、安定剤の他、
前記「出III (A) Jに記載したペンダント色素
(増悪色素とかぶり防止剤もしくは安定剤と化学的に結
合させた化合物)も存効である。
Adsorbents include sensitizing dyes, antifoggants, stabilizers, and
The pendant dye (a compound chemically combined with an aggravating dye and an antifoggant or a stabilizer) described in the above-mentioned "Ex. III (A) J" is also effective.

これらの吸着剤の添加方法としては、増感色素、かぶり
防止剤、安定剤、ペンダント色素の一種のみを添加して
もよく、二種以上の添加剤を混合して添加してもよく、
別々に添加してもよい。
As for the method of adding these adsorbents, only one type of sensitizing dye, antifogging agent, stabilizer, and pendant dye may be added, or a mixture of two or more types of additives may be added.
They may be added separately.

また、化学増感剤を添加する前に全量を添加してもよい
し、1部を加えて、残りを後で加えてもよい、1部とは
全量の1/10〜1である。
Further, the entire amount may be added before adding the chemical sensitizer, or 1 part may be added and the remainder may be added later, and 1 part is 1/10 to 1 of the total amount.

吸着剤の添加量は特に制限はないが、通常はAgX粒子
の飽和吸着量の0〜120%、好ましくは0〜100%
である。
The amount of adsorbent added is not particularly limited, but is usually 0 to 120%, preferably 0 to 100% of the saturated adsorption amount of AgX particles.
It is.

このようにして、一方の結晶面上に選択的に吸着剤を吸
着させた後、化学増感剤を加えて熟成し他方の結晶面上
に優先的に化学増感核を形成する。
In this way, after the adsorbent is selectively adsorbed onto one crystal face, a chemical sensitizer is added and ripened to form chemically sensitized nuclei preferentially on the other crystal face.

この場合の化学増感法としては、次の2つの化学増悪法
を用いることができる。
As the chemical sensitization method in this case, the following two chemical enhancement methods can be used.

〔1〕通常用いられている化学増悪法(乳剤の温度を4
0°〜75℃にし、硫黄増感剤を加えた後、2〜5分後
に金増感剤を加えて、20〜80分間、熟成する方法)
で化学増悪を行なっても、一方の結晶面上には吸着剤が
優先的に吸着している為、該結晶面上には化学増悪核は
殆んど形成されず、他方の結晶面上に化学増感核が優先
的に形成される。
[1] Commonly used chemical aggravation method (temperature of emulsion
A method of heating the temperature to 0° to 75°C, adding a sulfur sensitizer, adding a gold sensitizer 2 to 5 minutes later, and aging for 20 to 80 minutes)
Even if chemical aggravation is performed on one crystal face, the adsorbent is preferentially adsorbed on one crystal face, so almost no chemical aggravation nuclei are formed on that crystal face, and no chemical aggravation nuclei are formed on the other crystal face. Chemosensitized nuclei are preferentially formed.

〔2〕化学増感剤として、特定の結晶面上で選択的に反
応する面選択性化学増感剤を用いる。具体的には、硫黄
増感剤として、特定の結晶面上で選択的に反応する面選
択性硫黄増感剤を用いる。上記の場合には、吸着剤が優
先的に吸着していない結晶面上で選択的に反応する硫黄
増感剤を用いることが好ましい、この硫黄増悪剤の面選
択反応性については、前記「出願(A)」の記載および
参考例1を参考にすることができる。
[2] As a chemical sensitizer, a surface-selective chemical sensitizer that reacts selectively on a specific crystal face is used. Specifically, a surface-selective sulfur sensitizer that reacts selectively on a specific crystal face is used as the sulfur sensitizer. In the above case, it is preferable to use a sulfur sensitizer that reacts selectively on crystal faces that are not preferentially adsorbed by the adsorbent. (A)" and Reference Example 1 can be referred to.

例えば、乳剤の条件が、pH6,5、pAg8.5.5
0℃、60分熟成の時、ハイポは+1001面に比べて
[1111面上で大変よく選択的に反応し、イオウ増悪
核を形成する。
For example, the emulsion conditions are pH 6.5, pAg 8.5.5
When aged at 0°C for 60 minutes, hypo reacts very selectively on the [1111 plane compared to the +1001 plane, forming sulfur-enhancing nuclei.

Triethyl Lhioureaは[111)面に
比べて[1001面上で大変よく選択的に反応し、(1
00)面上にイオウ増感核を選択的に形成する。
Triethyl Lhiourea reacts very selectively on the [1001 plane compared to the [111) plane, and
00) selectively forms sulfur-sensitized nuclei on the surface.

しかし、他の条件、例えば(pH6,5、p、Ag8.
5.65°C160分)熟成や(pH6,5、pAg7
.7.50 ’c、60分)熟成の条件では、その選択
性は小さい為、好ましくない、他のイオウ増感剤も含め
て、一般に低温および高pAg条件下では、その面選択
性は大きくなる。
However, other conditions such as (pH 6.5, p, Ag8.
5.65°C 160 minutes) aging (pH 6.5, pAg 7
.. 7.50'C, 60 minutes) under aging conditions, its selectivity is small and therefore undesirable.Including other sulfur sensitizers, its surface selectivity is generally large under low temperature and high pAg conditions. .

また、この場合、金増感剤を同時に加えて化学増感する
と、その面選択反応性は小さくなる為、前記「出W4(
A)Jの方法(硫黄増悪を行なった後、水洗し、残留硫
黄増感剤を除去した後、金増感剤を加える方法、または
添加した硫黄増悪剤の80%以上が反応した後、金増感
剤を加える方法)を用いることが好ましい。
In addition, in this case, if a gold sensitizer is added at the same time for chemical sensitization, the surface selective reactivity will decrease, so the above-mentioned "Out W4 (
A) Method J (method of adding gold sensitizer after performing sulfur aggravation, washing with water to remove residual sulfur sensitizer, or adding gold sensitizer after 80% or more of the added sulfur sensitizer has reacted, It is preferable to use a method in which a sensitizer is added.

このようにして一方の結晶面上に優先的に有効な化学増
感核が形成され、本発明のAgX粒子が形成される。
In this way, effective chemical sensitizing nuclei are preferentially formed on one crystal face, and the AgX particles of the present invention are formed.

また、本発明においてB面の表面層のハロゲン組成とし
て高沃度含量のAgBr+を用いた場合、該結晶面上に
形成される化学増感核は前述の如く、有効な電子トラッ
プとなり難い為、この場合、化学増感過程におけるdl
scris+1nat1on factorとして、(
結晶面の違い+ハロゲン組成の違い)を利用することが
でき、より有効にdiscriminationを行え
るというメリットを有する為、特に好ましい。
Furthermore, in the present invention, when AgBr+ with a high iodine content is used as the halogen composition of the surface layer of the B-plane, the chemically sensitized nuclei formed on the crystal plane are difficult to become effective electron traps, as described above. In this case, dl in the chemical sensitization process
As scris+1nat1on factor, (
It is particularly preferable because it has the advantage of being able to utilize the difference in crystal planes + difference in halogen composition and more effective discrimination.

次に■の過程について述べる。この場合、一方の結晶面
上に優先的に吸着する吸着剤が存在しない為、有効な化
学増感核の生成位置の制御は、化学増感剤の反応性の(
結晶面の違い十表面層のハロゲン組成の違い)のみによ
ってなされる、従ってそのdiscriminatio
nは■の過程より劣る。
Next, we will discuss the process (■). In this case, since there is no adsorbent that preferentially adsorbs on one crystal face, effective control of the formation position of chemical sensitizing nuclei is due to the reactivity of the chemical sensitizer (
Differences in crystal planes (differences in halogen composition of surface layer)
n is inferior to the process of ■.

しかし、従来の■の方法(結晶面の違い)に比べ、表面
層のハロゲン組成の違いもdiscris+1nati
onfactorとして入ってくる為、従来法よりも有
効に化学増感核の生成位置を制御できるというメリット
をもつ。
However, compared to the conventional method (2) (difference in crystal plane), the difference in halogen composition of the surface layer is
Since it comes in as an onfactor, it has the advantage of being able to control the generation position of chemical sensitizing nuclei more effectively than conventional methods.

本発明のAgX粒子の化学増感法としては、その他特願
昭61−299155の補正書の記載を参考にすること
ができる。
Regarding the chemical sensitization method of AgX particles of the present invention, reference may be made to the description in the amendment of Japanese Patent Application No. 61-299155.

本発明のハロゲン化銀粒子は、上記のハロゲン化銀粒子
それ自体で乳剤として使用できるが、その粒子をコアと
してコア/シェル型直接反転乳剤を形成し、それを用い
てもよい、これについては特願昭61−299155の
実施例13、および米国特許第3.761,276号、
同4,269゜927号、同3,367.778号を参
考にすることができる。
The silver halide grains of the present invention can be used as an emulsion by themselves; however, a core/shell type direct inversion emulsion may be formed using the grains as a core, and this may be used. Example 13 of Japanese Patent Application No. 61-299155, and U.S. Patent No. 3,761,276,
No. 4,269°927 and No. 3,367.778 may be referred to.

また、該粒子をコアとして、浅内潜型乳剤を形成して用
いてもよい、これについては、特開昭59−13354
2号、英国特許第145876号を参考にすることがで
きる。
Furthermore, a shallow latent type emulsion may be formed and used by using the particles as a core.
Reference may be made to British Patent No. 2, British Patent No. 145,876.

また該粒子をホスト粒子とし、エピタキシャル粒子を形
成して用いてもよい、これについては特開昭58−10
8526号、同57−133540号、特願昭60−1
72966号を参考にすることができる。
Alternatively, the particles may be used as host particles to form epitaxial particles.
No. 8526, No. 57-133540, Patent application 1986-1
No. 72966 may be referred to.

また、該粒子をサブストレート粒子とし、ラフフルド粒
子を形成して用いてもよい、これについては、米国特許
第4643966号を参考にすることができる。
Further, the particles may be used as substrate particles to form Roughfuld particles. In this regard, reference can be made to US Pat. No. 4,643,966.

該平板粒子を高硬膜系で用いることもできる。The tabular grains can also be used in high hardness systems.

これについては特開昭58−11392 Re5ear
chDisclosure、  184巻、1979年
8月、アイテム18431、K項を参考にすることがで
きる。
Regarding this, please refer to JP-A-58-11392 Re5ear.
chDisclosure, Volume 184, August 1979, Item 18431, Section K may be referred to.

また、該粒子の金増感熟成が終了するまでにH−0:、
ペルオキシ酸等の酸化剤を添加その後、還元性物質を添
加する方法や、金増感熟成後、感材中のフリーな金イオ
ンを少なくする方法を用いることができる。これについ
ては特願昭59−122981号、同59−12298
4号、同60−96237号、同60−61429号、
同60−61430号、同61−184890号、同6
1−183949号を参考にすることができる。
Moreover, until the gold sensitization aging of the particles is completed, H-0:
A method of adding an oxidizing agent such as a peroxy acid and then adding a reducing substance, or a method of reducing the amount of free gold ions in the sensitive material after gold sensitization and aging can be used. Regarding this, Japanese Patent Application No. 59-122981 and No. 59-12298
No. 4, No. 60-96237, No. 60-61429,
No. 60-61430, No. 61-184890, No. 6
No. 1-183949 may be referred to.

該平板粒子をアンテナ色素で分光増感してもよい。The tabular grains may be spectrally sensitized with an antenna dye.

これについては特願昭61−51396号、同61−2
84271号、同61−284272号の記載を参考に
することができる。
Regarding this, Japanese Patent Application No. 61-51396, No. 61-2
The descriptions in No. 84271 and No. 61-284272 can be referred to.

該平板粒子の光干渉性を利用することに関して、および
上記事項の詳細やその他の事項については、特願昭61
−299155号を参考にすることができる。
Regarding the use of the optical coherence of the tabular grains, details of the above matters, and other matters, please refer to Japanese Patent Application No. 61
-299155 can be referred to.

本発明の熟成過程においては、熟成を促進するために、
また、この熟成後の結晶成長期間において、結晶成長を
促進するためにハロゲン化銀溶剤を用いてもよい。
In the ripening process of the present invention, in order to promote ripening,
Further, during this crystal growth period after ripening, a silver halide solvent may be used to promote crystal growth.

しばしば用いられるハロゲン化銀溶剤としては、チオシ
アン酸塩、アンモニア、チオエーテル、チオ尿素類など
を挙げることが出来る。
Examples of frequently used silver halide solvents include thiocyanates, ammonia, thioethers, and thioureas.

例えばチオシアン酸塩(米国特許第2,222゜264
号、同第2.448,534号、同第3゜320.06
9号など)、アンモニア、チオエーテル化合物(例えば
米国特許第3,271,157号、同第3.574,6
28号、同第3,704.130号、同第4,297,
439号、同第4 276.347号など)、チオン化
合物(例えば特開昭53−144319号、同53−8
2408号、同55−77737号など)、アミン化合
物(例えば特開昭54−100717号など)などを用
いることができる。
For example, thiocyanate (U.S. Pat. No. 2,222°264)
No. 2.448,534, No. 3゜320.06
9, etc.), ammonia, thioether compounds (e.g., U.S. Pat. No. 3,271,157, U.S. Pat. No. 3,574,6)
No. 28, No. 3,704.130, No. 4,297,
439, 4276.347, etc.), thione compounds (e.g., JP-A-53-144319, JP-A-53-8)
No. 2408, No. 55-77737, etc.), amine compounds (for example, JP-A-54-100717, etc.) can be used.

本発明の吸着剤および分光増悪色素として用いられる増
感色素としては、シアニン色素、メロシアニン色素、複
合シアニン色素、複合メロシアニン色素、ホロポーラ−
シアニン色素、ヘミシアニン色素、スチリル色素、ヘミ
オキソノール色素、オキソノールメロステリルおよびス
トレプトシアニンを含むポリメチン染料を挙げることが
できる。
Sensitizing dyes used as the adsorbent and spectral enhancing dye of the present invention include cyanine dyes, merocyanine dyes, complex cyanine dyes, complex merocyanine dyes, and holopolar dyes.
Mention may be made of polymethine dyes including cyanine dyes, hemicyanine dyes, styryl dyes, hemioxonol dyes, oxonolmerosteryl and streptocyanine.

具体的には、/ 、 / ’ −diethyl −2
、2’ −cyanine chloride、 / 
、 / ’ 、 j 、 J’−tetramethy
l−,2、2’−cyanine、アニオン性ターメチ
ルチアカルボシアニンj 、 j’−dimethyl
 thiazolinodicar −bocyani
ne bromideなどであシ、詳細は、特願昭6コ
一/P77≠/号、同t2−2/タタ♂3号、同2λ−
231373号および後述の文献を参考にすることがで
きる。
Specifically, /, /'-diethyl-2
, 2'-cyanine chloride, /
, / ', j, J'-tetramethy
l-,2,2'-cyanine, anionic termethylthiacarbocyanine j, j'-dimethyl
thiazolinodicar-bocyani
ne bromide, etc. For details, see the patent application No. 6/1977/No. 77≠/, t2-2/Tata ♂ No. 3, 2λ-
No. 231373 and the documents mentioned below can be referred to.

その他、前記[出願(A)JK記載のはンダント色素(
増感色素とかぶシ防止剤または安定剤を、その置換期間
で化学結合した化合物)も用いることができる。
In addition, the above-mentioned [Application (A) JK described is a dandant dye (
Compounds in which a sensitizing dye and an anti-fog agent or a stabilizer are chemically bonded during their replacement period can also be used.

また、吸着剤およびかぶシ防止剤、安定剤として用いら
れるかぶシ防止剤、安定剤としては、例えばテトラザイ
ンデン類、アゾール類、例えばベンゾチアゾリウム塩、
ニトロインダゾール類、ニトロベンズイミダゾール類、
クロロベンズイミダゾール類、ブロモベンズイミダゾー
ル類、メルカプトチアゾール類、メルカプトベンズイミ
ダゾール類、アミノトリアゾール類、ベンゾトリアゾー
ル類、ニトロベンゾトリアゾール頚、メルカプトテトラ
ゾール類(特に1−フェニル−5−メルカプトテトラゾ
ール)など、またメルカプトピリミジン類、メルカプト
トリアジン類、例えばオキサシリチオンのようなチオケ
ト化合物、更にはベンゼンチオスルフィン酸、ベンゼン
スルフィン酸、ベンゼンスルフオン酸アミド、ハイドロ
キノン誘導体、アミノフェノール誘導体、没食子酸誘導
体、アスコルビン酸誘導体等を挙げることができる。
In addition, antifouling agents used as adsorbents, antifouling agents, and stabilizers include, for example, tetrazaindenes, azoles, such as benzothiazolium salts,
Nitroindazoles, Nitrobenzimidazoles,
Chlorobenzimidazoles, bromobenzimidazoles, mercaptothiazoles, mercaptobenzimidazoles, aminotriazoles, benzotriazoles, nitrobenzotriazoles, mercaptotetrazoles (especially 1-phenyl-5-mercaptotetrazole), and mercapto Pyrimidines, mercaptotriazines, thioketo compounds such as oxacyrithione, as well as benzenethiosulfinic acid, benzenesulfinic acid, benzenesulfonic acid amide, hydroquinone derivatives, aminophenol derivatives, gallic acid derivatives, ascorbic acid derivatives, etc. I can do it.

本発明に用いられるイオウ増感剤としては、参考例1の
イオウ増感剤の他、米国特許第1.574.944号、
同第2,278,947号、同第2.410,689号
、同第3.189,458号、同第3,501,313
号、フランス特許第2.059.245号等に記載され
ている化合物など、または活性ゼラチンを用いることが
できる。
As the sulfur sensitizer used in the present invention, in addition to the sulfur sensitizer of Reference Example 1, U.S. Patent No. 1.574.944,
Same No. 2,278,947, Same No. 2,410,689, Same No. 3,189,458, Same No. 3,501,313
Compounds such as those described in French Patent No. 2.059.245, or activated gelatin can be used.

本発明のハロゲン化銀写真感光材料の乳剤層のその他の
構成については特に制限はなく、必要に応じて種々の添
加剤を用いることができる。
There are no particular restrictions on other structures of the emulsion layer of the silver halide photographic material of the present invention, and various additives may be used as required.

添加することのできる化学増感剤、分光増感色素、かぶ
り防止剤、金属イオンドープ、ハロゲン化銀溶剤、安定
剤、染料、カラーカブラ−、DIRカプラー、バインダ
ー、硬膜剤、塗布助剤、増粘剤、乳剤沈降剤、可塑剤、
寸度安定改良剤、帯電防止剤、蛍光増白剤、滑剤、艶消
剤、界面活性剤、紫外線吸収剤、散乱または吸収材料、
硬化剤、接着防止、写真特性改良剤(例えば現像促進剤
、硬調化剤など)、現像剤等写真的に有用なフラグメン
ト(現像抑制剤または促進剤、漂白促進剤、現像剤、ハ
ロゲン化銀溶剤、l・ナー、硬膜剤、かぶり防止剤、競
争カプラー、化学または分光増感剤および減感剤等)を
放出するカプラー、像色素安定剤、自己抑制現像剤、お
よびその使用法、また、分光増感における超増悪、分光
増感色素のハロゲン受容体効果や電子受容体効果、かぶ
り防止剤、安定剤、現像促進剤または抑制剤の作用、そ
の他、本発明の乳剤の製造に用いる製造装置、反応装置
、攪拌装置、塗布、乾燥法、露光法(光源、露光雰囲気
、露光方法)、そして写真支持体、微孔性支持体、下塗
り層、表面保護層、マント剤、中間層、ハレーション防
止層および写真処理剤、写真処理方法についてはリサー
チ・ディスクロージャー誌、176巻、1978年、1
2月号(アイテム17643)、同184@1979年
8月号(アイテム18431号)、同134S1975
年6月(アイテム13452)プロダクト・ライセンシ
ング インデックス誌92巻107〜110(1971
年12月)、特開昭58−113926号、同5B−1
13927号、同58−113928号、同61−31
34号、同62−6251号日化協月報1984年、1
2月号、P、11’  8〜2 7  T、  H,J
ames、  The  Theory  of  t
hePhotographic Process+ F
ourth Edition、 Macmillan+
New York、   1977年、V、 L、 E
elikman at al、著Making and
 CoatingPhotographic Es+u
lsion (The Focal Press刊、1
964年)の記載を参考にすることができる。
Chemical sensitizers, spectral sensitizing dyes, antifoggants, metal ion dopes, silver halide solvents, stabilizers, dyes, color couplers, DIR couplers, binders, hardeners, coating aids, which can be added. Thickeners, emulsion precipitants, plasticizers,
Dimensional stabilizing agents, antistatic agents, optical brighteners, lubricants, matting agents, surfactants, ultraviolet absorbers, scattering or absorbing materials,
Hardening agents, anti-adhesion agents, photographic property improvers (e.g. development accelerators, contrast enhancers, etc.), developers, etc. Photographically useful fragments (development inhibitors or accelerators, bleaching accelerators, developers, silver halide solvents) , L-ners, hardeners, antifoggants, competitive couplers, chemical or spectral sensitizers and desensitizers, etc.), image dye stabilizers, self-suppressing developers, and uses thereof; Super-exacerbation in spectral sensitization, halogen acceptor effect and electron acceptor effect of spectral sensitizing dyes, effects of antifoggants, stabilizers, development accelerators or inhibitors, and other manufacturing equipment used to manufacture the emulsion of the present invention , reaction equipment, stirring equipment, coating, drying method, exposure method (light source, exposure atmosphere, exposure method), photographic support, microporous support, undercoat layer, surface protective layer, cloak agent, interlayer, antihalation. Regarding layers, photographic processing agents, and photographic processing methods, see Research Disclosure Magazine, Vol. 176, 1978, 1.
February issue (Item 17643), 184 @ August 1979 issue (Item 18431), 134S1975
June 2015 (Item 13452) Product Licensing Index Magazine Volume 92 107-110 (1971
(December 2013), JP-A-58-113926, JP-A No. 5B-1
No. 13927, No. 58-113928, No. 61-31
No. 34, No. 62-6251, JCIA Monthly Report 1984, 1
February issue, P, 11' 8-2 7 T, H, J
ames, The Theory of t
hePhotographic Process+F
ours Edition, Macmillan+
New York, 1977, V, L, E
elikman at al, authorMaking and
CoatingPhotographic Es+u
lsion (The Focal Press, 1
964) can be referred to.

本発明のハロゲン化銀乳剤は必要により他の乳剤や保護
層、中間層、フィルター層と共に支持体上に一層もしく
はそれ以上(例えば2層、3層)設けることができる。
The silver halide emulsion of the present invention can be provided in one or more layers (for example, two or three layers) on a support together with other emulsions, protective layers, intermediate layers, and filter layers, if necessary.

また、支持体の片側に限らず両面に設けることもできる
。また、異なる感色性の乳剤として重層することもでき
る。
Moreover, it can be provided not only on one side of the support but also on both sides. Furthermore, they can be layered as emulsions with different color sensitivities.

この層構成については、その他、特開昭61−3134
号、特願昭61−299155の記載を参考にすること
ができる。
Regarding this layer structure, please refer to JP-A No. 61-3134.
Reference may be made to the description in Japanese Patent Application No. 61-299155.

本発明のハロゲン化銀乳剤は、黒白ハロゲン化銀写真怒
光材料(例えば、Xレイ感材、リス型感材、黒白撮影用
ネガフィルムなど)やカラー写真感光材料(例えば、カ
ラーネガフィルム、カラー反転フィルム、カラーペーパ
ー、銀色素漂白性写真など)に用いることができる。さ
らに拡散転写用感光材14(例えば、カラー拡散転写要
素、銀塩拡散転写要素)、熱現像感光材料(黒白、カラ
ー)などにも用いることができる。
The silver halide emulsion of the present invention can be used in black-and-white silver halide photographic materials (e.g., It can be used for film, color paper, silver dye bleaching photographs, etc.). Furthermore, it can also be used for a photosensitive material 14 for diffusion transfer (for example, a color diffusion transfer element, a silver salt diffusion transfer element), a heat-developable photosensitive material (black and white, color), and the like.

(本発明の効果) このようにして得られる、1つのAgX粒子上の化学増
感核の位置と数が制御された本発明のAgX粒子は次の
ような特徴をもつ。
(Effects of the present invention) The AgX particles of the present invention, in which the position and number of chemically sensitized nuclei on one AgX particle are controlled, have the following characteristics.

1、化学増怒核の形成が、一方の結晶面上により十分に
限定される。この為より潜像分散の少ない、高感度は現
像進行性のよいハロゲン化銀乳剤が得られる。この効果
は特に、潜像分散を生じゃすい粒径1.0μm以上のA
gX粒子で特に大きい効果をもつ。
1. The formation of chemically enhanced nuclei is well confined on one crystal face. Therefore, a silver halide emulsion with less latent image dispersion, high sensitivity, and good development progress can be obtained. This effect is particularly important for particles with a particle size of 1.0 μm or more that cause latent image dispersion.
gX particles have a particularly large effect.

2、吸着剤の吸着力の結晶面依存性のみで化学増感核の
形成位置を制御する方法に比べ、次のような利点をもつ
2. Compared to the method of controlling the formation position of chemically sensitized nuclei only by the dependence of the adsorption force of the adsorbent on the crystal plane, this method has the following advantages.

(i)用いることのできる吸着剤(特に増感色素)が面
選択性吸着剤のみに限られていたものが、表面層のハロ
ゲン組成の違いによる吸着力の差を利用する為、用いる
ことのできる吸着剤の選択範囲が広くなる。
(i) The adsorbents that can be used (especially sensitizing dyes) were limited to surface-selective adsorbents, but now they can be used to utilize the difference in adsorption power due to the difference in the halogen composition of the surface layer. The range of adsorbents that can be selected is widened.

(ii)化学増悪抜形成を抑制するには、強く吸着する
吸着剤がより好ましいが、一般に、面選択性吸着剤は、
吸着力が弱く、両者は相反する要求であった8本発明で
は、表面層のハロゲン組成の違いによる吸着力の差も利
用する為、意図する結晶面には吸着剤を強く吸着させる
ことができ、上記問題が解決された0例えば該結晶表面
層に高沃度含量のAgBr1層を用い、他の結晶表面層
にAgBrもしくはAgBr1層!層を用いた場合、該
AgBr1結晶表面に吸着剤は強く吸着する。
(ii) Strongly adsorbing adsorbents are more preferable to suppress chemically aggravated extrusion formation, but in general, surface-selective adsorbents are
The adsorption force was weak, and the two were contradictory requirements8.In the present invention, the adsorbent can be strongly adsorbed to the intended crystal surface because it also utilizes the difference in adsorption force due to the difference in the halogen composition of the surface layer. , the above problem has been solved.0 For example, a layer of AgBr1 with a high iodine content is used as the surface layer of the crystal, and AgBr or a layer of AgBr1 is used as the other surface layer of the crystal! When a layer is used, the adsorbent is strongly adsorbed on the surface of the AgBr1 crystal.

(iii )吸着剤が強く吸着した状態で化学熟成する
為、化学熟成中の粒子変形は少ない。
(iii) Since chemical ripening is carried out with the adsorbent strongly adsorbed, particle deformation during chemical ripening is small.

3、     サイトと色  サイトの一般に吸着剤(
増感色素)を多量に強く吸着させると現像抑制作用が強
くなるが、本発明のAgX粒子では、現像開始点となる
潜像核は、増感色素が疎に吸着した結晶面に形成される
為、その現像抑制作用は小さい。
3. Site and color The site is generally an adsorbent (
If a large amount of sensitizing dye (sensitizing dye) is strongly adsorbed, the development suppressing effect becomes stronger, but in the AgX particles of the present invention, the latent image nucleus, which is the development starting point, is formed on the crystal face where the sensitizing dye is sparsely adsorbed. Therefore, its development inhibiting effect is small.

一方、これまで、現像抑制の観点から増感色素を多量に
吸着させることができなかったが、増感色素を多量に吸
着させる結晶面上には潜像核が殆んどない為、現像抑制
の心配がなく、この結晶面へは多量の増感色素を吸着さ
せることができ、マイナスブルー感度を高(することが
できる。
On the other hand, until now it has not been possible to adsorb large amounts of sensitizing dyes from the viewpoint of suppressing development, but since there are almost no latent image nuclei on the crystal planes that adsorb large amounts of sensitizing dyes, development can be suppressed. There is no need to worry about this, and a large amount of sensitizing dye can be adsorbed onto this crystal face, making it possible to achieve high negative blue sensitivity.

即ち、AgX粒子表面における増感色素の吸着分布は、
必要な所へ必要な量の増悪色素が吸着され、吸着して存
置な場所には少量の増悪色素しか吸着しない形になって
おり、従って、高感度で現像進行性のよい写真性が得ら
れる。
That is, the adsorption distribution of the sensitizing dye on the AgX particle surface is
The required amount of exacerbating dye is adsorbed to the necessary places, and only a small amount of exacerbating dye is adsorbed to the places where adsorption remains, resulting in photographic properties with high sensitivity and good development progress. .

4、           に する また、本発明の好ましい形態として、一方の結晶面が高
法度含iAgBrlを表面層として有し、他方の結晶面
が低沃度含量AgBr1もしくは八gBr、AgBrC
1を表面層として存する場合には、次のような特徴をも
つ。
4. In a preferred embodiment of the present invention, one crystal face has a high iodide content of iAgBrl as a surface layer, and the other crystal face has a low iodide content of AgBr1 or 8gBr, AgBrC.
1 as a surface layer, it has the following characteristics.

(i)色素正孔による増感効果 マイナスブルー露光した場合、色素の励起電子はAgX
の伝導帯に注入され、低沃度含量結晶面上の化学増感核
にトラップされ、潜像を形成し、色素正孔と位置的に電
荷分離される。
(i) Sensitizing effect due to dye holes Minus When exposed to blue light, the excited electrons of the dye are AgX
is injected into the conduction band of the iodine, is trapped by chemically sensitized nuclei on the low iodine content crystal plane, forms a latent image, and is positionally charge-separated from the dye holes.

一方、色素正孔は高法度含量層に注入され、高法度含量
層中の還元増感核と次のように反応し、電子を放出する
On the other hand, the dye holes are injected into the high-tolerance content layer, react with the reduction sensitized nuclei in the high-tolerance content layer as follows, and release electrons.

Agz +正札−A g ” + A g = 2 A
 g ” + eこの電子は潜像核にトラップされ、写
真感度を高める働らきをする。
Agz + regular bill - A g ” + A g = 2 A
g ” + e These electrons are trapped in the latent image nucleus and serve to increase photographic sensitivity.

高法度含it層の価電子帯はより高い位置にある為、こ
の色素正孔注入はより効率よ(AgXに注入され、上記
反応がより促進され、高感となる。
Since the valence band of the highly saturated IT layer is located at a higher position, this dye hole injection is more efficient (injected into AgX, the above reaction is further promoted, and high sensitivity is achieved).

即ち、潜像核と色素正孔の分離による再結合防止効果と
、色素正孔−伝導電子への変換効率が高いことによる高
感度化の効果が得られる。これをAgXと色素のエネル
ギー準位図で表わすと、第3図のようになる。
That is, the effect of preventing recombination by separating the latent image nuclei and dye holes, and the effect of increasing sensitivity due to the high conversion efficiency of dye holes to conduction electrons can be obtained. If this is represented by an energy level diagram of AgX and the dye, it will be as shown in Figure 3.

(ii)1つのAgX粒子上に低沃度含量結晶面と高法
度含量結晶面を有する効果 これまでAgX粒子表面の法度含量については初期現像
速度をはやくするという観点からは、低法度含ftAg
Xが好まれ、一方、増悪色素の吸着性、色増感効率(強
く吸着しているとAgXの伝導帯と色素の励起準位間の
波動関数の重なりがより大きくなり、色素からAgXへ
の電子注入効率が高くなること)、正孔のAgXへの注
入効率の点からは高法度含1層が好まれ、両者は相反す
る要求であった。
(ii) Effect of having a low iodine content crystal face and a high iodine content crystal face on one AgX grain
On the other hand, the adsorption of the dye increases, the color sensitization efficiency (if it is strongly adsorbed, the wave function overlap between the conduction band of AgX and the excited level of the dye becomes larger, and the A single layer with a high concentration is preferred from the viewpoints of high electron injection efficiency) and hole injection efficiency into AgX, and these two are contradictory requirements.

本発明のAgX粒子では、初期現像速度をはやくする為
に、現像開始点(潜像核形成位置)は低沃度含量結晶面
上にあり、色素を多量に強く吸着させ、色増感効率をよ
くする為に、色素吸着結晶面は高法度含iAgXになっ
ており、この相反する要求を、共に満足して実現した形
になっている。
In the AgX particles of the present invention, in order to increase the initial development speed, the development start point (latent image nucleus formation position) is located on the low iodine content crystal face, and a large amount of dye is strongly adsorbed, increasing the color sensitization efficiency. In order to improve the performance, the dye adsorption crystal surface has a high content of iAgX, which satisfies both of these contradictory requirements.

5、ブルー    と 一般にAgX乳剤粒子のブルー光吸収の大きさはAg 
C1<AgB r<Ag Eであり、一方、現像進行性
は、Ag Cj!>AgBr>Ag Iであり、両者を
満足させることは、相反する要求である。
5. Blue and generally speaking, the magnitude of blue light absorption of AgX emulsion grains is
C1<AgB r<Ag E, and on the other hand, the development progress is Ag Cj! >AgBr>Ag I, and satisfying both is a contradictory requirement.

しかし、本発明のAgX粒子では現像開始点となる潜像
核は低沃度含量結晶面上にあり、現像速度の点で問題な
く、他方、光吸収の点に関しては、粒子内部、および他
の結晶面を高法度含量のAgBr1にすることができる
為、問題がなく、両者の要求を満足することができる。
However, in the AgX particles of the present invention, the latent image nucleus, which is the starting point for development, is located on the low iodine content crystal plane, and there is no problem in terms of development speed. Since the crystal plane can have a high content of AgBr1, there is no problem and both requirements can be satisfied.

かくして得られた本発明のAgX粒子からなる感光材料
は、感度、現像進行性、粒状性、相反則特性、シャープ
ネス、解像力、階調、画質に優れたハロゲン化銀乳剤を
提供する。
The thus obtained photographic material comprising AgX grains of the present invention provides a silver halide emulsion excellent in sensitivity, development progress, graininess, reciprocity properties, sharpness, resolution, gradation, and image quality.

本発明の好ましい実施態様は次の通りである。Preferred embodiments of the invention are as follows.

1)全AgX粒子の投影面積の70%以上、好ましくは
80%以上、より好ましくは90%以上が特許請求範囲
第1項もしくは2項記載のAgX粒子からなることを特
徴とするAgX乳剤。
1) An AgX emulsion characterized in that 70% or more, preferably 80% or more, more preferably 90% or more of the projected area of all AgX grains consists of the AgX grains according to claim 1 or 2.

2)(優先的に化学増感核が形成される結晶面上の化学
増感核の数/J) / (優先的に化学増感核が形成さ
れない結晶面上の化学増rf!、核の数/−)が2.5
以上である特許請求範囲第2〜3項記載のハロゲン化銀
乳剤 3)  +L L 11面の面積/(1001面の面積
の平均値が20〜1/20、好ましくはlO〜1/10
である14面体粒子からなることを特徴とする特許請求
範囲第1.2項記載のAgX乳剤。
2) (Number of chemically sensitizing nuclei on the crystal face where chemically sensitizing nuclei are preferentially formed/J) / (Chemically sensitizing rf on the crystal face where chemically sensitizing nuclei are not preferentially formed!, Nuclei number/-) is 2.5
Silver halide emulsion 3) +L L Area of 11 planes/(average value of area of 1001 planes is 20 to 1/20, preferably 1O to 1/10)
The AgX emulsion according to claim 1.2, characterized in that it consists of tetradecahedral grains.

4)(1111面の面積/+1001面の面積の平均値
が20〜1.01好ましくは15〜2.0である平行双
晶面を有する平板状粒子からなることを特徴とする特許
請求範囲第1.2項記載のAgX乳剤。
4) (Area of 1111 planes/Area of +1001 planes) consists of tabular grains having parallel twin planes having an average value of 20 to 1.01, preferably 15 to 2.0. AgX emulsion described in Section 1.2.

5)  [1002とil 11)結晶表面の表面層の
ハロゲン組成が、法度含量で互いに2〜40モル%、好
ましくは3〜30モル%異なり、かつ、化学増感核が該
低沃度含量表面層を有する結晶表面上に優先的に形成さ
れていることを特徴とする特許請求範囲第2項記載のA
gX乳剤。
5) [1002 and il 11) The halogen composition of the surface layer on the crystal surface differs from each other by 2 to 40 mol%, preferably 3 to 30 mol%, and the chemical sensitizing nuclei are different from each other in the low iodine content surface. A according to claim 2, characterized in that it is preferentially formed on a crystal surface having a layer.
gX emulsion.

6)化学増悪核が優先的に形成される結晶表面の表面層
の法度含量が5モル%以下、好ましくは3モル%以下で
あることを特徴とする特許請求範囲第2項記載のAgX
乳剤。
6) AgX according to claim 2, characterized in that the surface layer of the crystal surface where chemically aggravated nuclei are preferentially formed has a normal content of 5 mol% or less, preferably 3 mol% or less
emulsion.

?)+1001 と(1111結晶表面の表面層のハロ
ゲン組成が、CI含量で互いに7〜100モル%、好ま
しくは10〜80モル%異なり、かつ、化学増感核が咳
高C1含量層を有する結晶表面上に優先的に形成されて
いることを特徴とする特許請求範囲第2項記載のAgX
乳剤。
? ) +1001 and (1111) A crystal surface in which the halogen compositions of the surface layers of the crystal surface differ from each other by 7 to 100 mol%, preferably 10 to 80 mol%, and the chemical sensitizing nuclei have a high C1 content layer. AgX according to claim 2, characterized in that it is preferentially formed on
emulsion.

8)特許請求の範囲第4項の方法で製造したAgX乳剤
粒子に、(結晶面の違い十表面層のハロゲン組成の違い
)による有効な化学増感核形成能の違いを利用して一方
の結晶面上に優先的に有効な化学増悪核を形成すること
を特徴とするAgX乳剤の製造方法。
8) Using the difference in effective chemical sensitization nucleation ability due to (differences in crystal planes and differences in halogen composition of the surface layer) AgX emulsion grains produced by the method of claim 4, one A method for producing an AgX emulsion, characterized by forming effective chemically enhanced nuclei preferentially on crystal faces.

9)特許請求の範囲第4項の方法で製造したAgX乳剤
に、優先的に化学増感核を形成しない方の結晶面上に、
(結晶面の違い十表面層のハロゲン組成の違い)を利用
して優先的に吸着する吸着剤を吸着させた後、化学増感
することを特徴とするAgX乳剤の製造方法。
9) In the AgX emulsion produced by the method according to claim 4, on the crystal face on which chemical sensitization nuclei are not formed preferentially,
A method for producing an AgX emulsion, which comprises adsorbing an adsorbent preferentially by utilizing the differences in crystal planes and the halogen composition of the surface layer, followed by chemical sensitization.

以下に参考例及び実施例を挙げて本発明をさらに説明す
る。
The present invention will be further explained with reference to Reference Examples and Examples below.

参考例1 4tの容積を有する反応容器中にゼラチン水溶液(水1
000−、ゼラチン7 g、 K13 r 4.5g。
Reference Example 1 Gelatin aqueous solution (water 1
000-, gelatin 7 g, K13 r 4.5 g.

p H8,0)を入れ、溶液温度を30℃に保ちつつ、
AgN0.水溶液25d (AgNOt 8.0 gを
含む)と、KBr水溶液25d (KB r 5.8g
を含む)を同時に1分間かけて(流速25−7分)添加
し、1分間攪拌した後、その内の350−を種晶とし、
そこへゼラチン水溶液(水650−、ゼラチン20 g
、 KB r 0.5g、 p H8,0)を加え、温
度を75℃に上げる。昇温後、45分間熟成した後、A
gNOs水溶液(100TR1中に30gのAgNOs
を含む)とKBr水溶液を用いて、はじめの10分間は
7−7分で、次の20分間は13−7分でpBrl、8
(但し、こればAgX粒子に吸着したBr−も含めて、
AgX乳剤中に存在する過剰量のKBrが1.6g/f
であることを示す、銀電位は一15mVを示した。) 次の20分間は20−7分で、C,D、J、添加した。
pH 8,0) and keeping the solution temperature at 30°C,
AgN0. 25 d of aqueous solution (containing 8.0 g of AgNOt) and 25 d of KBr aqueous solution (5.8 g of KB r
) were simultaneously added over a period of 1 minute (flow rate 25-7 minutes), and after stirring for 1 minute, 350- of them were used as seed crystals,
Add gelatin aqueous solution (650 g of water, 20 g of gelatin)
, KB r 0.5 g, pH 8,0) and the temperature is raised to 75°C. After raising the temperature and aging for 45 minutes, A
gNOs aqueous solution (30g AgNOs in 100TR1
) and KBr aqueous solution for the first 10 minutes, 13-7 minutes for the next 20 minutes, pBrl, 8
(However, in this case, including Br- adsorbed on AgX particles,
The excess amount of KBr present in the AgX emulsion is 1.6 g/f
The silver potential was -15 mV. ) During the next 20 minutes, C, D, and J were added at 20-7 minutes.

Aは(−4mV)、Bは+10mV、Cは+40mV、
Dは+70mVSRは+100mVのC,D、J、添加
を行なった。得られたAgBr平板状粒子の(100)
面の面積割合を前述のT、Tan1の方法で求めると、
A(9%) 、B(9,6%) 、C(15,5%)、
D(25%)、E(58%)であり、C,D、J、 1
1位が高くなるにつれ、平板状粒子の(100)面積割
合が増加した。
A is (-4mV), B is +10mV, C is +40mV,
D was +70mVSR was +100mV C, D, and J were added. (100) of the obtained AgBr tabular grains
When the area ratio of the surface is determined using the method of T and Tan1 described above,
A (9%), B (9.6%), C (15.5%),
D (25%), E (58%), C, D, J, 1
As the number one rank increased, the (100) area ratio of tabular grains increased.

尖並五土 41の容積を有する反応容器中にゼラチン水溶液〔水1
000d、脱イオン化アルカリ処理ゼラチン30g5K
Br O,5g−NHaNOsl g1NH3(25重
量%)2−〕を入れ、溶液温度を60℃に保ちつつ、A
gNOs水溶液とハロゲン化物水溶液を添加した。Ag
N0.の添加速度ははじめの10分間は3.3X l 
O−’M7win、で、AgN0゜水溶液とKBr水溶
液のダブルジェット添加をした。添加中のpBr値は2
.53であった0次に添加速度6.OX 10−’M/
win、で7分間AgN0.水溶液とKBr水溶液を添
加した後、続けて初期添加速度6.0X 10−’M/
sin、、終期添加速度8×10−”M/a+in、 
85分間の直線加速添加法でpAg 7.7f)C,D
、  J、添加をした。この時点で得られた14面体粒
子(以fiE1と呼ぶ)の(111)面封間距離は0.
90μm、(1111面積が17%であった。
A gelatin aqueous solution [water 1
000d, deionized alkali-treated gelatin 30g5K
BrO, 5g-NHaNOsl g1NH3 (25% by weight)
An aqueous gNOs solution and an aqueous halide solution were added. Ag
N0. The addition rate was 3.3X l for the first 10 minutes.
O-'M7win, double-jet addition of AgN0° aqueous solution and KBr aqueous solution was carried out. The pBr value during addition is 2
.. The zero-order addition rate was 53.6. OX 10-'M/
win, AgN0. for 7 minutes. After adding the aqueous solution and the KBr aqueous solution, continue at an initial addition rate of 6.0X 10-'M/
sin,, final addition rate 8×10-”M/a+in,
pAg 7.7f)C,D by linear accelerated addition method for 85 minutes
, J, was added. The sealing distance between the (111) faces of the tetradecahedral particles (hereinafter referred to as fiE1) obtained at this point is 0.
90 μm, (1111 area was 17%).

次にkBrを加えてpAg8.6にした後、初期添加速
度1.5X 10−’M/win、、終期添加速度2X
 10−’M/sin、、添加時間20分で、AgNO
s水溶液とKl含量6モル%の(KB r +K I)
水溶液をpAg8.6のC,D、J、添加した。この時
得られた/≠面体粒子の(///)面封間距離はθ、P
θμmで上記とかわ多がなく、添加したAgBrI(4
モル%)は/1面体の(ioo)面上江のみ、積層した
ことを示している。
Next, after adding kBr to make pAg 8.6, initial addition rate 1.5X 10-'M/win, final addition rate 2X
10-'M/sin,, with an addition time of 20 minutes, AgNO
s aqueous solution with Kl content of 6 mol% (KB r + K I)
Aqueous solutions were added to C, D, and J with a pAg of 8.6. The distance between the (///) faces of the /≠hedral particles obtained at this time is θ, P
There was no bulkiness at θ μm as above, and the added AgBrI (4
(mol%) indicates that only the (ioo) plane of the monohedron was laminated.

この乳剤の温度金300Cに下げ、水洗をし、再分散さ
せ、pAgr 、l=、pHA 、 j、温度≠o  
’Cにし1.? 、 J ’ −bis (4’−5u
lfobutyl )−ターmethylthiaca
rbocyanine dyef飽和吸着量の7よ%を
吸着させた後、乳剤条件をpAgf、4、pHA 、j
、温度j00cにし、N a  S  O−j H20
t” ’−2×IOモル1モルAgBrだけ加え、3分
遅れて金増感剤(金チオシア/醜錯体)tl−0,3×
10   モル1モルAgBrだけ加えて、70分間熟
成した。
The temperature of this emulsion was lowered to 300C, washed with water, redispersed, pAgr, l=, pHA, j, temperature≠o
'C 1. ? , J'-bis (4'-5u
lfobutyl)-tar methylthiaca
After adsorbing 7% of the saturated adsorption amount of rbocyanine dye, the emulsion conditions were changed to pAgf, 4, pHA, j
, set the temperature to j00c, and set the temperature to N a S O-j H20
Add only 1 mol AgBr t” '-2×IO mol, and after a 3 minute delay add gold sensitizer (gold thiothia/ugly complex) tl-0,3×
10 mol of AgBr was added and aged for 70 minutes.

温度を≠o ’Cにし、かぶり防止剤(TAI(’I−
hydroxy−A −methy+−/ 、 j 、
 j a 。
The temperature was set to ≠o 'C and the antifoggant (TAI ('I-
hydroxy-A-methy+-/, j,
ja.

tetraazaindene)を3g1モルAg)塗
布助剤を加えて、銀1.5g/rlで透明ベース上に塗
布した。
1.5 g/rl of silver was coated onto the transparent base with the addition of 3 g (1 mole Ag) coating aid.

大立■上 実施例1で14面体粒子に色素を吸着させ、乳剤条件を
pAg8.6、pH6,5、温度50℃にする所までは
同じである0次にNa1S、03・5H20を0.9X
 10−’モル1モルAgBrだけ加え、40分間熟成
した後、前述の金増感剤を0.3X 10”’モル1モ
ルAgBrだけ加えて、更に40分間熟成した0次に温
度を40℃に下げ、かぶり防止剤、塗布助剤を加えて、
透明ベース上にill、5g/n(で塗布した。
Odachi ■ Example 1 is the same except that the dye is adsorbed onto the tetradecahedral grains, and the emulsion conditions are pAg 8.6, pH 6.5, and temperature 50°C. 9X
After adding 10-' 1 mol AgBr and aging for 40 minutes, the aforementioned gold sensitizer was added at 0.3X 10'' mol 1 mol AgBr, and the mixture was aged for another 40 minutes. Add anti-fogging agent, coating aid,
ill, 5 g/n (coated on a transparent base).

ル較銖上 実施例1でElのAgX粒子を作る所までは同じにする
0次にKBrを加えてp A g 、8.6にした後、
初期添加速度1.5X l O弓M/min、終朋添加
速度2 X 10−”M/lll1n、、添加時間20
分でAgN0゜水溶液とKBr水溶液をpAg8.6の
C,D、J。
For comparison, the process is the same as in Example 1 up to the point where AgX particles of El are made. After adding KBr to the zero order and making p A g 8.6,
Initial addition rate 1.5X 10M/min, final addition rate 2X 10-"M/ll1n, addition time 20
AgN0° aqueous solution and KBr aqueous solution with pAg8.6 C, D, J.

添加した。この時得られた14面体粒子の(111)面
封間距離は0.9μmで、添加したAgBrは14面体
の(100)面上にのみ積層したことを示している。こ
の後、実施例1と同じ工程を通した。
Added. The sealing distance between the (111) faces of the tetradecahedral particles obtained at this time was 0.9 μm, indicating that the added AgBr was deposited only on the (100) face of the tetradecahedron. After this, the same steps as in Example 1 were carried out.

実施例1,2、および比較例1、の乳剤塗布物を青光で
1秒露光(露光量は最大濃度を与える露光量の10倍量
)し、前述のBirchらの抑制現像液で20℃、6分
間現像した後、ゼラチンを除去し、レプリカ法で粒子の
TEM像を観察した0粒子の現像開始点が14面体粒子
の+111)面に存在する割合は表1に示す通りであっ
た。
The emulsion coatings of Examples 1 and 2 and Comparative Example 1 were exposed to blue light for 1 second (the exposure dose was 10 times the exposure dose that gave the maximum density), and the coatings were incubated at 20° C. with the aforementioned suppressing developer of Birch et al. After developing for 6 minutes, the gelatin was removed and a TEM image of the particles was observed using a replica method. Table 1 shows the percentage of development start points of 0 particles present on the +111) plane of the tetradecahedral particles.

また、実施例1.2と比較例1の乳剤塗布物をブルーフ
イルターを通して10−”秒間、ウェッジ露光し、MA
A−1現像液で20℃、10分間現像した。得られた特
性曲線とAgX粒子の光吸収率より求めた相対量子感度
は表1の通りであり、比較例1に対する本発明の効果が
u’ffl t=された。
The emulsion coatings of Example 1.2 and Comparative Example 1 were also wedge exposed for 10-'' seconds through a blue filter, and MA
It was developed with A-1 developer at 20°C for 10 minutes. The relative quantum sensitivities determined from the obtained characteristic curve and the light absorption rate of the AgX particles are shown in Table 1, and the effect of the present invention on Comparative Example 1 was expressed as u'ffl t=.

表1 41の容積を存する反応容器中にゼラチン水溶液(水1
000ad、ゼラチン7 g、 KB r 4.5g。
Table 1 Aqueous gelatin solution (water 1
000ad, gelatin 7 g, KB r 4.5 g.

p H8,0)を入れ、溶液温度を30 ’Cに保ちつ
つ、AgN0.水溶t& 25mff1 (A g N
O38,0gを含む)と、KBr水溶液25d (KB
 r 5.8gを含む)を同時に1分間かけて(流速2
5−7分)添加し、1分間攪拌した後、その内の300
−を種晶とし、そこへゼラチン水溶液(水650m、ゼ
ラチ720 g、 KB r 0.6g、 p H8,
0)を加え、温度を75℃に上げる。昇温後、45分間
熟成した後、AgNo3水溶液(10(lad中に40
g(7)AgNO,を含む)とKBr水溶液を用いて、
はじめの10分間は6−7分で、次の20分間は12−
7分で、pBrl、7のC,D、J、添加した。
pH 8.0) was added, and while maintaining the solution temperature at 30'C, AgN0. Water-soluble t&25mff1 (A g N
(contains 38.0 g of O) and 25 d of KBr aqueous solution (KB
r containing 5.8 g) at the same time for 1 minute (flow rate 2
5-7 minutes) and stirred for 1 minute, then 300
- as a seed crystal, and add thereto an aqueous gelatin solution (650 m of water, 720 g of gelatin, 0.6 g of KBr, pH 8,
0) and raise the temperature to 75°C. After raising the temperature and aging for 45 minutes, a AgNo3 aqueous solution (10 (40
g(7)AgNO,) and a KBr aqueous solution,
6-7 minutes for the first 10 minutes and 12-7 minutes for the next 20 minutes.
At 7 minutes, pBrl, 7 C, D, J, was added.

次に6−7分で7分間pAg6.8でC,D、J。Then C, D, J at pAg 6.8 for 7 min at 6-7 min.

添加した。この時点で得られた平板状粒子を前述のT、
Tan1の方法で(1001面積比率を求めると、20
%であった。平均粒径は1.1μmであった。
Added. The tabular grains obtained at this point were
Using Tan1 method (1001 area ratio is calculated as 20
%Met. The average particle size was 1.1 μm.

次に6.1層分で7分間、pA g 6.5テA g 
N Ox水溶液と法度含量6モル%の(KBr+Kr)
水溶液を添加した。最終的に得られた平板状粒子の平均
粒径は1.1μmであり、上記とかわらなかった。従っ
て、AgBr1  (6モル%)は[1111主平面上
にのみ積層したことがわかる。この平板状粒子は平均ア
スペクト比6、平板状粒子の投影粒径の変動係数は15
%であつた。
Then 6.1 layers for 7 minutes, pA g 6.5teA g
NOx aqueous solution and legal content of 6 mol% (KBr+Kr)
Aqueous solution was added. The average grain size of the finally obtained tabular grains was 1.1 μm, which was the same as above. Therefore, it can be seen that AgBr1 (6 mol %) was laminated only on the [1111 principal plane. The tabular grains have an average aspect ratio of 6 and a coefficient of variation of the projected grain size of the tabular grains of 15.
It was %.

このようにして得られたAgX乳剤を水洗し、再分散し
、乳剤をpH6,5、pAg8.o、温度40℃にし、
3*  3 ’ −dimethylthJazoli
nodicarbocyaninebromide色素
を飽和吸着量の80%の添加量を加え、pAg8.0に
調節した。20分分間時させた後、pAg8.5温度5
0℃にし、Trlathyトthlouraaのメタノ
ール溶液(0,005重量%)を1.OX 10−’モ
ル1モルAgBrだけ添加し、3分遅れて、次に前述の
金増感剤を0.4X 10”’モル1モルAgBrだけ
添加し、更に40分間熟成した。温度を40℃に下げ、
かぶり防止剤、塗布助剤を加木て、透明ベース上に塗布
した。
The AgX emulsion thus obtained was washed with water, redispersed, and the emulsion was adjusted to pH 6.5, pAg 8. o, set the temperature to 40℃,
3* 3'-dimethylthJazoli
Nodicarbocyanine bromide dye was added in an amount of 80% of the saturated adsorption amount, and the pAg was adjusted to 8.0. After incubating for 20 minutes, pAg 8.5 Temperature 5
At 0°C, a methanol solution (0,005% by weight) of Trlathy and thlouraa was added to 1. OX 10'' mol 1 mol AgBr was added and after a delay of 3 minutes, the aforementioned gold sensitizer was added in 0.4× 10'' mol 1 mol AgBr and further aged for 40 min. The temperature was increased to 40°C. Lower it to
An antifoggant and coating aid were added and coated onto a transparent base.

止較且l 実施例3において、あとで積層させるAgBr1層をA
gBrに置きかえるだけで化学増感も含め他の条件はす
べて同一条件にしたAgX乳剤を調製し、かぶり防止剤
、塗布助剤を加えて透明ベース上に塗布した。
In Example 3, one layer of AgBr to be laminated later was
An AgX emulsion was prepared in which all other conditions including chemical sensitization were the same except that gBr was replaced, and an antifoggant and a coating aid were added and coated on a transparent base.

次に実施例3と比較例2の乳剤塗布物を、表1と同じ比
較をし、結果を表2に示した。比較例2に対する本発明
の効果が確認された。
Next, the emulsion coatings of Example 3 and Comparative Example 2 were compared in the same way as in Table 1, and the results are shown in Table 2. The effect of the present invention on Comparative Example 2 was confirmed.

表2 スm 参考例1のAの乳剤(平均投影粒径1.35μm)を0
.22モル含むゼラチン水溶液(水11、ゼラチン20
 g、 KB r O,3gを含む、p H6,0)を
41の反応容器中に入れ、温度を75℃にし、N H4
N 03を3g、、NH3水(25重量%)を6−添加
し、2分径kmAgNO3水溶液(10(lag中に1
0gのAgNO3を含む)とKBr水溶液を銀電位+4
0mV、40分間のC,D、J、添加をした。初期流量
は3.9−7分で終期流量は13−7分の直線加速添加
である。添加終了後、1分後にHNOs(3N)液を2
8−添加した。この時点における平板状粒子の平均投影
粒径は1.45μmであった。
Table 2 Sm Emulsion A of Reference Example 1 (average projected grain size 1.35 μm) was 0
.. Gelatin aqueous solution containing 22 mol (11 water, 20 gelatin)
g, KB r O, 3 g, pH 6,0) were placed in a 41 reaction vessel, the temperature was brought to 75 °C, and the N H4
Added 3 g of N03, 60% of NH3 water (25% by weight), and added 2 minutes diameter km of AgNO3 aqueous solution (10 in
containing 0g of AgNO3) and KBr aqueous solution at a silver potential of +4
C, D, J were added at 0 mV for 40 minutes. The initial flow rate is 3.9-7 minutes and the final flow rate is 13-7 minutes of linearly accelerated addition. After 1 minute, add 2 HNOs (3N) solution.
8-Added. The average projected grain size of the tabular grains at this point was 1.45 μm.

次ニA g N Os水溶液(10〇−中にlogのA
 g N Osを含む)とKl含量が6モル%の(KB
r+KI)水溶液を2.5m/分で30分間、銀電位1
20mVで添加した。温度を30℃に下げ、乳剤を水洗
し、再分散させた。この時点における平板状粒子の平均
投影粒径は、1.45μmであった。
Next, A g N Os aqueous solution (log A in 100-
g N Os) and with a Kl content of 6 mol% (KB
r+KI) aqueous solution at 2.5 m/min for 30 minutes, silver potential 1
Added at 20 mV. The temperature was lowered to 30°C and the emulsion was washed with water and redispersed. The average projected grain size of the tabular grains at this point was 1.45 μm.

従って、最終に添加したAgBr1は、平板状粒子のエ
ツジ上には沈積せず、(1111主表面上に積層したこ
とを示す、この粒子のエツジ形状を第4図に示した。(
倍率21,000倍)、(1111主表面に対し、12
5°の鈍角を有する(100)エツジ面を有する平板状
粒子であることを示している。平均(100)面積比率
は30%であった。
Therefore, the finally added AgBr1 was not deposited on the edges of the tabular grains (Fig. 4 shows the shape of the edges of this grain, indicating that it was laminated on the main surface of 1111).
(21,000x magnification), (12
This indicates that the grains are tabular grains having (100) edge faces with an obtuse angle of 5°. The average (100) area ratio was 30%.

大急班上 比較例1のAの乳剤を0.26モル含むゼラチン水溶液
(水I II、Na f15g−ゼラチン20gを含む
)を41の反応容器中に入れ、温度を75℃にし、Ag
NO3水溶液(100−中にAgN0!Logを含む)
とNaC1含fi25モル%の(KB r +Na C
l1)水溶液を用いて、初期流量4.0 a!/分、終
期流1t20ad/分の直線加速添加で、p C1−1
,07に保ちながら添加した。温度を30℃に下げ、乳
剤を水洗し、再分散させた。この時点における平板状粒
子の平均投影粒径は1.30μmであり、添加したAg
BrC1は平板状粒子の(1111主表面上にのみ積層
したことを示す。
A gelatin aqueous solution containing 0.26 mol of emulsion A of Comparative Example 1 (containing water I II, 15 g of NaF-20 g of gelatin) was placed in a reaction vessel No. 41, the temperature was set to 75°C, and Ag
NO3 aqueous solution (including AgN0!Log in 100-)
and (KB r +Na C
l1) Using an aqueous solution, the initial flow rate is 4.0 a! /min, final flow 1t20ad/min linearly accelerated addition, p C1-1
,07. The temperature was lowered to 30°C and the emulsion was washed with water and redispersed. The average projected grain size of the tabular grains at this point was 1.30 μm, and the added Ag
BrC1 indicates that the film was laminated only on the (1111 main surface) of the tabular grain.

この粒子の形状を第5図に示す、(倍率19,000倍
) 、  (1111主表面に対し125℃の鈍角を有
するfl O01工ツジ面を有する平板状粒子であるこ
とを示している。平均+1001面積比率は50%であ
った。
The shape of this particle is shown in Figure 5 (magnification: 19,000 times), (1111) indicating that it is a tabular grain with a fl O01 face having an obtuse angle of 125°C with respect to the main surface. +1001 area ratio was 50%.

笑止■旦 42の容積を存する反応容器中にゼラチン水液液〔水1
000TR1、ゼラチン30g、、KBro、5g、N
Hs(25重量%)を2m!、、N HaNOs (5
0重量%)2−〕を入れ、溶液温度を60℃に保ちつつ
、AgNOs水溶液(10〇−中にAgN0゜を0.9
3g含む)とハロゲン化塩水溶液を添加した。
In a reaction vessel having a volume of 42 ml, gelatin aqueous liquid [water 1 ml] was added.
000TR1, gelatin 30g, KBro, 5g, N
2m of Hs (25% by weight)! ,,N HaNOs (5
0% by weight) 2-], and while maintaining the solution temperature at 60°C, add 0.9% AgNO° in an AgNOs aqueous solution (100°C).
(containing 3 g) and a halogenated salt aqueous solution were added.

AgNOxの添加速度は、はじめの10分間は3.3 
x 10−’M/分で、次の9分間は8.9X 10−
’M/分でAgN0.液と(KB r +K I)水溶
液(KI含量は6モル%)をダブルジェット添加した。
The AgNOx addition rate was 3.3 for the first 10 minutes.
x 10-'M/min, then 8.9X 10-' for the next 9 minutes
'AgN0.M/min. The liquid and (KB r +K I) aqueous solution (KI content: 6 mol %) were added by double jet.

添加中のpBr値は2.4であった。The pBr value during the addition was 2.4.

次に初期添加速度9.OX 10−“M/分、終期添加
速度7.8X 10−”M/分、60分間の直線加速添
加法で、銀電位125mVのC,D、J、添加をした。
Next, initial addition rate 9. C, D, and J were added at a silver potential of 125 mV using a linear accelerated addition method of OX 10-"M/min, a final addition rate of 7.8X 10-"M/min, and a period of 60 minutes.

この時点で得られた14面体粒子は第6a図に示す如く
の14面体粒子であった。
The tetradecahedral particles obtained at this point were as shown in FIG. 6a.

次に、111を位を+170mVにし、A g N O
j液(10〇−中にAgN0510gを含む)とKBr
液を用い、初期添加速度1.8X 10−’M/分、終
期3.25X 104M/分、20分間の直線加速添加
法で、!!電位18 OmVのC,D、J、添加をした
。この時点で得られた14面体粒子は第6b図に示す如
くの14面体粒子であった。
Next, set the position of 111 to +170mV, and set A g N O
J liquid (contains 510g of AgN in 100-) and KBr
Using a linear acceleration addition method for 20 minutes, using a liquid with an initial addition rate of 1.8X 10-'M/min and a final addition rate of 3.25X 104M/min. ! C, D, and J were added at a potential of 18 OmV. The tetradecahedral particles obtained at this point were as shown in FIG. 6b.

両14面体粒子のエツジ長はともに0.63μmであり
、最後に添加したAgB rは14面体のコーナ一部の
みに沈澱したことを示している。TEM像より求めたこ
の粒子の(100)面積:(111)面fl−15:8
5であった。
The edge lengths of both tetradecahedral particles were both 0.63 μm, indicating that the AgBr added last was precipitated only at a portion of the corners of the tetradecahedron. (100) area of this particle determined from TEM image: (111) plane fl-15:8
It was 5.

この乳剤に3. 3 ’ −bis(4−5ulfob
utyl) −9−5ethylthiacarboc
yanine dyeを飽和吸着量の75%吸着させた
後、乳剤条件をpAg8.6、pH6,5、温度50℃
にし、NatsxOs ・5H1Oを0.9 X 10
”’モル1モルAgBrだけ加え、3分後れて金増感剤
〔金−チオシアン酸錯体〕を0゜3×10−5モル1モ
ルAgBrだけ加えて、70分間熟成した。温度を3!
0Cに下げ、乳剤を水洗し、再分散させ、乳剤をpHj
、j、pAgr、jK1節した。
This emulsion contains 3. 3'-bis(4-5ulfob
-9-5ethylthiacarboc
After adsorbing 75% of the saturated adsorption amount of yanine dye, the emulsion conditions were pAg 8.6, pH 6.5, and temperature 50°C.
and NatsxOs ・5H1O to 0.9 x 10
``'1 mol AgBr was added, and after 3 minutes, a gold sensitizer [gold-thiocyanate complex] was added in an amount of 0°3 x 10-5 mol 1 mol AgBr, and the mixture was aged for 70 minutes.The temperature was set to 3!
Lower the temperature to 0C, wash the emulsion with water, redisperse it, and adjust the emulsion to pHj
, j, pAgr, jK1 section.

温度を≠00Cにし、かぶシ防止剤、塗布助剤を加えて
、銀/ 、 ! g/yn2透明ベース上に塗布した。
Adjust the temperature to ≠00C, add antifouling agent and coating aid, and silver/! g/yn2 coated on a transparent base.

比較例3 実施例6で第6a図のAgX粒子を作る所までは同じに
する。次に銀電位を十りOmVにし、AgNO3液(l
ooml中にAgNO310gを含む)とKBr液を用
い、初期添加速度i、rX10−3M/分、終期添加速
度3,2jx10−3M/分、2a分間の直線加速添加
法で、銀電位りOm VのC,D、J、添加をした。こ
の時点で得らnた/≠面体粒子の形状は、第6a図の7
弘面体粒子とほぼ相似形で、最後に添加したAgBrは
、該/弘面体粒子のほぼ全表面上に均一に積層し、いわ
ゆる内部高法度型の2ffi構造粒子であることを示し
ている。
Comparative Example 3 The procedure of Example 6 was repeated until the AgX particles shown in FIG. 6a were made. Next, the silver potential was set to 10 OmV, and the AgNO3 solution (l
Using a KBr solution containing 310 g of AgNO3 in ooml, the initial addition rate was i, rX 10-3 M/min, the final addition rate was 3.2j C, D, and J were added. The shape of the nta/≠hedral particle obtained at this point is 7 in Figure 6a.
The AgBr added last, which has a shape almost similar to the proporhedral particles, is uniformly layered on almost the entire surface of the protrusive particles, indicating that they are so-called 2ffi-structured particles with a high internal rigidity.

この乳剤を水洗し、再分散させ、3. 3−bis(4
−5ulfobuLyl) −9−methylthi
acarbocyaninedye−f−飽和吸着量の
75%吸着させた後、乳剤条件をpAg8.6、pH6
,5、温度50℃にし、Nazsto* ・5 HzO
を1.5X 10−’モル1モルAgBrだけ加え、3
分遅れて前述の金増感剤を0.5 X 10−’モル1
モルAgB rだけ加え、60分間熟成した。
This emulsion is washed with water and redispersed; 3. 3-bis(4
-5ulfobuLyl) -9-methylthi
After adsorbing 75% of the saturated adsorption amount of acarbocyaninedye-f, the emulsion conditions were changed to pAg 8.6 and pH 6.
, 5. The temperature was set to 50°C, and Nazsto* 5 HzO
Add 1.5X 10-'mol 1 mol AgBr, 3
After a minute delay, add 0.5
Only molar AgBr was added and aged for 60 minutes.

次に温度を40℃に下げ、かぶり防止剤、塗布助剤を加
えて、銀1.5g/rdで透明ベース上に塗布した。
The temperature was then lowered to 40° C., an antifoggant and a coating aid were added, and the coating was coated onto a transparent base at 1.5 g/rd of silver.

次に、実施例6と比較例3の乳剤を、表1と同じ比較を
し、結果を表3に示した。比較例3に対する本発明の効
果が確認された。
Next, the emulsions of Example 6 and Comparative Example 3 were compared in the same way as in Table 1, and the results are shown in Table 3. The effect of the present invention on Comparative Example 3 was confirmed.

表3Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は化学増感績の生成する位置を模式的に示すもの
であり、ialは立方体に近い十四面体粒子の場合を、
(blは八面体に近い十四面体粒子の場合を示す。 第2図は本発明のAgX粒子の製法に於て立方晶雰囲気
下における(100)面と(111)面のケミカルポテ
ンシャルに対する溶液中の逼イオンのケミカルポテンシ
ャルの関係を示す模式図である。 第3図は本発明の特に好ましいAgX粒子のバンド構造
を示すものである。 たて軸はポテンシャルを示し横軸はM1何学的座標を示
す、黒丸は電子を、白丸は正孔を示す。 第4図及び第5図は実施例−4及び5で調製されたAg
Xの結果構造を表わす電子顕微鏡写真である0倍率はそ
れぞれ21.000倍及び19゜000倍である。 第6図は実施例−6のAgXの構造を模式的に表わした
ものであり1M)はホスト粒子の十四面体粒子を、山)
はホスト粒子の上に異なったハロゲン組成のAgXを成
長させた十四面体粒子を示す。
Figure 1 schematically shows the position where chemical sensitization occurs, and ial is for the case of a tetradecahedral particle close to a cube;
(bl indicates the case of a dodecahedral particle close to an octahedron. Figure 2 shows the chemical potential of the (100) plane and (111) plane in a cubic atmosphere in the method for producing AgX particles of the present invention. FIG. 3 is a schematic diagram showing the relationship between the chemical potential of the ion in the particle. FIG. Coordinates are shown, black circles indicate electrons and white circles indicate holes. Figures 4 and 5 show the Ag prepared in Examples 4 and 5.
The zero magnifications of the electron micrographs showing the resulting structure of X are 21.000x and 19°000x, respectively. Figure 6 schematically represents the structure of AgX in Example-6.
shows dodecahedral grains in which AgX with different halogen compositions are grown on host grains.

Claims (1)

【特許請求の範囲】 1)分散媒とハロゲン化銀粒子とからなるハロゲン化銀
乳剤であって、全ハロゲン化銀粒子の投影面積の70%
以上が1つのハロゲン化銀粒子表面上に少くとも{10
0}と{111}の結晶表面を有し、該結晶表面の表面
層のハロゲン組成が互いに異なることを特徴とするハロ
ゲン化銀乳剤。 2)化学増感核が、一方の結晶面上に優先的に形成され
ていることを特徴とする特許請求範囲第1項記載のハロ
ゲン化銀乳剤。 3){100}と{111}結晶表面の表面層のハロゲ
ン組成が、沃度含量で互いに2〜40モル%異なり、か
つ、化学増感核が該低沃度含量表面層を有する結晶表面
上に優先的に形成されていることを特徴とする特許請求
範囲第2項記載のハロゲン化銀乳剤。 4)1つのハロゲン化銀粒子表面上に少くとも{100
}と{111}の結晶表面を有するハロゲン化銀粒子を
、八面体領域のpAgもしくは立方晶領域のpAg領域
で低過飽和度下で{100}もしくは{111}結晶面
の一方の結晶面上にのみ、基質のハロゲン化銀粒子と異
なるハロゲン組成のハロゲン化銀を、結晶成長させるこ
とを特徴とするハロゲン化銀乳剤の製造方法。
[Scope of Claims] 1) A silver halide emulsion consisting of a dispersion medium and silver halide grains, which accounts for 70% of the projected area of all silver halide grains.
At least {10
A silver halide emulsion having crystal surfaces of {0} and {111}, wherein the halogen compositions of the surface layers of the crystal surfaces are different from each other. 2) The silver halide emulsion according to claim 1, wherein chemically sensitized nuclei are preferentially formed on one crystal face. 3) The halogen compositions of the surface layers on the {100} and {111} crystal surfaces differ from each other by 2 to 40 mol% in iodine content, and the chemical sensitized nuclei are on the crystal surface having the low iodine content surface layer. 3. The silver halide emulsion according to claim 2, wherein the silver halide emulsion is preferentially formed as follows. 4) At least {100
} and {111} crystal surfaces are placed on one of the {100} or {111} crystal faces under low supersaturation in the octahedral pAg or cubic pAg region. 1. A method for producing a silver halide emulsion, which comprises growing crystals of silver halide having a halide composition different from that of silver halide grains as a substrate.
JP63251215A 1987-10-05 1988-10-05 Silver halide emulsion Expired - Fee Related JPH0789205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251215A JPH0789205B2 (en) 1987-10-05 1988-10-05 Silver halide emulsion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25137787 1987-10-05
JP62-251377 1987-10-05
JP63251215A JPH0789205B2 (en) 1987-10-05 1988-10-05 Silver halide emulsion

Publications (2)

Publication Number Publication Date
JPH0234A true JPH0234A (en) 1990-01-05
JPH0789205B2 JPH0789205B2 (en) 1995-09-27

Family

ID=26540103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251215A Expired - Fee Related JPH0789205B2 (en) 1987-10-05 1988-10-05 Silver halide emulsion

Country Status (1)

Country Link
JP (1) JPH0789205B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100341A (en) * 1991-10-07 1993-04-23 Fuji Photo Film Co Ltd Silver halide emulsion
US5214215A (en) * 1990-03-30 1993-05-25 Union Carbide Chemicals & Plastics Technology Corporation Selective production of aminoethylethanolamine
AU677173B2 (en) * 1990-03-23 1997-04-17 Vontech International Corporation Interground fiber cement
KR100828948B1 (en) * 2006-10-30 2008-05-13 주식회사 이엠따블유안테나 Interdigital capacitor, inductor, and transmission line and coupler using them
KR20170000919U (en) 2015-09-02 2017-03-10 권영선 Top Cover for Combined (Combi) Blind

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124139A (en) * 1978-12-26 1980-09-25 Du Pont New silver halide crystal
JPS55149934A (en) * 1979-05-12 1980-11-21 Konishiroku Photo Ind Co Ltd Silver halide photographic emulsion
JPS5627134A (en) * 1979-08-14 1981-03-16 Konishiroku Photo Ind Co Ltd Manufacture of silver halide emulsion
JPS58113928A (en) * 1981-11-12 1983-07-07 イ−ストマン・コダツク・カンパニ− Preparation of high aspect ratio flat particulate iodo-silver bromide emulsion
JPS627040A (en) * 1985-07-03 1987-01-14 Fuji Photo Film Co Ltd Silver halide photographic emulsion
JPS6289949A (en) * 1985-04-17 1987-04-24 Fuji Photo Film Co Ltd Silver halide photographic sensitive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124139A (en) * 1978-12-26 1980-09-25 Du Pont New silver halide crystal
JPS55149934A (en) * 1979-05-12 1980-11-21 Konishiroku Photo Ind Co Ltd Silver halide photographic emulsion
JPS5627134A (en) * 1979-08-14 1981-03-16 Konishiroku Photo Ind Co Ltd Manufacture of silver halide emulsion
JPS58113928A (en) * 1981-11-12 1983-07-07 イ−ストマン・コダツク・カンパニ− Preparation of high aspect ratio flat particulate iodo-silver bromide emulsion
JPS6289949A (en) * 1985-04-17 1987-04-24 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
JPS627040A (en) * 1985-07-03 1987-01-14 Fuji Photo Film Co Ltd Silver halide photographic emulsion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU677173B2 (en) * 1990-03-23 1997-04-17 Vontech International Corporation Interground fiber cement
US5214215A (en) * 1990-03-30 1993-05-25 Union Carbide Chemicals & Plastics Technology Corporation Selective production of aminoethylethanolamine
JPH05100341A (en) * 1991-10-07 1993-04-23 Fuji Photo Film Co Ltd Silver halide emulsion
KR100828948B1 (en) * 2006-10-30 2008-05-13 주식회사 이엠따블유안테나 Interdigital capacitor, inductor, and transmission line and coupler using them
KR20170000919U (en) 2015-09-02 2017-03-10 권영선 Top Cover for Combined (Combi) Blind

Also Published As

Publication number Publication date
JPH0789205B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JPH0431102B2 (en)
JPH0228638A (en) Silver halide photographic emulsion and its production
JPH0253773B2 (en)
JPH0234A (en) Silver halide emulsion and its production
JP2604230B2 (en) Silver halide photographic emulsion
JP3225134B2 (en) Method for producing tabular grain emulsion having intermediate aspect ratio
US6740483B1 (en) Process for doping silver halide emulsion grains with Group 8 transition metal shallow electron trapping dopant, selenium dopant, and gallium dopant, and doped silver halide emulsion
JPS63264739A (en) Silver halide photographic sensitive material and its production
US5420005A (en) Silver halide emulsion
JP2779719B2 (en) Silver halide emulsion
JP2835714B2 (en) Preparation of tabular silver halide grains rich in silver chloride in silica sol as protective colloid
JP2681529B2 (en) Silver halide emulsion
JP2778861B2 (en) Silver halide photographic emulsions and photographic materials
JP2835607B2 (en) Silver halide emulsion
JP3626337B2 (en) Silver halide grains, photographic light-sensitive material and method for producing the same
JP3278227B2 (en) Silver halide photosensitive material
JP3637476B2 (en) Silver halide photographic emulsion
JPH07101291B2 (en) Silver halide emulsion and method for producing the same
JP2000066325A (en) Silver halide emulsion and silver halide photographic sensitive material
JP2000241925A (en) Manufacture of silver halide photographic emulsion and silver halide photographic sensitive material using same
JPH0766158B2 (en) Negative-type silver halide photographic light-sensitive material with high sensitivity and improved sea flight fog
JPH04156448A (en) Silver halide photosensitive material
JPH08220664A (en) Silver halide photographic emulsion and its production
JP2004334200A (en) Gallium halide complex, method of doping silver halide emulsion grains with gallium complex composition, gallium-doped silver halide emulsion, and photographic eelement containing the same
JPH032747A (en) Production of silver halide photographic emulsion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees