JPH0788502A - Method for rolling h-shape steel - Google Patents

Method for rolling h-shape steel

Info

Publication number
JPH0788502A
JPH0788502A JP24005893A JP24005893A JPH0788502A JP H0788502 A JPH0788502 A JP H0788502A JP 24005893 A JP24005893 A JP 24005893A JP 24005893 A JP24005893 A JP 24005893A JP H0788502 A JPH0788502 A JP H0788502A
Authority
JP
Japan
Prior art keywords
rolling
slab
rolled
rough
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24005893A
Other languages
Japanese (ja)
Inventor
Shinya Hayashi
慎也 林
Taneharu Nishino
西野胤治
Yosuke Miura
三浦洋介
Taku Yoshida
卓 吉田
Kazuhiko Eda
江田和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24005893A priority Critical patent/JPH0788502A/en
Publication of JPH0788502A publication Critical patent/JPH0788502A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PURPOSE:To attain a H-shape steel with a satisfactory quality by rolling a web part with a pair of the upper and lower horizontal rolls of a coarse universal rolling mill after forming a dog-bone billet, and estranging a distance from the outer surface of the flange of a material to be rolled to a center segregation band by a specified value or more. CONSTITUTION:A dog-bone billet 64 with a dog-born section shape, is attained by arranging plural box calibers with flat caliber bottoms and with different bottom widths on a coarse rolling mill, drawing down a slab 5 in the width direction by each caliber, and rolling while gradually widening a flange width like materials 61, 62 and 63 to be rolled while supporting the material to be rolled. successively, the dog-born bullet 64 is allowed to rotate by 90 deg., and a web is directly and strongly drawn down by upper and lower horizontal rolls in the path of the preceding stage of a coarse universal rolling mill 2a. In this case, a distance (d) from the surface of the short side of the slab of a center segregation band tip part 12 in the slab 5, is made, for instance, to be 1/2 of a slab width t0. Consequently, it is possible that the center segregation band does not appear near the surface on the outer side of the flange of a product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、H形鋼を矩形断面の連
続鋳造スラブから製造する圧延方法に関し、特にウェブ
とフランジの接合部(以下、「フィレット部」と称す
る)のフランジ外側表面における溶接性に優れたH形鋼
を製造するための圧延方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling method for producing H-section steel from a continuously cast slab having a rectangular cross section, and particularly at the flange outer surface of the joint between the web and the flange (hereinafter referred to as "fillet portion"). The present invention relates to a rolling method for producing an H-section steel having excellent weldability.

【0002】[0002]

【従来の技術】ユニバーサル圧延によるH形鋼の製造工
程は、例えば図10に示すように、圧延素材を粗造形す
る粗二重圧延機(以下、「粗圧延機」と称する)1、第
1粗ユニバーサル圧延機2aと、このユニバーサル圧延
機2aに近接して設けられたエッジャー圧延機2b、第
2粗ユニバーサル圧延機3a、エッジャー圧延機3b、
および仕上げユニバーサル圧延機4で構成されている。
2. Description of the Related Art A process for producing an H-section steel by universal rolling is, for example, as shown in FIG. 10, a rough double rolling mill (hereinafter, referred to as "rough rolling mill") for rough shaping a rolling material. A rough universal rolling mill 2a, an edger rolling mill 2b provided near the universal rolling mill 2a, a second rough universal rolling mill 3a, an edger rolling mill 3b,
And a finishing universal rolling machine 4.

【0003】ところで、近年になって歩留向上、省エネ
ルギー、工程省略および品質向上などを目的として、H
形鋼用圧延素材は連続鋳造による矩形断面スラブが多用
され、多種類の断面のH形鋼が製造されるようになっ
た。
By the way, in recent years, for the purpose of improving yield, saving energy, omitting steps and improving quality, H
As a rolled material for shaped steel, a rectangular cross-section slab produced by continuous casting is often used, and H-shaped steel with various types of cross-sections has been manufactured.

【0004】矩形断面スラブを素材として粗圧延機で粗
形鋼片を造形する方法としては、特公昭58−3704
2号公報、特公昭59−42563号公報、特公昭59
−18124号公報、特公昭59−19766号公報な
どがある。これらの粗造形法はいずれも、孔型底中央部
に比較的シャープな楔状の突起を有する孔型でスラブ厚
中央部をスラブ幅方向に割り込んでいき、フランジ幅拡
がりを生じさせてドッグボーン断面形状のドッグボーン
鋼片を形成する圧延方法である。その1つの例として、
特公昭58−37042号公報の粗圧延機の孔型ロール
を図11に示す。この圧延方法においては、図12のよ
うにスラブ5にまず第1の孔型Iによってスラブ幅両端
部からスラブ厚の中央に楔状の割込み10を入れ、圧延
材51を得る。次に第2孔型II、第3孔型III で第1の
孔型で形成した割り込み部10をさらに押し広げながら
スラブ幅のエッジング圧延を行ってフランジ幅拡がりを
促進させ、所定のフランジ幅、ウェブ高さのドッグボー
ン鋼片53まで成形する。そして最後に成形孔型IVによ
って所定の粗形鋼片54を成形する。
As a method of forming a rough steel slab with a rough rolling machine using a rectangular cross-section slab as a raw material, Japanese Patent Publication No. 58-3704.
No. 2, JP-B-59-42563, JP-B-59
No. 18124 and Japanese Patent Publication No. 59-19766. In all of these rough modeling methods, the hole type has a relatively sharp wedge-shaped projection in the center of the bottom of the hole type, and the center of the slab thickness is cut in the slab width direction to cause the flange width to expand and the dogbone cross section. This is a rolling method for forming shaped dogbone steel pieces. As one example,
FIG. 11 shows a hole type roll of the rough rolling machine disclosed in Japanese Examined Patent Publication No. 58-37042. In this rolling method, as shown in FIG. 12, a wedge-shaped interruption 10 is first inserted into the slab 5 from the both ends of the slab width at the center of the slab thickness by the first hole die I to obtain a rolled material 51. Next, edging rolling of the slab width is performed while further expanding the interrupting portion 10 formed by the first hole type in the second hole type II and the third hole type III to promote the flange width expansion, and the predetermined flange width, The dog bone steel piece 53 having the web height is formed. Finally, a predetermined rough shaped steel piece 54 is formed by the forming hole die IV.

【0005】ところで、連続鋳造によって製造される矩
形断面スラブにおいては、連続鋳造の際、断面内におい
て外側から冷却され、内部方向に凝固が進行する。この
とき固液界面においては、P,S,Mn,Si等の固液
分配係数の大きい偏析成分が固相側界面から液相中に掃
き出される。したがって、最終凝固域である中央部で
は、図13(a)に示すように上記偏析成分が濃化した
状態で凝固するため、マクロ偏析帯(以下、「中心偏析
帯」と称す)11が形成される。この中心偏析帯11
は、その偏析成分の影響により、靭性が低下し、材質が
劣った部位となっている。
By the way, in a rectangular cross-section slab produced by continuous casting, during continuous casting, the cross-section is cooled from the outside and solidification proceeds inward. At this time, at the solid-liquid interface, segregated components having a large solid-liquid partition coefficient such as P, S, Mn, and Si are swept out into the liquid phase from the solid-phase side interface. Therefore, in the central portion, which is the final solidification region, as shown in FIG. 13A, the solidification is performed in a state where the segregation component is concentrated, so that a macro segregation zone (hereinafter referred to as “central segregation zone”) 11 is formed. To be done. This center segregation zone 11
Is a site where the toughness is reduced and the material is inferior due to the influence of the segregation component.

【0006】上記圧延法では、粗圧延工程の初期にスラ
ブ幅方向の両端部に楔形の割り込みを入れるため中心偏
析帯11が図13(b)のようにH形鋼のフランジ外側
相当部の表面近傍まで接近する。続いてスラブ幅のエッ
ジング圧延工程でスラブ幅方向に圧下を行うと、(c)
のように中心偏析帯11はさらにフランジ外側表面に近
づき、最終製品までフランジを圧延したときには(d)
のようにフィレット部のフランジ外側表面直近にまで漸
近する。この傾向は孔型の突起による割り込み深さが大
きいほど、あるいは、スラブ幅のエッジング量が多いほ
ど顕著になる。
In the above rolling method, since the wedge-shaped interruptions are made at both ends in the width direction of the slab in the initial stage of the rough rolling process, the central segregation zone 11 has the surface of the flange outer portion of the H-section steel as shown in FIG. 13 (b). Get close to you. Subsequently, in the slab width edging rolling process, when reduction is performed in the slab width direction, (c)
The center segregation zone 11 further approaches the outer surface of the flange as shown in (d) when the flange is rolled to the final product.
As shown in, the asymptotic approach is reached to the outermost surface of the fillet flange. This tendency becomes more remarkable as the interruption depth due to the hole-shaped protrusions increases or the edging amount of the slab width increases.

【0007】上記工程を経て製造されたH形鋼を構造部
材として使用する場合、例えば図17のように柱材21
のフランジ外面に別の鋼材22を溶接施工すると、鋼材
21のフランジ外面は溶接熱影響を受ける。この溶接熱
影響部の深さは、溶接入熱量により変化するが、一般に
3mm程度である。このとき中心偏析帯11がフィレッ
ト部のフランジ外側表面から3mm以内の熱影響部に含
まれると、溶接割れ等の溶接欠陥の要因になり問題とな
る。
When the H-section steel manufactured through the above process is used as a structural member, for example, as shown in FIG.
When another steel material 22 is welded to the outer surface of the flange of, the outer surface of the flange of the steel material 21 is affected by welding heat. The depth of the weld heat affected zone varies depending on the amount of heat input to the welding, but is generally about 3 mm. At this time, if the center segregation zone 11 is included in the heat-affected zone within 3 mm from the outer surface of the flange of the fillet portion, it causes welding defects such as weld cracking and becomes a problem.

【0008】矩形断面スラブを素材として粗造形する第
2の手段として、特公昭58−54884号公報の孔型
底がフラットなボックス孔型を用いる圧延法がある。こ
の圧延方法は、図14に示す孔型底のフラットな複数の
ボックス孔型I,II,III でフランジの幅出しを行い、
続いて鋼材を90度回転して造形孔型IVで粗形鋼片を得
る方法である。しかし、この圧延方法では、前記の中心
偏析帯と造形手段との関係については何ら言及されてお
らず、フランジ幅の大きいH形鋼を製造する場合、粗圧
延機のロール胴長の制約から組み込めるボックス孔型の
数は限られているので、ボックス孔型I,II,III の各
孔型の底幅差が大きくなってしまう。そのため、前述の
楔状の突起を形成した圧延方法と比較して鋼材の誘導が
不安定になり図16のように鋼材の倒れやねじれが発生
し易くなって、フランジ幅の大きな製品が安定して製造
できないなどの問題が発生する。
As a second means for roughly forming a rectangular cross-section slab as a raw material, there is a rolling method using a box-hole die having a flat bottom as disclosed in Japanese Patent Publication No. 58-54884. In this rolling method, the flattening of the flange is carried out by a plurality of flat box-bottom molds I, II, and III shown in FIG.
Subsequently, the steel material is rotated by 90 degrees to obtain a rough-shaped steel slab with the shaping hole type IV. However, in this rolling method, no mention is made of the relationship between the center segregation zone and the shaping means, and when manufacturing H-section steel having a large flange width, it can be incorporated due to the limitation of the roll cylinder length of the rough rolling mill. Since the number of box hole types is limited, the difference in bottom width between the box hole types I, II, and III becomes large. Therefore, compared with the above-mentioned rolling method in which the wedge-shaped projection is formed, the induction of the steel material becomes unstable, and as shown in FIG. 16, the steel material is more likely to fall or twist, and the product with a large flange width becomes stable. Problems such as not being able to manufacture occur.

【0009】また、その他の方法として、特公昭55−
36401号公報等で開示の図15に示すようなユニバ
ーサル圧延ブレークダウン法がある。この方法では、破
線で示すスラブ5を上下水平ロール8a,8b、および
左右竪ロール9a,9bからなるユニバーサル圧延機で
直接圧延して、粗形鋼片7を造形する方法である。しか
し、一般のユニバーサル圧延機は、通常、竪ロール9
a,9bが無駆動のためスラブ幅方向の圧下を大きくで
きない。したがって、所要フランジ幅の確保が十分に行
われるフランジ先端の肉不足を生じるという問題があ
る。
Another method is as follows.
There is a universal rolling breakdown method as shown in FIG. 15 disclosed in Japanese Patent No. 36401. In this method, the slab 5 shown by a broken line is directly rolled by a universal rolling machine including upper and lower horizontal rolls 8a and 8b and left and right vertical rolls 9a and 9b to form a rough shaped steel slab 7. However, general universal rolling mills usually use vertical rolls 9
Since a and 9b are not driven, the reduction in the slab width direction cannot be increased. Therefore, there is a problem in that the required thickness of the required flange is sufficiently secured, and the thickness of the flange tip is insufficient.

【0010】[0010]

【発明が解決しようとする課題】本発明は、前記従来の
欠点を解消すべくなされたもので、H形鋼を矩形断面ス
ラブから製造する圧延方法に関し、スラブに存在する中
心偏析部が製品のフィレット部のフランジ外側表面近傍
に現れないように制御するとともに、圧延中における材
料の倒れを防止し、十分なフランジ幅拡がりを確保する
手段を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional drawbacks, and relates to a rolling method for producing an H-section steel from a rectangular cross-section slab, in which the center segregation portion existing in the slab is a product. (EN) A means for controlling so that it does not appear near the outer surface of the flange of the fillet portion, preventing the material from collapsing during rolling, and ensuring a sufficient flange width expansion.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、以下の
とおりである。
The gist of the present invention is as follows.

【0012】(1)矩形断面スラブから粗二重圧延機で
粗形鋼片を製造し、粗および仕上げユニバーサル圧延機
でH形鋼を圧延する方法において、前記粗二重圧延機の
上下ロール対に孔型底幅を順次大きくした孔型底がフラ
ットなボックス孔型を複数配置し、該ボックス孔型でス
ラブを幅方向にエッジング圧延してフランジ部を形成し
ドッグボーン鋼片とした後、続く粗ユニバーサル圧延機
の上下水平ロール対でウェブ部を圧延し、被圧延材のフ
ランジ外面から中心偏析帯までの距離を所定値以上に離
隔せしめるH形鋼の圧延方法。
(1) In a method of producing a rough steel slab from a rectangular cross-section slab with a rough double rolling mill and rolling an H-shaped steel with a rough and finish universal rolling mill, a pair of upper and lower rolls of the rough double rolling mill. After arranging a plurality of box hole molds having a flat hole bottom with a sequentially increased hole bottom width, and edging the slab in the width direction with the box hole molds to form a flange portion to form a dogbone steel piece, A rolling method for H-section steel in which the web portion is rolled by a pair of upper and lower horizontal rolls of a subsequent coarse universal rolling mill to separate the distance from the outer surface of the flange of the rolled material to the center segregation zone to a predetermined value or more.

【0013】(2)各ボックス孔型の孔型底幅を、それ
ぞれの孔型での第1パス圧延において被圧延材が孔型底
両端まで幅拡がりを生じる幅に設定して圧延する前記
(1)項に記載のH形鋼の圧延方法。
(2) Rolling is performed with the box bottom width of each box hole set to a width that causes the material to be rolled to widen to both ends of the hole bottom in the first pass rolling in each hole. The rolling method for H-section steel according to the item 1).

【0014】(3)ボックス孔型のうちの第1孔型はス
ラブ厚とほぼ同一の孔型底幅とし、材料が孔型側壁まで
充満するまで圧延した後、第2孔型以降の孔型で圧延す
る前記(2)項に記載のH形鋼の圧延方法。
(3) Among the box cavities, the first cavities have a bottom width approximately the same as the slab thickness, are rolled until the material is filled up to the side walls of the cavities, and then the second and subsequent cavities. The method for rolling H-section steel according to item (2), wherein

【0015】(4)矩形断面スラブから粗二重圧延機で
粗形鋼片を製造し、粗および仕上げユニバーサル圧延機
でH形鋼を圧延する方法において、前記粗二重圧延機の
上下ロール対に孔型底幅を順次大きくし、孔型底中央部
にスラブ厚に対して略20%以下の高さの被圧延材誘導
用突起を形成した孔型を複数配置し、スラブ幅方向のエ
ッジング圧延で被圧延材をセンタリングしつつフランジ
部を形成してドッグボーン鋼片とした後、続く粗ユニバ
ーサル圧延機の上下水平ロール対でウェブ部を圧延し、
被圧延材のフランジ外面から中心偏析帯までの距離を所
定値以上に離隔せしめるH形鋼の圧延方法。
(4) In the method of producing a rough shaped billet from a rectangular cross-section slab with a rough double rolling mill and rolling an H-shaped steel with a rough and finish universal rolling mill, a pair of upper and lower rolls of the rough double rolling mill. In the slab width direction edging, the bottom width of the slab is gradually increased, and a plurality of dies with a projection for guiding the rolled material having a height of approximately 20% or less of the slab thickness are arranged in the center of the slab width. After centering the material to be rolled by rolling, forming a flange part to make a dogbone steel piece, then rolling the web part with a pair of upper and lower horizontal rolls of a rough universal rolling machine,
A rolling method for H-section steel in which the distance from the outer surface of the flange of the rolled material to the central segregation zone is separated by a predetermined value or more.

【0016】[0016]

【作用】本発明者らは、実圧延の詳細な調査とラボ実験
および剛塑性有限要素法に基づく圧延シミュレーション
(以下、単に「FEM解析」と称する)によって検討を
行った。以下図面を参照して、本発明の作用をさらに詳
細に説明する。
The present inventors conducted a detailed investigation of actual rolling, a laboratory experiment, and a rolling simulation based on the rigid-plastic finite element method (hereinafter simply referred to as "FEM analysis"). Hereinafter, the operation of the present invention will be described in more detail with reference to the drawings.

【0017】まず、図5に示す孔型底がフラットなボッ
クス孔型、あるいは図6に示す孔型中央部にスラブ厚に
対して約40%程度の高さhの大きな突起35,36を
有する従来型の孔型でスラブを幅方向にそれぞれ圧下し
た場合のメタルフローについてFEM解析で検討を行っ
た。図7は図13に示したスラブ5の中心偏析帯11の
端部12の表面からの距離dの圧下に伴う推移を表した
ものである。ここでは、実績に基づきスラブ5における
中心偏析帯端部12のスラブ短辺表面からの距離dをス
ラブ厚t0の1/2とした。図より明らかなように孔型
底がフラットなボックス孔型では、中心偏析帯端部12
のフランジ外側表面からの距離dは圧下量の増加に伴っ
てなだらかに減少している。一方、孔型底中央部に突起
を有する孔型では、第1孔型33による圧延初期の割り
込み圧延時に一挙に中心偏析帯端部12が表面に接近
し、その後のパスにおいてもボックス孔型31,32と
同様あるいはそれ以上の変化率でdは減少している。こ
れにより、中心偏析帯が製品フランジ外側表面近傍に現
れないようにするためには粗圧延機のスラブ幅のエッジ
ング孔型を孔型底がフラットなボックス孔型に形成する
ことが極めて有効であることが分かった。
First, the hole die shown in FIG. 5 has a flat bottom, or the central portion of the die shown in FIG. 6 has large projections 35 and 36 having a height h of about 40% of the slab thickness. The metal flow when the slab was pressed down in the width direction with the conventional hole type was examined by FEM analysis. FIG. 7 shows the transition of the distance d from the surface of the end 12 of the center segregation zone 11 of the slab 5 shown in FIG. Here, the distance d from the surface of the short side of the slab of the center segregation zone end portion 12 of the slab 5 is set to 1/2 of the slab thickness t0 based on the actual results. As is clear from the figure, the center segregation zone end 12
The distance d from the outer surface of the flange of G.sub.2 gradually decreases with an increase in the amount of reduction. On the other hand, in the case of a hole type having a protrusion in the center of the bottom of the hole type, the center segregation zone edge part 12 approaches the surface all at once at the time of interrupt rolling at the initial rolling stage by the first hole type 33, and the box hole type 31 , 32, and d are decreasing at a rate of change equal to or more than 32. Therefore, in order to prevent the center segregation zone from appearing near the outer surface of the product flange, it is extremely effective to form the edging hole type of the slab width of the rough rolling mill into a box hole type with a flat bottom. I found out.

【0018】図1は本発明の圧延方法を説明するもので
あり、また、図2は本発明の粗圧延機1の代表的なロー
ル孔型配列である。本圧延法では、粗圧延機1に孔型底
幅の異なる複数の孔型底がフラットなボックス孔型を配
列し、それぞれの孔型でスラブ5を幅方向に圧下するこ
とによって被圧延材を支持しつつ、被圧延材61,6
2,63のように徐々にフランジ幅を広げながら圧延し
てドッグボーン断面形状のドッグボーン鋼片64を得、
続いてドッグボーン鋼片64を90度回転させて粗ユニ
バーサル圧延機2aの前期のパスで上下水平ロールによ
って直接ウェブの強圧下を行う。この第1ボックス孔型
Iの底幅W1はスラブ幅t0と同等あるいはスラブ厚に
対してδ1だけ大きくし、第2ボックス孔型以降の孔型
は、第n孔型(n≧2)の底幅Wnを第n−1孔型の底
幅Wn−1に対して増幅量δnだけ大きくしている。
FIG. 1 illustrates the rolling method of the present invention, and FIG. 2 shows a typical roll hole type arrangement of the rough rolling mill 1 of the present invention. In the present rolling method, a plurality of box bottoms having flat bottoms having different bottom widths are arranged in the rough rolling mill 1, and the slab 5 is pressed down in the width direction by each of the hole bottoms to roll the material to be rolled. Rolling material 61, 6 while supporting
Rolled while gradually widening the flange width like 2, 63 to obtain a dogbone steel piece 64 having a dogbone cross-sectional shape,
Subsequently, the dog bone steel piece 64 is rotated by 90 degrees, and the web is directly strongly pressed by the upper and lower horizontal rolls in the previous pass of the rough universal rolling mill 2a. The bottom width W1 of the first box hole type I is equal to the slab width t0 or increased by δ1 with respect to the slab thickness, and the hole types after the second box hole type are the bottoms of the nth hole type (n ≧ 2). The width Wn is increased by an amplification amount δn with respect to the bottom width Wn−1 of the n−1th hole type.

【0019】本発明では図11,14の孔型IVに図示す
るような従来の造形孔型を省略し、造形孔型と比べ2〜
3割もフランジ幅出し効率の良いユニバーサル圧延機2
aで直接、ドッグボーン鋼片64を圧延するので、ボッ
クス孔型最終仕上がりのフランジ幅を、ボックス孔型の
後に造形孔型IVで成形する従来法の場合と比べ小さくす
ることができる。
In the present invention, the conventional shaping hole die as shown in the hole type IV of FIGS.
Universal rolling mill 2 with high efficiency of flange width expansion 30%
Since the dog bone steel piece 64 is directly rolled by a, the flange width of the final finish of the box hole mold can be made smaller than in the case of the conventional method in which the box hole mold is followed by the shaping hole mold IV.

【0020】次に各孔型の底幅の増幅量δnの決定方法
について説明する。孔型底がフラットなボックス孔型で
スラブ幅方向に被圧延材を圧延する場合、図16のよう
に被圧延材の高さYと拘束幅Xの比(Y/X)が大きい
ので倒れやねじれが発生しやすく、それを有効に防止す
るには、図4に示すように各孔型での第1パスでΔEだ
け圧延した時に被圧延材が幅拡がりを生じて孔型底両端
まで到達することが重要であることがわかった。
Next, a method of determining the amplification amount δn of the bottom width of each hole type will be described. When the material to be rolled is rolled in the width direction of the slab in the box shape with a flat bottom, the ratio of the height Y to the material to be rolled Y and the restraint width X (Y / X) is large as shown in FIG. Twisting is likely to occur, and in order to effectively prevent it, the rolled material expands to reach both ends of the die when it is rolled by ΔE in the first pass of each die as shown in Fig. 4. I found it important to do.

【0021】FEM解析で得られた圧下量と孔型底面の
フランジ幅変化との関係は、図8に示すように突起付き
孔型33,34に比べフラット孔型31,32の場合、
わずかにフランジ幅拡がり率が低減するものの、フラッ
ト孔型にしてもフラット幅出し効率に特に問題はない。
図8より孔型側壁によるフランジ幅拡がり拘束のない圧
下領域a〜b(トータル圧下量240mm〜540m
m)ではフランジ幅はc(471mm)からd(260
mm)まで広がっており、スラブ幅方向の圧下量に対す
る平均フランジ幅拡がり率(フランジ幅拡がり量/スラ
ブ幅圧下量)は、 (471mm−260mm)/300mm=0.70 であった。したがって、各孔型ともその第1パスの圧下
量ΔEのほぼ70%以下の範囲で、第1孔型ではスラブ
厚に対して、第2孔型以降の各孔型では前孔型の底幅に
対して孔型幅を広くしていけば、ロールバイト内で被圧
延材はフランジ幅拡がりを生じて孔型底両端部まで到達
し被圧延材の倒れ、ねじれの発生なく造形できる。逆に
言えば、第2孔型以降の各孔型の第1パスでは、前孔型
に対する孔型底幅の増幅量δnの約1.43倍以上の圧
下量をとることが必要である。
As shown in FIG. 8, the relationship between the amount of reduction obtained by FEM analysis and the change in the flange width of the bottom surface of the hole die is as follows in the case of the flat hole molds 31, 32 as compared with the hole molds 33, 34 with protrusions.
Although the flange width expansion ratio is slightly reduced, there is no particular problem with the flat width extraction efficiency even with the flat hole type.
As shown in FIG. 8, the reduction widths a to b (total reduction amount 240 mm to 540 m) where there is no restriction of flange width expansion due to the hole-shaped side wall.
In m), the flange width is from c (471 mm) to d (260 mm).
mm), and the average flange width expansion ratio (flange width expansion amount / slab width reduction amount) with respect to the reduction amount in the slab width direction was (471 mm-260 mm) / 300 mm = 0.70. Therefore, in each hole type, within the range of approximately 70% or less of the reduction amount ΔE of the first pass, the bottom width of the front hole type in each hole type after the second hole type after the slab thickness in the first hole type. On the other hand, if the groove width is widened, the rolled material causes the flange width to spread within the roll bite to reach both ends of the hole bottom, and the rolling material can be shaped without tilting or twisting. Conversely, in the first pass of each hole type after the second hole type, it is necessary to take a reduction amount of about 1.43 times or more the amplification amount δn of the hole type bottom width with respect to the front hole type.

【0022】ここで、1パス当たりの圧下量を大きくす
れば、孔型への充満度が増して圧延の安定性が増すとと
もに、孔型底幅の増幅量δnを大きくすることもでき、
フランジ幅のより一層大きな製品が造形可能となる。し
かし、1パス当たりの圧下量を大きくすると圧延荷重や
圧延トルクが増大するので、ロール強度やミル仕様によ
って1パス当たりの圧下量の限界が決まる。また、圧下
が大きくなると、例えば圧延温度の断面内の不均一分布
などの圧延条件のアンバランスに対し、被圧延材の倒れ
やねじれが発生しやすくなる傾向があるので、これらを
総合的に勘案すると各孔型第1パスでの圧下量は必然的
に決定されるものである。
Here, if the reduction amount per pass is increased, the filling degree of the die is increased, the stability of rolling is increased, and the amplification amount δn of the bottom width of the die can be increased.
A product with a wider flange width can be molded. However, if the amount of reduction per pass is increased, the rolling load and rolling torque increase, so the limit of the amount of reduction per pass is determined by roll strength and mill specifications. In addition, when the reduction is large, there is a tendency that the rolled material tends to collapse or twist due to the unbalance of rolling conditions such as non-uniform distribution of rolling temperature in the cross section. Then, the amount of reduction in each hole type first pass is inevitably determined.

【0023】また、第1孔型Iでの底幅W1をスラブ厚
とほぼ同一とし、材料が孔型に十分充満し側壁との接触
が大きくなるまで圧下すると、第2孔型以降での圧延に
おいてフランジ幅拡がりを生じた際の孔型側壁との接触
が大きく保たれるので、圧延は安定しやすくなる。
Further, when the bottom width W1 in the first hole die I is made almost the same as the slab thickness, and the material is sufficiently pressed into the hole die and the contact with the side wall is increased, rolling in the second hole die and thereafter is performed. In the case where the flange width is widened, the contact with the hole side wall is largely maintained, so that the rolling is easily stabilized.

【0024】各孔型の孔型底の増幅量δnを大きくする
場合、スラブ幅方向のエッジング工程での被圧延材の倒
れやねじれの発生を防止し通材性を一層安定化させるた
めに、中心偏析帯のフランジ外側表面への接近が顕在化
しない必要最小限の誘導用突起をボックス孔型底につけ
ることも有効である。図9は、スラブ幅方向に420m
m圧下時における、図6の突起高さh/スラブ厚、とそ
のときの中心偏析帯端部12のフランジ外側表面からの
距離dの関係を示すもので、突起高さhとdの関係はほ
ぼ逆比例的な関係にあり、突起高さhが大きくなるとd
は小さくなっている。ユニバーサル圧延工程におけるd
の変化は、ドッグボーン鋼片から製品までのフランジ厚
み延伸ηにほぼ反比例して変化すると考えられる。ここ
で、最終偏析帯端部の位置は製品フランジ厚によって異
なるものの、最も中心偏析帯がフランジ外側表面近傍に
接近すると考えられる大形H形鋼のフランジ厚最小サイ
ズのものでηは10程度である。一方、最終製品で中心
偏析帯がフランジ外側表面から一般的にはほぼ3mm以
内にあると、溶接割れ発生を誘発しやすくなることを本
発明者等は過去の実績から把握しており、最終製品にお
いて中心偏析帯がフランジ外側表面からおよそ3mm以
上に離隔せしめることが肝要である。この溶接熱影響部
の深さは溶接熱入量や溶接回数等の条件により変化する
が、本発明において被圧延材のフランジ外面から中心偏
析帯までの距離を所定値以上に離隔せしめるとは、この
意味において用いるものである。
In the case of increasing the amplification amount δn of the hole bottom of each hole type, in order to prevent the rolled material from tilting or twisting in the edging step in the slab width direction and to further stabilize the threadability, It is also effective to attach the minimum necessary guiding protrusion to the box hole bottom so that the approach of the central segregation zone to the outer surface of the flange does not become apparent. Fig. 9 shows 420m in the width direction of the slab.
6 shows the relationship between the protrusion height h / slab thickness in FIG. 6 and the distance d of the center segregation zone end portion 12 from the outer surface of the flange at the time of m pressure reduction. The relation between the protrusion heights h and d is shown below. The relationship is almost inversely proportional, and when the projection height h increases, d
Is getting smaller. D in universal rolling process
It is considered that the change of is almost inversely proportional to the flange thickness extension η from the dogbone steel piece to the product. Here, although the position of the end of the final segregation zone varies depending on the product flange thickness, the center segregation zone is considered to be closest to the outer surface of the flange. is there. On the other hand, the present inventors have understood from the past results that if the center segregation zone is generally within 3 mm from the outer surface of the flange in the final product, it is easy to induce the occurrence of welding cracks. It is important that the central segregation zone is separated from the outer surface of the flange by about 3 mm or more. The depth of this welding heat affected zone changes depending on the conditions such as the welding heat input amount and the number of weldings, but in the present invention, separating the distance from the flange outer surface of the rolled material to the central segregation zone to a predetermined value or more, It is used in this sense.

【0025】したがって、前記の鋼片から製品までのフ
ランジ厚み延伸ηと、フランジ外面から中心偏析帯まで
の距離との関係から、ドッグボーン鋼片段階におけるd
は、 3mm×10=30mm 即ち、30mm以上必要で、そのためには粗造形工程で
のトータル圧下量を最大400mm程度と考えると、図
9より突起高さhはスラブ厚t0に対して約20%以内
である必要があり、本発明において、被圧延材誘導用突
起の高さをスラブ厚に対して略20%以内とするとした
のはそのためである。
Therefore, from the relationship between the flange thickness extension η from the steel billet to the product and the distance from the flange outer surface to the center segregation zone, d at the dogbone billet stage is used.
Is 3 mm × 10 = 30 mm, that is, 30 mm or more is required, and considering that the total amount of reduction in the rough shaping process is about 400 mm at maximum, the projection height h is about 20% with respect to the slab thickness t0 from FIG. This is the reason why the height of the projection for guiding rolled material is set within 20% of the slab thickness in the present invention.

【0026】なお、通材性を安定化させるために突起の
最大部の幅は突起高さの2〜7倍とするのがよいことが
実験的に確かめられている。図3は粗圧延機のロールに
適用した例である。P1〜P6が誘導用突起である。こ
の場合、フラット孔型と比べフランジ幅拡がり効率、通
材の安定性が増すため、孔型底の増幅量δnをフラット
孔型と比べさらに大きくすることが可能である。
It has been experimentally confirmed that the width of the maximum portion of the protrusion should be 2 to 7 times the height of the protrusion in order to stabilize the permeability. FIG. 3 is an example applied to a roll of a rough rolling mill. P1 to P6 are guiding protrusions. In this case, since the flange width expansion efficiency and the passage stability are increased as compared with the flat hole type, it is possible to further increase the amplification amount δn at the bottom of the hole type as compared with the flat hole type.

【0027】[0027]

【実施例】以下に、本発明による圧延方法を適用して、
H800×250×16/25のH形鋼を1350mm
幅、250mm厚の矩形断面スラブから製造した場合に
ついて説明する。ここで、粗圧延機の制約や圧延の安定
性などを総合的に勘案し、各孔型第1パスの圧下量を6
0mmとすると、1パス圧下でのフランジ幅拡がり量
は、 60mm×0.70=42mm であるので、第1ボックス孔型の底幅を255mmと
し、第2ボックス孔型以降の孔型の底幅を40mm間隔
で大きくとり、第2ボックス孔型295mm、第3ボッ
クス孔型335mm、第4ボックス孔型375mm、第
5ボックス孔型415mmとした。
EXAMPLE A rolling method according to the present invention is applied below,
H800 × 250 × 16/25 H-section steel 1350mm
A case of manufacturing from a rectangular cross-section slab having a width of 250 mm will be described. Here, considering the restrictions of the rough rolling mill and the stability of rolling comprehensively, the reduction amount of each hole type first pass is set to 6
Assuming 0 mm, the flange width expansion under one pass pressure is 60 mm × 0.70 = 42 mm, so the bottom width of the first box hole die is set to 255 mm, and the bottom width of the hole die after the second box hole die is set. Was increased at intervals of 40 mm to obtain a second box hole die 295 mm, a third box hole die 335 mm, a fourth box hole die 375 mm, and a fifth box hole die 415 mm.

【0028】この第1〜第5ボックス孔型でドッグボー
ン鋼片を製造し、粗および仕上げユニバーサル圧延機で
製品まで圧延した結果、H形鋼の中心偏析帯の表面から
の距離dは約8mmで材質上全く問題はなかった。ま
た、被圧延材の倒れやねじれなども生じず、通材性につ
いても問題はなかった。一方、突起をスラブ厚の約20
%の高さの突起を付けた孔型で圧延した場合にはdは約
4mmであった。なお、約40%の高さの突起を付与し
た従来法ではdは約2mmとなって溶接時におけるフラ
ンジ表面への中心偏析帯の悪影響が懸念された。
[0028] As a result of manufacturing dogbone billets in the first to fifth box hole types and rolling them into products with a roughing and finishing universal mill, the distance d from the surface of the central segregation zone of the H-section steel is about 8 mm. There was no problem with the material. In addition, the rolled material did not fall or twist, and there was no problem in the threadability. On the other hand, the protrusion is about 20 slab thick.
% Was 4 mm when rolled by a hole type with a protrusion having a height of%. In the conventional method in which the protrusion having a height of about 40% was provided, d was about 2 mm, and there was a concern that the center segregation zone on the flange surface during welding was adversely affected.

【0029】[0029]

【発明の効果】本発明を矩形断面の連続鋳造スラブから
H形鋼を製造プロセスに適用することにより、材料の倒
れやねじれを発生させずに、スラブに存在する中心偏析
部が製品フランジ外側表面近傍に現れない良好な品質の
H形鋼を製造することができる。
By applying the present invention to the manufacturing process of the H-section steel from the continuously cast slab having a rectangular cross section, the center segregation portion existing in the slab can be formed on the outer surface of the product flange without causing the material to tilt or twist. It is possible to manufacture good quality H-section steel that does not appear in the vicinity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の造形手段の説明図。FIG. 1 is an explanatory diagram of a modeling unit of the present invention.

【図2】本発明のH形鋼の圧延方法における粗圧延機ボ
ックス孔型の概略図。
FIG. 2 is a schematic view of a rough rolling mill box hole type in the rolling method for H-section steel of the present invention.

【図3】本発明によるボックス孔型に必要最小限の誘導
用突起を設けた粗圧延機孔型の説明図。
FIG. 3 is an explanatory view of a rough rolling mill hole type in which a minimum necessary guiding protrusion is provided in the box hole type according to the present invention.

【図4】第2孔型以降の各孔型における第1パスの圧延
の説明図。
FIG. 4 is an explanatory diagram of the first pass rolling in each of the second and subsequent hole types.

【図5】(a),(b)は、中心偏析端部の表面からの
距離の推移を計算したフラット孔型の略図。
5 (a) and 5 (b) are schematic diagrams of a flat hole type in which the transition of the distance from the surface of the center segregated end portion is calculated.

【図6】(a),(b)は、中心偏析端部の表面からの
距離の推移を計算した突起付き底孔型の略図。
6 (a) and 6 (b) are schematic views of a bottom hole type with protrusions in which the transition of the distance from the surface of the center segregation end portion is calculated.

【図7】トータル圧下量と中心偏析端部の表面からの距
離の関係の説明図。
FIG. 7 is an explanatory diagram of the relationship between the total amount of reduction and the distance from the surface of the center segregation end portion.

【図8】トータル圧下量とフランジ幅の関係の説明図。FIG. 8 is an explanatory diagram of a relationship between the total reduction amount and the flange width.

【図9】突起高さと中心偏析帯端部の表面からの距離の
関係の説明図。
FIG. 9 is an explanatory diagram of a relationship between a protrusion height and a distance from the surface of the center segregation zone end portion.

【図10】H形鋼の圧延設備の説明図。FIG. 10 is an explanatory diagram of an H-section steel rolling facility.

【図11】従来の粗造形手段で用いる孔型例の略図。FIG. 11 is a schematic view of an example of a hole type used in a conventional rough shaping means.

【図12】従来の粗圧延工程の被圧延材の形状の変化を
表す説明図。
FIG. 12 is an explanatory view showing a change in shape of a material to be rolled in a conventional rough rolling process.

【図13】矩形断面スラブに存在する中心偏析帯の圧延
に伴う挙動を説明する概略図。
FIG. 13 is a schematic diagram illustrating the behavior of a central segregation zone existing in a rectangular cross-section slab during rolling.

【図14】従来の粗造形手段で用いる孔型例の略図。FIG. 14 is a schematic view of an example of a hole type used in a conventional rough shaping means.

【図15】従来の粗造形手段で用いる孔型例の略図。FIG. 15 is a schematic view of an example of a hole type used in a conventional rough shaping means.

【図16】広幅のフラット孔型による圧延時の被圧延材
倒れの説明図。
FIG. 16 is an explanatory diagram of a rolled material collapse when rolling with a wide flat hole type.

【図17】H形鋼を溶接して使用する施工例の説明図。FIG. 17 is an explanatory view of a construction example in which H-section steel is welded and used.

【符号の説明】[Explanation of symbols]

1…ブレークダウン圧延機 2a…第1粗ユ
ニバーサル圧延機 2b…エッジャー圧延機 3a…第2粗ユ
ニバーサル圧延機 3b…エッジャー圧延機 4…仕上げユニ
バーサル圧延機 5…矩形断面スラブ 51〜54,6
1〜65…被圧延材 11…中心偏析帯 P1〜P6…誘
導用突起
1 ... Breakdown rolling mill 2a ... 1st rough universal rolling mill 2b ... Edger rolling mill 3a ... 2nd rough universal rolling mill 3b ... Edger rolling mill 4 ... Finishing universal rolling mill 5 ... Rectangular section slab 51-54, 6
1-65 ... Rolled material 11 ... Center segregation zone P1-P6 ... Guidance for guidance

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月4日[Submission date] November 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】また、その他の方法として、特公昭55−
36401号公報等で開示の図15に示すようなユニバ
ーサル圧延ブレークダウン法がある。この方法では、破
線で示すスラブ5を上下水平ロール8a,8b、および
左右竪ロール9a,9bからなるユニバーサル圧延機で
直接圧延して、粗形鋼片7を造形する方法である。しか
し、一般のユニバーサル圧延機は、通常、竪ロール9
a,9bが無駆動のためスラブ幅方向の圧下を大きくで
きない。したがって、所要フランジ幅の確保が十分に行
われフランジ先端の肉不足を生じるという問題があ
る。
Another method is as follows.
There is a universal rolling breakdown method as shown in FIG. 15 disclosed in Japanese Patent No. 36401. In this method, the slab 5 shown by a broken line is directly rolled by a universal rolling machine including upper and lower horizontal rolls 8a and 8b and left and right vertical rolls 9a and 9b to form a rough shaped steel slab 7. However, general universal rolling mills usually use vertical rolls 9
Since a and 9b are not driven, the reduction in the slab width direction cannot be increased. Therefore, there is a problem of securing the required flange width results in a meat shortage flange tip not sufficiently.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】FEM解析で得られた圧下量と孔型底面の
フランジ幅変化との関係は、図8に示すように突起付き
孔型33,34に比べフラット孔型31,32の場合、
わずかにフランジ幅拡がり率が低減するものの、フラッ
ト孔型にしてもフラット幅出し効率に特に問題はない。
図8より孔型側壁によるフランジ幅拡がり拘束のない圧
下領域a〜b(トータル圧下量240mm〜540m
m)ではフランジ幅はc(260mm)からd(471
mm)まで広がっており、スラブ幅方向の圧下量に対す
る平均フランジ幅拡がり率(フランジ幅拡がり量/スラ
ブ幅圧下量)は、 (471mm−260mm)/300mm=0.70 であった。したがって、各孔型ともその第1パスの圧下
量ΔEのほぼ70%以下の範囲で、第1孔型ではスラブ
厚に対して、第2孔型以降の各孔型では前孔型の底幅に
対して孔型幅を広くしていけば、ロールバイト内で被圧
延材はフランジ幅拡がりを生じて孔型底両端部まで到達
し被圧延材の倒れ、ねじれの発生なく造形できる。逆に
言えば、第2孔型以降の各孔型の第1パスでは、前孔型
に対する孔型底幅の増幅量δnの約1.43倍以上の圧
下量をとることが必要である。
As shown in FIG. 8, the relationship between the amount of reduction obtained by FEM analysis and the change in the flange width of the bottom surface of the hole die is as follows in the case of the flat hole molds 31, 32 as compared with the hole molds 33, 34 with protrusions.
Although the flange width expansion ratio is slightly reduced, there is no particular problem with the flat width extraction efficiency even with the flat hole type.
As shown in FIG. 8, the reduction widths a to b (total reduction amount 240 mm to 540 m) where there is no restriction of flange width expansion due to the hole-shaped side wall.
m), the flange width is from c ( 260 mm) to d ( 471 )
mm), and the average flange width expansion ratio (flange width expansion amount / slab width reduction amount) with respect to the reduction amount in the slab width direction was (471 mm-260 mm) / 300 mm = 0.70. Therefore, in each hole type, within the range of approximately 70% or less of the reduction amount ΔE of the first pass, the bottom width of the front hole type in each hole type after the second hole type after the slab thickness in the first hole type. On the other hand, if the groove width is widened, the rolled material causes the flange width to spread within the roll bite to reach both ends of the hole bottom, and the rolling material can be shaped without tilting or twisting. Conversely, in the first pass of each hole type after the second hole type, it is necessary to take a reduction amount of about 1.43 times or more the amplification amount δn of the hole type bottom width with respect to the front hole type.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

フロントページの続き (72)発明者 吉田 卓 堺市築港八幡町1番地 新日本製鐵株式会 社堺製鐵所内 (72)発明者 江田和彦 堺市築港八幡町1番地 新日本製鐵株式会 社堺製鐵所内Front Page Continuation (72) Inventor Taku Yoshida 1 Tsukiko Yawatacho, Sakai City Nippon Steel Stock Company Inside Sakai Works (72) Inventor Kazuhiko Eda 1 Tsukiko Hachiman Town, Sakai City Nippon Steel Co., Ltd. Inside the Sakai Steel Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 矩形断面スラブから粗二重圧延機で粗形
鋼片を製造し、粗および仕上げユニバーサル圧延機でH
形鋼を圧延する方法において、前記粗二重圧延機の上下
ロール対に孔型底幅を順次大きくした孔型底がフラット
なボックス孔型を複数配置し、該ボックス孔型でスラブ
を幅方向にエッジング圧延してフランジ部を形成しドッ
グボーン鋼片とした後、続く粗ユニバーサル圧延機の上
下水平ロール対でウェブ部を圧延し、被圧延材のフラン
ジ外面から中心偏析帯までの距離を所定値以上に離隔せ
しめることを特徴とするH形鋼の圧延方法。
1. A rough shaped billet is manufactured from a rectangular cross-section slab by a rough double rolling mill, and H is manufactured by a rough and finish universal rolling mill.
In the method for rolling shaped steel, a plurality of box cavities each having a flat bottom with a large caliber bottom width are sequentially arranged in a pair of upper and lower rolls of the rough double rolling mill, and a slab is widthwise formed in the box cavities. After edging and rolling to form a flange to form a dogbone steel piece, the upper and lower horizontal roll pairs of a rough universal rolling machine are used to roll the web, and the distance from the flange outer surface of the rolled material to the center segregation zone is specified. A method for rolling H-section steel, characterized in that the H-section steels are separated by a value or more.
【請求項2】 各ボックス孔型の孔型底幅を、それぞれ
の孔型での第1パス圧延において被圧延材が孔型底両端
まで幅拡がりを生じる幅に設定して圧延することを特徴
とする請求項1記載のH形鋼の圧延方法。
2. Rolling is performed by setting the hole bottom width of each box hole type to a width that causes the material to be rolled to widen to both ends of the hole bottom in the first pass rolling in each hole type. The method for rolling H-section steel according to claim 1.
【請求項3】 ボックス孔型のうちの第1孔型はスラブ
厚とほぼ同一の孔型底幅とし、材料が孔型側壁まで充満
するまで圧延した後、第2孔型以降の孔型で圧延するこ
とを特徴とする請求項2記載のH形鋼の圧延方法。
3. The first hole type of the box hole type has a hole type bottom width substantially the same as the slab thickness, is rolled until the material is filled up to the hole type side wall, and is then used in the second and subsequent hole types. The H-section steel rolling method according to claim 2, wherein the H-section steel is rolled.
【請求項4】 矩形断面スラブから粗二重圧延機で粗形
鋼片を製造し、粗および仕上げユニバーサル圧延機でH
形鋼を圧延する方法において、前記粗二重圧延機の上下
ロール対に孔型底幅を順次大きくし、孔型底中央部にス
ラブ厚に対して略20%以下の高さの被圧延材誘導用突
起を形成した孔型を複数配置し、スラブ幅方向のエッジ
ング圧延で被圧延材をセンタリングしつつフランジ部を
形成してドッグボーン鋼片とした後、続く粗ユニバーサ
ル圧延機の上下水平ロール対でウェブ部を圧延し、被圧
延材のフランジ外面から中心偏析帯までの距離を所定値
以上に離隔せしめることを特徴とするH形鋼の圧延方
法。
4. A rough shaped billet is manufactured from a rectangular cross-section slab by a rough double rolling mill, and H is manufactured by a rough and finish universal rolling mill.
In the method for rolling a shaped steel, the hole bottom width is sequentially increased in the pair of upper and lower rolls of the rough double rolling mill, and the rolled material having a height of about 20% or less with respect to the slab thickness is formed in the center of the hole bottom. After arranging multiple cavities with guiding projections, centering the material to be rolled by edging rolling in the slab width direction and forming flanges to form dogbone steel pieces, then the upper and lower horizontal rolls of the rough universal rolling machine. A method for rolling H-section steel, characterized in that the web portions are rolled in pairs and the distance from the outer surface of the flange of the material to be rolled to the center segregation zone is separated by a predetermined value or more.
JP24005893A 1993-09-27 1993-09-27 Method for rolling h-shape steel Withdrawn JPH0788502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24005893A JPH0788502A (en) 1993-09-27 1993-09-27 Method for rolling h-shape steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24005893A JPH0788502A (en) 1993-09-27 1993-09-27 Method for rolling h-shape steel

Publications (1)

Publication Number Publication Date
JPH0788502A true JPH0788502A (en) 1995-04-04

Family

ID=17053863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24005893A Withdrawn JPH0788502A (en) 1993-09-27 1993-09-27 Method for rolling h-shape steel

Country Status (1)

Country Link
JP (1) JPH0788502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175096A (en) * 2015-03-19 2016-10-06 新日鐵住金株式会社 Manufacturing method of h-shaped steel
WO2018043491A1 (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Rolled h-beam steel and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175096A (en) * 2015-03-19 2016-10-06 新日鐵住金株式会社 Manufacturing method of h-shaped steel
WO2018043491A1 (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Rolled h-beam steel and production method therefor
JPWO2018043491A1 (en) * 2016-08-29 2018-09-27 新日鐵住金株式会社 Rolled H-section steel and its manufacturing method
TWI641701B (en) * 2016-08-29 2018-11-21 日商新日鐵住金股份有限公司 Rolled H-shaped steel and manufacturing method thereof
KR20190029756A (en) 2016-08-29 2019-03-20 신닛테츠스미킨 카부시키카이샤 Rolled H-section steel and its manufacturing method
CN109642296A (en) * 2016-08-29 2019-04-16 新日铁住金株式会社 Rolled h-section steel beam and its manufacturing method
CN109642296B (en) * 2016-08-29 2019-11-05 日本制铁株式会社 Rolled h-section steel beam and its manufacturing method

Similar Documents

Publication Publication Date Title
US4402206A (en) Method of rolling slabs for the manufacture of beam blanks and a roll to be used therefor
US8381384B2 (en) Shaped direct chill aluminum ingot
WO2016148030A1 (en) H-shaped steel production method
US4420961A (en) Method for producing beam blank for universal beam
CA1151913A (en) Method of forming beam blank
JPH0788502A (en) Method for rolling h-shape steel
JP4504373B2 (en) Double T-shaped steel sheet pile shape
JP2004358541A (en) Method for manufacturing shaped bloom and caliber roll
JPH07164003A (en) Manufacture of rough shape slab
JP3065877B2 (en) Rough rolling method for H-shaped steel slab
JP3456438B2 (en) Rolling method of crude slab for section steel
US4295354A (en) Method for producing beam blank for large size H-beam from flat slab
JP3518402B2 (en) Method for producing coarse shaped billet for H-section steel
JP3840838B2 (en) Rolled H-section steel and manufacturing method thereof
JPH07178402A (en) Production of shape steel for steel-made continuous wall
JP3695289B2 (en) Parallel flange channel steel with constant outer method and manufacturing method thereof
JP3582253B2 (en) Rolling method and rolling roll of crude billet for section steel
JP3864606B2 (en) Rolling method of rough steel slab for H-section steel and shaping hole mold thereof
JP3511919B2 (en) Method for producing coarse shaped billet for large H-section steel
JP2861831B2 (en) Rolling method of constant parallel flange channel steel with external method
JPS5942563B2 (en) Method of forming rough shaped steel pieces
JPS6141642B2 (en)
JP2508873B2 (en) Method for hot rolling profile with flange
JP2712855B2 (en) Rolling method for H-section steel
JPH06254601A (en) Method for rolling unequal angle steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128