JPH0788616B2 - Method for manufacturing inorganic fiber molded body - Google Patents
Method for manufacturing inorganic fiber molded bodyInfo
- Publication number
- JPH0788616B2 JPH0788616B2 JP61229493A JP22949386A JPH0788616B2 JP H0788616 B2 JPH0788616 B2 JP H0788616B2 JP 61229493 A JP61229493 A JP 61229493A JP 22949386 A JP22949386 A JP 22949386A JP H0788616 B2 JPH0788616 B2 JP H0788616B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- precursor
- molded body
- bulk density
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Nonwoven Fabrics (AREA)
- Inorganic Fibers (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鉄鋼、窯業、化学プラント等で広く用いら
れる工業用加熱炉等の内側に設けられる耐火断熱材に適
した引張り強度の高い、高カサ密度無機繊維成形体の製
造法である。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a high tensile strength suitable for a fireproof heat insulating material provided inside an industrial heating furnace or the like widely used in steel, ceramics, chemical plants and the like, This is a method for producing a high-bulk density inorganic fiber molded body.
工業用加熱炉耐熱材としてアルミナ40〜60重量%(以下
%と言う)、シリカ40〜60%を含有する非結晶質セラミ
ツクフアイバーのカサ密度0.09以上の成形体が広く用い
られて来た。しかし、これらのセラミツクスフアイバー
成形体の最高使用温度は1200℃で、更に高温度で使用さ
れる工業加熱炉に用いるため、近年アルミナ70〜90%、
シリカ5〜30%のいわゆる結晶質アルミナフアイバーが
開発された。As a heat-resistant material for an industrial heating furnace, a molded product of an amorphous ceramic fiber containing 40 to 60% by weight of alumina (hereinafter referred to as "%") and 40 to 60% of silica and having a bulk density of 0.09 or more has been widely used. However, the maximum operating temperature of these ceramic fiber molded articles is 1200 ° C, and for use in industrial heating furnaces used at higher temperatures, 70-90% alumina in recent years,
So-called crystalline alumina fibers with 5-30% silica have been developed.
しかし、結晶質アルミナフアイバーは非晶質セラミツク
フアイバーに比べて、強度が弱いため、セラミツクフア
イバーの成形に用いられるニードルパンチ法では繊維が
粉々になりやすく、強度の高い成形体を得ることは困難
であつた。However, since the crystalline alumina fiber has weaker strength than the amorphous ceramic fiber, the needle punching method used for molding the ceramic fiber easily causes the fibers to be shattered, and it is difficult to obtain a strong molded product. Atsuta
このため、結晶質アルミナフアイバーの場合はアルミナ
フアイバーを一度水中に解綿した後、コーンスターチ等
の有機質糊剤とシリカゾル等の無機バインダーで固めて
フエルト状に成形して、カサ密度0.09以上の成形体を製
造していた。しかし、この方法では成形時に繊維の長さ
が数mmに切断されるため、繊維同志のからみ合いが少な
く、有機質糊剤が高温で焼失した後は引張り強度が50〜
100g/cm2まで低下する上、湿式工程のため製造コストも
高くなる欠点があつた。For this reason, in the case of crystalline alumina fiber, after deflocculating the alumina fiber once in water, it is molded with an organic sizing agent such as cornstarch and an inorganic binder such as silica sol to form a felt, and a molded body with a bulk density of 0.09 or more. Was being manufactured. However, in this method, the length of the fiber is cut to a few mm during molding, so there is little entanglement between the fibers, and the tensile strength is 50 ~
In addition to the decrease to 100 g / cm 2, there is a drawback that the manufacturing cost becomes high due to the wet process.
一方、繊維を本来の長い状態で使用する試みとして、有
機質不織布を補強材としてアルミナ繊維積層体をニード
ルパンチ成形して、マツトを得る方法(特開昭60−1104
39号公報)が提案されているが、ニードルパンチ成形の
際にアルミナ繊維が粉々になる現象は同様に起り、高温
使用時、有機質不織布が焼失すると焼成前のカサ密度が
0.1の成形体でも、カサ密度は0.06以下になるなどアル
ミナ繊維マツトの密度は著しく低下し、引張り強度も50
〜100g/cm2まで低下し充分なものではなかつた。On the other hand, as an attempt to use the fiber in its original long state, a method of needle-punching an alumina fiber laminate with an organic non-woven fabric as a reinforcing material to obtain mats (JP-A-60-1104).
No. 39 gazette) has been proposed, but the phenomenon in which alumina fibers are shattered during needle punch molding also occurs, and when the organic nonwoven fabric is burned out at high temperature, the bulk density before firing is
Even with a molded body of 0.1, the density of the alumina fiber mat is significantly reduced, such as the bulk density being 0.06 or less, and the tensile strength is 50%.
It fell to ~ 100 g / cm 2 and was not sufficient.
この欠点を解決する方法として、特開昭60−88162号公
報及び特開昭60−252717号公報にアルミナ繊維の焼成前
の前駆体積層体にニードルパンチ成形し、その後焼成し
てブランケツトを得る方法が提案されている。この方法
は従来の方法に比べ、強度の高いブランケツトを得るこ
とが出来るとされている。ところが、この方法において
も、ニードルパンチ成形するために、高価な繊維処理剤
やニードルパンチ成形機を必要とし、又ニードルパンチ
処理の際に針が折損すると金属針が製品中に混入すると
いう欠点があつた。As a method for solving this drawback, JP-A-60-88162 and JP-A-60-252717 disclose a method of needle punching a precursor laminate of alumina fibers before firing, and then firing to obtain a blanket. Is proposed. This method is said to be capable of obtaining a blanket having higher strength than the conventional method. However, even in this method, in order to perform needle-punching, an expensive fiber treatment agent or a needle-punching machine is required, and when the needle is broken during the needle-punching treatment, metal needles are mixed in the product. Atsuta
以上の如く、高耐熱性である結晶質アルミナ繊維の高温
強度の高いマツト状成形体を高価な繊維処理剤や特別な
装置を用いず、製造することは困難であつた。As described above, it has been difficult to manufacture a mat-shaped molded product of crystalline alumina fibers having high heat resistance and high temperature strength without using an expensive fiber treating agent or a special device.
本発明は、焼成処理により、金属酸化物を与える繊維組
成物水溶液に水溶性有機重合体を添加した粘性液を紡糸
して得られた前駆体繊維積層体を水蒸気圧10〜100mmHg
で加湿処理し、次いで加圧成形した後、1100〜1400℃で
焼成することを特徴とする無機繊維成形体の製造方法で
ある。The present invention, by a firing treatment, a precursor fiber laminate obtained by spinning a viscous liquid obtained by adding a water-soluble organic polymer to a fiber composition aqueous solution that gives a metal oxide, has a steam pressure of 10 to 100 mmHg.
The method for producing an inorganic fiber molded body is characterized in that the inorganic fiber molded body is subjected to a humidification treatment at 1, then pressure-molded, and then fired at 1100-1400 ° C.
以下本発明について具体的に説明する。The present invention will be specifically described below.
本発明に用いられる前駆体繊維は、水溶性有機重合体を
添加して高粘度とした金属塩溶液を紡糸して得られる。
上記紡糸液は例えばマグネシウム、ジルコニウムなどの
水溶性金属塩やコロイダルシリカなどを含むオキシ塩化
アルミニウム水溶液にポリビニルアルコール、ポリエチ
レンオキサイドなどの水溶性有機重合体水溶液を添加し
た後、減圧濃縮するなどの方法で得られる。The precursor fiber used in the present invention is obtained by spinning a metal salt solution having a high viscosity by adding a water-soluble organic polymer.
The spinning solution is prepared by adding polyvinyl alcohol, an aqueous solution of a water-soluble organic polymer such as polyethylene oxide to an aqueous solution of aluminum oxychloride containing colloidal silica or a water-soluble metal salt such as magnesium or zirconium, and then concentrating under reduced pressure. can get.
この様にして得た紡糸液を押出し法、遠心法など通常用
いられている紡糸法で紡糸すれば、前駆体繊維が得られ
る。例えば、遠心法による場合は、中央に開孔部を有す
る回転円盤の表面に5〜20ポイズの紡糸液を供給し、紡
糸した後、高速の空気流により延伸、乾燥されて前駆体
繊維となる。この場合、前駆体繊維は、繊維が紡糸装置
の壁等に付着したり液滴化しない様にするため充分乾燥
される。A precursor fiber can be obtained by spinning the spinning solution thus obtained by a commonly used spinning method such as an extrusion method or a centrifugal method. For example, in the case of the centrifugal method, a spinning solution of 5 to 20 poise is supplied to the surface of a rotating disk having an opening in the center, and after spinning, it is drawn by a high-speed air flow and dried to become a precursor fiber. . In this case, the precursor fiber is sufficiently dried to prevent the fiber from adhering to the wall of the spinning device or forming a droplet.
この様に乾燥された前駆体繊維は水分含有率が3%以下
で繊維相互の付着はない。前駆体の加湿は、水蒸気圧が
10〜100mmHg好ましくは14〜50mmHgの範囲の加湿雰囲気
中に1〜30分保持するか、又は前駆体繊維積層体層に上
記加湿空気を通過させるかなどの方法により好適に行な
える。加湿後の前駆体の水分は3〜12%の範囲であり、
4〜8%程度の場合が最も加圧処理に適している。水蒸
気圧が10mmHg未満の場合は、前駆体繊維の加湿を充分に
行なうには長時間を要し、実際的でなく、100mmHgを越
えると前駆体繊維積層体の表面が加湿過多となつて繊維
の形状が崩れ、焼成後積層体表面に皮が張つた状態とな
り好ましくない。The precursor fiber thus dried has a water content of 3% or less and does not adhere to each other. Humidity of the precursor is
It can be suitably carried out by a method such as holding in a humidified atmosphere in the range of 10 to 100 mmHg, preferably 14 to 50 mmHg for 1 to 30 minutes, or passing the humidified air through the precursor fiber laminate layer. The moisture content of the precursor after humidification is in the range of 3-12%,
The case of about 4 to 8% is most suitable for the pressure treatment. When the water vapor pressure is less than 10 mmHg, it takes a long time to sufficiently humidify the precursor fiber, which is not practical, and when it exceeds 100 mmHg, the surface of the precursor fiber laminate is excessively humidified and the fiber It is not preferable because the shape of the laminate is broken and the surface of the laminate is stretched after firing.
加湿した前駆体の加圧成形は板状、ロール状、ベルト状
等の通常のプレス機で行なうことが出来る。成形圧力は
前駆体積層体の含水率、加圧成形後のカサ密度により変
わるが、100kg/m2以下の極く小さい圧力で良く、前駆体
繊維積層体のカサ密度を0.06g/cm3以上に加圧成形す
る。The moisturized precursor can be pressure-molded by an ordinary pressing machine having a plate shape, a roll shape, a belt shape or the like. The molding pressure depends on the moisture content of the precursor laminate and the bulk density after pressure molding, but a very small pressure of 100 kg / m 2 or less is sufficient, and the bulk density of the precursor fiber laminate is 0.06 g / cm 3 or more. And pressure molding.
焼成は1000〜1400℃、好ましくは1200〜1350℃で行なわ
れる。1000℃未満では繊維の強度が不充分であり、且つ
1500℃での再加熱収縮が大きく耐火断熱繊維成形体とし
て実用に適さない。又1400℃を越えて加熱しても繊維の
性能は特に向上せず、むしろ強度が低下して経済的でな
い。The firing is performed at 1000 to 1400 ° C, preferably 1200 to 1350 ° C. If the temperature is less than 1000 ° C, the strength of the fiber is insufficient, and
Reheat shrinkage at 1500 ° C is large and it is not suitable for practical use as a fireproof heat insulating fiber molding. Further, even if heated above 1400 ° C, the performance of the fiber is not particularly improved, and the strength is rather lowered, which is not economical.
以上のとおり、本発明により、乾燥した前駆体繊維積層
体を再度特定条件で加湿したのち、加圧成形することに
よつて前駆体繊維同志を部分的に付着させ、そのまま焼
成することにより密度の高い、且つ柔軟性を持つマツト
状成形体を得ることができる。As described above, according to the present invention, after the dried precursor fiber laminate is humidified again under specific conditions, the precursor fibers are partially adhered by pressure molding, and the density of the precursor fibers is increased by firing as it is. It is possible to obtain a mat-shaped molded product having high flexibility.
実施例1(テストNo1) オキシ塩化アルミニウム水溶液に焼成後の組成がアルミ
ナ80%、シリカ20%になる様な割合にコロイダルシリカ
(スノーテツクス日産化学)を添加した後、10%ポリビ
ニルアルコール水溶液(デンカポバールB−17使用)を
アルミナ、シリカの合計量に対してポリビニルアルコー
ルが8%になる様な割合に添加し、濃縮した粘度15ポイ
ズの水溶液を紡糸原液とし、中央に開孔部を有する回転
円盤を用いて紡糸してカサ密度0.04g/cm3の前駆体繊維
積層体を得た。Example 1 (Test No. 1) Colloidal silica (Snowtex Nissan Chemical) was added to the aluminum oxychloride aqueous solution at a ratio such that the composition after firing was 80% alumina and 20% silica, and then a 10% polyvinyl alcohol aqueous solution (Dencapovar) was added. (B-17 used) is added to the total amount of alumina and silica in a proportion such that polyvinyl alcohol is 8%, and a concentrated aqueous solution having a viscosity of 15 poise is used as a spinning stock solution, and a rotating disk having an opening in the center. Was spun to obtain a precursor fiber laminate having a bulk density of 0.04 g / cm 3 .
この前駆体積層体を20℃、相対温度80%水蒸気分圧14mm
Hgの恒温恒質槽に5分間保持し加湿したのち、繊維の積
層する方向に50kg/m2の力で1分間加圧圧縮しカサ密度
0.07g/cm3の前駆体プレス成形体を得た。This precursor laminate is 20 ℃, relative temperature 80% steam partial pressure 14mm
After keeping it in a constant temperature and constant temperature tank of Hg for 5 minutes to moisturize, pressurize and compress with a force of 50 kg / m 2 for 1 minute in the direction in which the fibers are laminated to form a bulk density.
A precursor press-molded body of 0.07 g / cm 3 was obtained.
この成形体を室温から最高1300℃までの温度勾配を持た
せたトンネル炉にて室温から800℃まで30分間、800℃か
ら1300℃まで15分間、1300℃に10分間保持する様に焼成
し焼成体を得た。This molded body is fired in a tunnel furnace with a temperature gradient from room temperature to a maximum of 1300 ° C so that it can be kept at room temperature to 800 ° C for 30 minutes, 800 ° C to 1300 ° C for 15 minutes, and 1300 ° C for 10 minutes. Got the body
焼成体のカサ密度は0.095g/cm3、引張り強度500g/cm2で
あつた。The bulk density of the fired body was 0.095 g / cm 3 and the tensile strength was 500 g / cm 2 .
実施例2〜4(テストNo2〜4) 実施例1で用いた前駆体を、加湿条件、加圧条件、焼成
温度を表のとおり変えて処理し、カサ密度0.085以上、
引張り強度460g/m2以上の焼成体を得た。Examples 2 to 4 (Test Nos. 2 to 4) The precursor used in Example 1 was treated while changing humidification conditions, pressurization conditions, and firing temperatures as shown in the table, and a bulk density of 0.085 or more,
A fired body having a tensile strength of 460 g / m 2 or more was obtained.
比較例1(テストNo5) 実施例1で得たカサ密度0.04g/cm3の前駆体に加湿処理
を行なわず50kg/m2の力で1分間加圧圧縮をして0.052g/
cm3の前駆体成形体を得た。この成形体を実施例1と同
じ条件で焼成した。焼成体のカサ密度は0.058g/cm3で、
引張り強度は200g/cm3と不充分なものであつた。Comparative Example 1 (Test No5) The precursor having a bulk density of 0.04 g / cm 3 obtained in Example 1 was not subjected to a humidification treatment, and was compressed under a pressure of 50 kg / m 2 for 1 minute to obtain 0.052 g / cm 2.
A precursor compact of cm 3 was obtained. This compact was fired under the same conditions as in Example 1. The bulk density of the fired body is 0.058 g / cm 3 ,
The tensile strength was insufficient at 200 g / cm 3 .
比較例2(テストNo6) 実施例1で得たカサ密度0.04g/cm3の前駆体を水蒸気分
圧8mmHgで20分間加湿したのち、50kg/m2の圧力で成形
し、実施例1の条件で焼成した。焼成体のカサ密度は0.
072g/cm3と低く強度も低かった。Comparative Example 2 (Test No. 6) The precursor having a bulk density of 0.04 g / cm 3 obtained in Example 1 was humidified at a steam partial pressure of 8 mmHg for 20 minutes and then molded at a pressure of 50 kg / m 2 under the conditions of Example 1. It was baked in. The bulk density of the fired product is 0.
The strength was low, as low as 072 g / cm 3 .
比較例3(テストNo7) 実施例1で得た同じ前駆体を水蒸気分圧102mmHgで1分
間加湿し、後は実施例1と同様に加圧焼成した。カサ比
重、引張り強度とも良好であつたが前駆体の表面の一部
が加湿過剰になつたため焼成体の表面が、皮が張つた状
態となり柔軟性に欠けるものとなつた。Comparative Example 3 (Test No. 7) The same precursor obtained in Example 1 was humidified at a steam partial pressure of 102 mmHg for 1 minute, and thereafter pressure-calcined as in Example 1. Both the bulk specific gravity and the tensile strength were good, but a part of the surface of the precursor was excessively humidified, and the surface of the fired body was stretched and lacked in flexibility.
比較例4(テストNo8,9) 実施例1の2テストNo3,4,とほぼ同じ条件で加湿加圧成
形し、焼成温度を800℃と1400℃に変えて焼成した。密
度はほぼ良好な焼成体となつたが、引張り強さが不充分
であつた。Comparative Example 4 (Test Nos. 8 and 9) Wet pressure molding was performed under substantially the same conditions as in 2 test Nos. 3 and 4 of Example 1, and the firing temperature was changed to 800 ° C and 1400 ° C. Although the sintered body had a good density, the tensile strength was insufficient.
カサ密度と焼成体の引張り強さの測定は次によつた。 The bulk density and the tensile strength of the fired body were measured as follows.
カサ密度 試料から100mmの試片を切り出し、切片の重量、幅、長
さ、厚みを測定してカサ密度を計算した。なお、厚さは
復元性があるためJIS R−3311に準じて測定した。Bulk Density A 100 mm test piece was cut out from the sample, and the weight, width, length and thickness of the section were measured to calculate the bulk density. Since the thickness is recoverable, it was measured according to JIS R-3131.
引張り強さ 試料から50(幅)×300(長さ)mmの形状の試料を切り
出し、300mm長さ方向の引張り強さを、引張り試験機
(東洋ボールドウイン製UTM−4−100型)を用いて測定
した。試片の厚さは試料切出し前にJIS R−3311により
測定した。この値を用いて試験体の断面積を計算した。Tensile strength A sample with a shape of 50 (width) x 300 (length) mm was cut out from the sample and the tensile strength in the 300 mm length direction was measured using a tensile tester (Toyo Baldwin UTM-4-100 type). Measured. The thickness of the test piece was measured by JIS R-3331 before cutting the sample. The cross-sectional area of the test body was calculated using this value.
本発明の方法により、特殊な装置や高価な助剤を用いる
ことなく、又前駆体繊維を破壊することもなく、耐火断
熱材として使用するに十分な引張り強度を持ち、且つ適
度の柔軟性を有する繊維マツト等の成形体を容易に、経
済的に得ることができる。According to the method of the present invention, without using special equipment or expensive auxiliary agent, without destroying the precursor fiber, it has sufficient tensile strength to be used as a refractory heat insulating material, and has an appropriate flexibility. It is possible to easily and economically obtain a molded product such as a fiber mat that the user has.
Claims (1)
組成物水溶液に水溶性有機重合体を添加した粘性液を紡
糸して得られた前駆体繊維積層体を、水蒸気圧10〜100m
mHgで加湿処理し、次いで加圧成形した後、1100〜1400
℃で焼成することを特徴とする無機繊維成形体の製造方
法。1. A precursor fiber laminate obtained by spinning a viscous liquid obtained by adding a water-soluble organic polymer to an aqueous fiber composition solution which gives a metal oxide by a firing treatment, has a water vapor pressure of 10 to 100 m.
1100 ~ 1400 after humidifying with mHg and then pressure molding
A method for producing an inorganic fiber molded body, which comprises firing at ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61229493A JPH0788616B2 (en) | 1986-09-30 | 1986-09-30 | Method for manufacturing inorganic fiber molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61229493A JPH0788616B2 (en) | 1986-09-30 | 1986-09-30 | Method for manufacturing inorganic fiber molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6385152A JPS6385152A (en) | 1988-04-15 |
JPH0788616B2 true JPH0788616B2 (en) | 1995-09-27 |
Family
ID=16893028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61229493A Expired - Fee Related JPH0788616B2 (en) | 1986-09-30 | 1986-09-30 | Method for manufacturing inorganic fiber molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0788616B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076091B2 (en) * | 1989-09-12 | 1995-01-25 | 株式会社コロイドリサーチ | Method for producing silica-alumina fiber |
JPH04276977A (en) * | 1991-03-05 | 1992-10-02 | Nec Corp | Isdn telephone system |
JP2003258350A (en) | 2002-02-27 | 2003-09-12 | Nec Corp | Composite laser rod, manufacturing method therefor and laser system using the same |
CN105506761B (en) * | 2016-01-19 | 2017-11-24 | 浙江理工大学 | A kind of centrifugal spinning preparation method of silica/polystyrene micro/nano-fibre film |
-
1986
- 1986-09-30 JP JP61229493A patent/JPH0788616B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6385152A (en) | 1988-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5791922B2 (en) | Light-weight inorganic fiber molded body and manufacturing method thereof | |
US20110311404A1 (en) | Thermally Stable Inorganic Fibers For Exhaust Gas Treatment Device Insulating Mat | |
JP2684518B2 (en) | Method for producing fine porous body having heat insulating property | |
EP2754647A1 (en) | Molded inorganic-fiber object and process for producing same | |
EP2372004B1 (en) | Mat, method for manufacturing the mat, and apparatus for purifying exhaust gas | |
US5254396A (en) | Carbon fiber structure and process for producing the same | |
US2500092A (en) | Leaching of batted resin bonded glass fibers | |
JPS63165562A (en) | Heat resistant inorganic fiber molded body and its production | |
JPH0788616B2 (en) | Method for manufacturing inorganic fiber molded body | |
US9963380B2 (en) | Biosoluble inorganic fiber | |
EP0473073B1 (en) | Carbon fiber felting material and process for producing the same | |
JP3776182B2 (en) | Inorganic fiber block and furnace | |
WO2013111232A1 (en) | Inorganic fibrous regularly shaped article and method for adjusting hardness thereof | |
JP2521998B2 (en) | Air filter | |
JP3390182B2 (en) | Carbon fiber based heat insulating material and method for producing the same | |
JP4144724B2 (en) | Inorganic fiber block | |
US5145613A (en) | Process for producing a heat-resistant alumina fiber mat | |
JP2811224B2 (en) | Manufacturing method of alumina fiber blanket | |
JP3378121B2 (en) | Heat resistant board | |
JP2594952B2 (en) | Molded heat insulating material and its manufacturing method | |
JPH0355578B2 (en) | ||
JP3430424B2 (en) | Non-woven fabric for filter cloth | |
JPH0441758A (en) | Production of blanket made of alumina fiber | |
JP6936590B2 (en) | Manufacturing method of inorganic fiber aggregate | |
JPH0215644B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |