JPH0788497A - Method and apparatus for removing phosphorus in water - Google Patents

Method and apparatus for removing phosphorus in water

Info

Publication number
JPH0788497A
JPH0788497A JP23530993A JP23530993A JPH0788497A JP H0788497 A JPH0788497 A JP H0788497A JP 23530993 A JP23530993 A JP 23530993A JP 23530993 A JP23530993 A JP 23530993A JP H0788497 A JPH0788497 A JP H0788497A
Authority
JP
Japan
Prior art keywords
phosphorus
water
dehydrated filtrate
chemical injection
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23530993A
Other languages
Japanese (ja)
Other versions
JP3201095B2 (en
Inventor
Akira Matsunaga
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP23530993A priority Critical patent/JP3201095B2/en
Publication of JPH0788497A publication Critical patent/JPH0788497A/en
Application granted granted Critical
Publication of JP3201095B2 publication Critical patent/JP3201095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

PURPOSE:To provide a dephosphorization method and apparatus in which the dephosphorization function is maintained without troubles by dephosphorizing the dewatering filtrate of digested sludge even when DO in inflow water is elevated with the decrease in phosphorus concentration in water to be treated. CONSTITUTION:A dissolved oxygen meter 40 and a flow meter 41 are installed in inflow water 11; a dewatering filtrate temporary storing tank is equipped with a pH meter 43, a pH feedback controller 44, and an alkali injection device 45. A polymeric coagulant is injected to concentrated digested sludge which was digested in an aerobic-anaerobic tank 42, and the sludge is dewatered with a dewaterer 25. The reagent injection ratio is calculated on the basis of the stoichiometric relationship between phosphorus and a dephosphorization reagent obtained from the data on the phosphorus concentration in the dewatering filtrate and the dissolved oxygen in the inflow water. The final reagent injection ratio is determined by multiplying the calculated reagent injection ratio by the data on the flow rates of the dewatering filtrate and the inflow water. In this way, the treatment to make phosphorus insoluble is conducted by injecting the reagent to make phosphorus insoluble to the dewatering filtrate, providing the dephororization method and apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は消化汚泥脱水濾液を対象
として、薬品注入によりリンを除去するシステムにおい
て、リン濃度と流入水の溶存酸素量を測定して薬品注入
量を制御するようにした水中のリン除去方法及び装置に
関するものである。
BACKGROUND OF THE INVENTION The present invention is directed to a digested sludge dehydration filtrate, and in a system for removing phosphorus by chemical injection, the phosphorus concentration and the dissolved oxygen amount of inflow water are measured to control the chemical injection amount. The present invention relates to a method and apparatus for removing phosphorus in water.

【0002】[0002]

【従来の技術】リンは地中に広く存在する元素であって
自然水中にも含まれているが、特に屎尿とか汚泥,肥料
等に多量に含まれているため、これらが自然水に混入す
る場合が多い。水中におけるリンは、オルトリン酸塩,
メタリン酸塩,ピロリン酸塩,ポリリン酸塩とか、リン
酸エステル,リン脂質等の有機性リン化合物等種々の形
態で存在する。リンの形態はリン酸イオン態リンと加水
分解性リン及び全リンの3種類に分けられ、これらは更
に溶解性と不溶解性とに分けられる。
2. Description of the Related Art Phosphorus is a widely existing element in the earth and is also contained in natural water. However, since phosphorus is contained in large amounts in human waste, sludge, fertilizer, etc., phosphorus is mixed in natural water. In many cases. Phosphorus in water is orthophosphate,
It exists in various forms such as metaphosphates, pyrophosphates, polyphosphates, and organic phosphorus compounds such as phosphates and phospholipids. The form of phosphorus is classified into three types, that is, phosphate ion-type phosphorus, hydrolyzable phosphorus, and total phosphorus, which are further divided into soluble and insoluble.

【0003】これら種々のリン化合物は、前処理によっ
て最終的にすべてオルトリン酸とし、リン酸イオン固有
の反応を利用して測定し、リンの量で表わしている。リ
ン自体は生物の増殖活動に重要な役割を果たしており、
且つ下水等の生物処理においても必須の元素であるが、
他方でリンは湖沼とか海域の富栄養化を促進する一因と
もなっており、水中におけるリン化合物の増加は好まし
くない。
All of these various phosphorus compounds are finally converted to orthophosphoric acid by pretreatment, measured using the reaction peculiar to phosphate ions, and expressed as the amount of phosphorus. Phosphorus itself plays an important role in the growth activity of organisms,
Moreover, although it is an essential element in biological treatment of sewage,
On the other hand, phosphorus is one of the factors that promote eutrophication in lakes and sea areas, and an increase in phosphorus compounds in water is not preferable.

【0004】他方で下水汚泥の嫌気性消化手段は、固相
からリンが溶解する現象が見られ、そのため消化汚泥の
液相には比較的高濃度,例えば100〜300mg・P
/l程度のリン酸イオン態リンを含むことが知られてい
る。上記のリン酸イオン態リンとは水中のリン酸イオン
をリン(P)の量で表したものである。
On the other hand, in the anaerobic digestion means for sewage sludge, a phenomenon in which phosphorus is dissolved from the solid phase is observed, so that the liquid phase of the digested sludge has a relatively high concentration, for example, 100 to 300 mg · P.
It is known to contain phosphate ion phosphorus of about 1 / l. The above-mentioned phosphate ion type phosphorus is a phosphate ion in water expressed by the amount of phosphorus (P).

【0005】又、生物学的に窒素とリンを同時に除去す
る方法として、従来の活性汚泥法の変法として嫌気−好
気活性汚泥法が知られている。この嫌気−好気活性汚泥
法とは、図2に示したように、生物反応槽を溶存酸素
(通常DOと略称)の存在しない嫌気槽1a,1bとD
Oの存在する好気槽2a,2b,2cとに仕切り、この
嫌気槽1a,1bによって流入水3を無酸素状態下で撹
拌機構10による撹拌を行って活性汚泥中の脱窒菌によ
る脱窒を行い、次に好気槽2a,2b,2cの内方に配
置した散気管4にブロワ5から空気を供給することによ
り、エアレーションによる酸素の存在下で活性汚泥によ
る有機物の酸化分解と硝化菌によるアンモニアの硝化を
行う。
As a biological method for simultaneously removing nitrogen and phosphorus, an anaerobic-aerobic activated sludge method is known as a modification of the conventional activated sludge method. The anaerobic-aerobic activated sludge method is, as shown in FIG. 2, that the biological reaction tanks are anaerobic tanks 1a, 1b and D which do not have dissolved oxygen (usually abbreviated as DO).
It is divided into aerobic tanks 2a, 2b and 2c in which O exists, and the anaerobic tanks 1a and 1b are used to agitate the inflowing water 3 by an agitation mechanism 10 under anoxic conditions to denitrify the denitrifying bacteria in the activated sludge. Then, by supplying air from the blower 5 to the air diffuser 4 arranged inside the aerobic tanks 2a, 2b, 2c, oxidative decomposition of organic matter by activated sludge and nitrifying bacteria in the presence of oxygen by aeration. Nitrification of ammonia is performed.

【0006】そして最終段の好気槽2cの硝化液を、硝
化液循環ポンプ6を用いて嫌気槽1aに送り込むことに
より脱窒効果が促進される。水中のリンは嫌気槽1a,
1b内で放出され、好気槽2a,2b,2c内で活性汚
泥に取り込まれて除去される。7は最終沈澱池であり、
この最終沈澱池7の上澄液50は、図外の消毒槽等を経
由してから放流され、該最終沈澱池7内に沈降した汚泥
の一部は汚泥返送ポンプ8により嫌気槽1aに返送さ
れ、他の汚泥は余剰汚泥ポンプ9から図外の余剰汚泥処
理装置に送り込まれて処理される。
Then, the nitrifying solution in the last-stage aerobic tank 2c is fed into the anaerobic tank 1a by using the nitrifying solution circulating pump 6, whereby the denitrifying effect is promoted. Phosphorus in water is anaerobic tank 1a,
It is released in 1b and taken in and removed by the activated sludge in the aerobic tanks 2a, 2b, 2c. 7 is the final sedimentation pond,
The supernatant 50 of the final settling basin 7 is discharged after passing through a disinfecting tank or the like (not shown), and a part of the sludge settled in the final settling basin 7 is returned to the anaerobic tank 1a by a sludge returning pump 8. Other sludge is sent from the excess sludge pump 9 to an excess sludge treatment device (not shown) for treatment.

【0007】かかる嫌気−好気活性汚泥処理装置は、通
常の標準活性汚泥法で達成される有機物除去効果と同程
度の効果が得られる上、窒素とリンに関しては活性汚泥
法よりも高い除去率が達成される。
[0007] Such an anaerobic-aerobic activated sludge treatment device has the same effect as the organic substance removal effect achieved by the ordinary standard activated sludge method, and has a higher removal rate for nitrogen and phosphorus than the activated sludge method. Is achieved.

【0008】他方において、本出願人は先に特願平5−
91713号により、図3に示す脱水濾液中のリン除去
装置を提案した。これを簡単に説明すると、流入水11
が最初沈澱池12からエアレーションタンク13及び最
終沈澱池14を経由して処理水15として放流される間
に、最初沈澱池12の初沈汚泥16が最終沈澱池14の
余剰汚泥17とともに汚泥濃縮槽18に送り込まれる。
On the other hand, the present applicant has previously filed Japanese Patent Application No. 5-
No. 91713 proposed a device for removing phosphorus in dehydrated filtrate shown in FIG. To briefly explain this, inflow water 11
While being discharged from the first settling tank 12 as treated water 15 via the aeration tank 13 and the final settling tank 14, the first settling sludge 16 of the first settling tank 12 together with the surplus sludge 17 of the final settling tank 14 is a sludge thickening tank. It is sent to 18.

【0009】この余剰汚泥17の一部はエアレーション
タンク13に戻され、汚泥濃縮槽18の上澄液19は、
返流水20とともに最初沈澱池12に還流され、汚泥濃
縮槽18の濃縮汚泥21は、汚泥消化槽22に送り込ま
れて嫌気性の消化処理が行われる。この汚泥消化槽22
の消化汚泥23中に高分子凝集剤注入装置24から凝集
剤が注入されて凝集処理される。この凝集剤はリン除去
能力がない高分子凝集剤が採用される。
A part of the excess sludge 17 is returned to the aeration tank 13, and the supernatant 19 of the sludge thickening tank 18 is
It is first returned to the settling tank 12 together with the return water 20, and the thickened sludge 21 in the sludge thickening tank 18 is sent to the sludge digesting tank 22 for anaerobic digestion treatment. This sludge digestion tank 22
The coagulant is injected into the digested sludge 23 from the polymer coagulant injection device 24 to be subjected to the coagulation treatment. As the coagulant, a polymer coagulant having no phosphorus removing ability is adopted.

【0010】そして凝集後に脱水機25にかけて脱水ケ
ーキ26を得る一方、脱水機25の脱水濾液は、脱水濾
液排出管路28を経由して脱水濾液一時貯留槽29に送
り込まれる。この時に脱水濾液排出管路28からサンプ
リングされた脱水濾液がリン濃度自動測定装置31に供
給されてリン濃度が自動的に測定され、この測定値が電
気信号に変換されて薬品注入制御演算装置33に入力さ
れ、同時に流量計32によって脱水濾液の流量が測定さ
れて、この測定値が同様に電気信号に変換されて薬品注
入制御演算装置33に入力される。
After the flocculation, the dehydrated cake 26 is obtained by applying it to the dehydrator 25, while the dehydrated filtrate of the dehydrator 25 is sent to the dehydrated filtrate temporary storage tank 29 via the dehydrated filtrate discharge conduit 28. At this time, the dehydrated filtrate sampled from the dehydrated filtrate discharge conduit 28 is supplied to the phosphorus concentration automatic measuring device 31 to automatically measure the phosphorus concentration, and the measured value is converted into an electrical signal to control the chemical injection control computing device 33. At the same time, the flow rate of the dehydrated filtrate is measured by the flow meter 32, and the measured value is similarly converted into an electric signal and input to the chemical injection control arithmetic unit 33.

【0011】薬品注入制御演算装置33は、脱水濾液の
リン濃度に関するデータからリンとリン除去用薬品との
化学量論的関係に基づく薬品注入率を演算し、この薬品
注入率に流量計32によって測定された流量のデータを
乗じて最終薬品注入率を決定し、この最終薬品注入率に
基づいて薬品注入装置34を駆動することによって脱水
濾液一時貯留槽29に対する薬品の注入が行われる。そ
して撹拌機構30の駆動に伴って脱水濾液の撹拌が行わ
れてリン不溶化処理が実施される。
The chemical injection control calculation unit 33 calculates the chemical injection rate based on the stoichiometric relationship between phosphorus and the chemicals for phosphorus removal from the data relating to the phosphorus concentration of the dehydrated filtrate, and the flow rate meter 32 calculates this chemical injection rate. The final chemical injection rate is determined by multiplying the measured flow rate data, and the chemical injection device 34 is driven based on the final chemical injection rate to inject the chemical into the dehydrated filtrate temporary storage tank 29. Then, as the stirring mechanism 30 is driven, the dehydrated filtrate is stirred to perform the phosphorus insolubilization treatment.

【0012】このように処理された脱水濾液は沈澱槽3
5に送り込まれ、上記薬品の注入によって不溶化された
沈澱物36が槽の底部から引き抜かれて脱水機25に戻
され、再度脱水処理される。この沈澱槽35の上澄液3
7は返流水20として前記上澄液19とともに最初沈澱
池12に返流される。
The dehydrated filtrate treated in this way is used in the precipitation tank 3
The precipitate 36 that has been sent to the tank 5 and insolubilized by the injection of the above chemicals is withdrawn from the bottom of the tank and returned to the dehydrator 25, where it is again dehydrated. Supernatant liquid 3 of this settling tank 35
7 is returned as return water 20 together with the supernatant 19 to the sedimentation tank 12.

【0013】消化汚泥23の脱水濾液に薬品を注入して
リンを除去する手段は、エアレーションタンク13に直
接薬品を注入する手段に比して脱水性不良に起因する薬
品スラッジの発生量が低減されるという作用がある。
The means for injecting a chemical into the dehydrated filtrate of the digested sludge 23 to remove phosphorus reduces the amount of chemical sludge generated due to poor dehydration property as compared with the means for directly injecting a chemical into the aeration tank 13. Has the effect of

【0014】[0014]

【発明が解決しようとする課題】しかしながらこのよう
な従来のリン除去手段の中で、図2に示す生物学的に窒
素とリンを同時に除去する嫌気−好気活性汚泥法は、雨
が降った後のように流入水のDOが高くなった場合に嫌
気状態を良好に維持することができなくなってリンの除
去能力が低下する惧れがあり、又、嫌気性消化による汚
泥処理手段は、前記したように生物体に過剰に摂取され
たリンが固相から再溶解して、消化汚泥の液相に比較的
高濃度のリン酸イオン態リンが含まれてしまうという難
点がある。又、リンを除去する能力がない高分子凝集剤
を用いて凝集脱水する方法は、脱水濾液を最初沈澱池に
返流水としてそのまま返流しているため、脱水濾液の高
いリン濃度が水処理系のリン濃度を高める原因となり、
水処理系の負荷が高くなって放流水のリン濃度を低減す
ることができないという問題点がある。
However, among such conventional phosphorus removing means, the anaerobic-aerobic activated sludge method for biologically removing nitrogen and phosphorus shown in FIG. When the DO of the inflow water becomes high as in the latter case, the anaerobic state cannot be maintained well, and the phosphorus removal ability may be deteriorated. Further, the sludge treatment means by anaerobic digestion is As described above, there is a drawback that phosphorus excessively ingested by the organism is redissolved from the solid phase and the liquid phase of the digested sludge contains a relatively high concentration of phosphate ion-type phosphorus. Further, in the method of coagulating and dehydrating using a polymer coagulant that does not have the ability to remove phosphorus, the dehydrated filtrate is first returned as it is to the settling tank as return water, so that the high phosphorus concentration of the dehydrated filtrate is high in the water treatment system. Cause increase of phosphorus concentration of
There is a problem that the load on the water treatment system becomes high and the phosphorus concentration in the discharged water cannot be reduced.

【0015】生物学的リン除去方法に基づき、薬品の注
入によってリンを沈澱除去する方法としてエアレーショ
ンタンクに対して直接薬品を注入する手段とか、二次処
理水もしくは返流水に薬品を注入する手段が考えられる
が、リン濃度に応じて過不足なく薬品を注入することが
技術的に困難であり、単に一定量の薬品を注入すると
か、定注入率流量比例注入制御手段では、リン濃度が高
い場合には薬品注入量が不足し、リン濃度が低い場合に
は薬品の注入過剰となって該薬品の無駄が生じてしまう
という問題が生じる。
Based on the biological phosphorus removal method, a method of directly injecting a chemical into an aeration tank or a means of injecting a chemical into secondary treated water or return water is used as a method of depositing and removing phosphorus by injecting a chemical. It is conceivable, however, that it is technically difficult to inject chemicals just enough depending on the phosphorus concentration, and if a certain amount of chemicals is simply injected, or if the phosphorus concentration is high in the constant injection rate flow rate proportional injection control means. However, if the phosphorus concentration is low and the phosphorus concentration is low, the chemicals will be excessively injected and the chemicals will be wasted.

【0016】一方、図3に示したように、脱水濾液のリ
ン濃度を測定して、このリン濃度に応じて化学量論的に
導いた注入率に基づいて薬品を注入し、リンを不溶化し
て除去することにより、返流水による水処理系の負荷が
低減されるという作用が得られるが、流入水のDOが上
昇した場合に嫌気−好気槽のリン除去能力が低下するこ
とがあるという問題が残っている。
On the other hand, as shown in FIG. 3, the phosphorus concentration of the dehydrated filtrate was measured, and a chemical was injected based on the injection rate stoichiometrically derived according to this phosphorus concentration to insolubilize the phosphorus. The effect of reducing the load of the return water on the water treatment system can be obtained by removing the water, but the phosphorus removal capacity of the anaerobic-aerobic tank may decrease when the DO of the inflow water increases. The problem remains.

【0017】そこで本発明はこのような従来の水中のリ
ン除去装置が有している課題を解消して、脱水濾液を対
象としてリンを除去することにより、処理水のリン濃度
を低減することができるとともに流入水のDOが上昇し
た場合であってもリン除去能力に支障が生じないリン除
去方法及び装置を提供することを目的とするものであ
る。
Therefore, the present invention solves the problem of such a conventional apparatus for removing phosphorus in water and reduces phosphorus concentration in treated water by removing phosphorus from the dehydrated filtrate. It is an object of the present invention to provide a phosphorus removing method and apparatus that do not hinder the phosphorus removing ability even when the DO of inflow water rises.

【0018】[0018]

【課題を解決するための手段】本発明は上記の目的を達
成するために、流入水を嫌気−好気性の汚泥消化槽に導
いて処理し、且つ濃縮した消化汚泥に高分子凝集剤を注
入してから脱水機により脱水処理し、脱水濾液のリン濃
度を測定して、該リン濃度に関するデータからリンとリ
ン除去用薬品との化学量論的関係に基づいて最終薬品注
入率を演算し、この最終薬品注入率に基づいて薬品注入
装置から脱水濾液一時貯留槽に対する薬品の注入を行
い、リン不溶化処理を実施してから該脱水濾液を返流水
として再度水処理系によって処理するようにした水中の
リン除去方法において、前記流入水に溶存酸素計と流量
計を付設する一方、脱水濾液一時貯留槽にpH計とpH
フィードバック制御装置及びアルカリ注入装置とを配備
し、脱水濾液のリン濃度及び流入水の溶存酸素に関する
データとからリンとリン除去用薬品との化学量論的関係
に基づく薬品注入率を演算し、この薬品注入率に脱水濾
液及び流入水の流量に関するデータを乗じて最終薬品注
入率を決定して、この最終薬品注入率に基づいて脱水濾
液にリン不溶化試薬を注入してリン不溶化処理を実施す
るようにした水中のリン除去方法及び装置を提供する。
[Means for Solving the Problems] In order to achieve the above object, the present invention introduces influent water into an anaerobic-aerobic sludge digestion tank for treatment, and injects a polymer flocculant into the concentrated digested sludge. Then, dehydration treatment with a dehydrator, measuring the phosphorus concentration of the dehydrated filtrate, calculating the final chemical injection rate based on the stoichiometric relationship between phosphorus and chemicals for phosphorus removal from the data on the phosphorus concentration, Based on this final chemical injection rate, chemicals are injected from the chemical injection device into the dehydrated filtrate temporary storage tank, and after the phosphorus insolubilization treatment is performed, the dehydrated filtrate is treated as return water by the water treatment system again in water. In the method for removing phosphorus, while a dissolved oxygen meter and a flow meter are attached to the inflow water, a pH meter and a pH are stored in the dehydrated filtrate temporary storage tank.
A feedback control device and an alkali injection device are provided, and the chemical injection rate based on the stoichiometric relationship between phosphorus and the chemicals for phosphorus removal is calculated from the data on the phosphorus concentration of the dehydrated filtrate and the dissolved oxygen of the inflow water. Determine the final chemical injection rate by multiplying the chemical injection rate by the data related to the flow rates of dehydrated filtrate and inflow water, and perform the phosphorus insolubilization treatment by injecting the phosphorus insolubilizing reagent into the dehydrated filtrate based on this final chemical injection rate. A method and apparatus for removing phosphorus in water are provided.

【0019】上記リン不溶化試薬として硫化カルシウム
を用いるとともに、流入水の溶存酸素濃度が低く、リン
を除去するために必要とするカルシウムイオンが不足す
る場合には、消石灰を補充する。更に前記pH計によっ
て脱水濾液一時貯留槽内のpH値を測定し、pHフィー
ドバック制御装置により、該pH値が8程度であるよう
にアルカリ注入装置から脱水濾液一時貯留槽へ水酸化ナ
トリウム溶液を注入するようにしてある。
Calcium sulfide is used as the phosphorus insolubilizing reagent, and slaked lime is supplemented when the dissolved oxygen concentration of the inflowing water is low and the calcium ions required for removing phosphorus are insufficient. Further, the pH value in the dehydrated filtrate temporary storage tank is measured by the pH meter, and the sodium hydroxide solution is injected into the dehydrated filtrate temporary storage tank from the alkali injection device so that the pH value is about 8 by the pH feedback control device. I am doing it.

【0020】[0020]

【作用】かかる水中のリン除去方法及び装置によれば、
流入水のDOが溶存酸素計によって測定されるとともに
流量が流量計によって測定され、嫌気−好気槽によって
消化処理が行われてからこの消化汚泥中に高分子凝集剤
が注入されて凝集処理され、凝集後に脱水機にかけられ
ることにより、脱水濾液が脱水濾液一時貯留槽に送り込
まれて一時貯留される。
According to such a method and apparatus for removing phosphorus in water,
The DO of the inflowing water is measured by the dissolved oxygen meter and the flow rate is measured by the flow meter, and the digestive sludge is digested by the anaerobic-aerobic tank. By being applied to a dehydrator after aggregation, the dehydrated filtrate is sent to and temporarily stored in the dehydrated filtrate temporary storage tank.

【0021】この時に脱水機の脱水濾液排出管路からか
らサンプリングされた脱水濾液のリン濃度が自動測定装
置によって自動的に測定され、この脱水濾液のリン濃度
に関するデータと流入水のDOとからリンとリン除去用
薬品との化学量論的関係に基づく薬品注入率が演算さ
れ、この薬品注入率に脱水濾液の流量計と流入水の流量
計によって測定された流量のデータを乗じて最終薬品注
入率が決定され、この最終薬品注入率に基づいて薬品注
入装置から脱水濾液一にリン不溶化試薬の注入が行わ
れ、リン不溶化処理が実施される。
At this time, the phosphorus concentration of the dehydrated filtrate sampled from the dehydrated filtrate discharge pipe of the dehydrator is automatically measured by an automatic measuring device, and the phosphorus concentration is measured from the phosphorus concentration data of the dehydrated filtrate and the DO of the inflow water. The chemical injection rate is calculated based on the stoichiometric relationship between the chemicals for phosphorus removal and the chemicals for phosphorus removal, and the chemical injection rate is multiplied by the flow rate data measured by the flowmeter of the dehydrated filtrate and the flowmeter of the inflow water to make the final chemical injection. The rate is determined, and the phosphorus insolubilizing reagent is injected from the chemical injecting device into the dehydrated filtrate based on the final chemical injecting rate to perform the phosphorus insolubilizing treatment.

【0022】上記動作時に、pH計によって脱水濾液一
時貯留槽内のpH値が測定され、pHフィードバック制
御装置により上記のpH値が8程度であるようにアルカ
リ注入装置から水酸化ナトリウム溶液が注入される。
At the time of the above operation, the pH value in the temporary storage tank for the dehydrated filtrate is measured by the pH meter, and the sodium hydroxide solution is injected from the alkali injection device so that the pH value is about 8 by the pH feedback control device. It

【0023】このように薬品処理により不溶化された沈
澱物は脱水機に戻され、再度脱水処理され、上澄液は返
流水として水処理系に返流される。
The precipitate thus insolubilized by the chemical treatment is returned to the dehydrator and dehydrated again, and the supernatant is returned to the water treatment system as return water.

【0024】[0024]

【実施例】以下図1に基づいて本発明にかかる水中のリ
ン除去方法及び装置の具体的な実施例を、前記従来の構
成部分と同一の構成部分に同一の符号を付して詳述す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete embodiment of a method and apparatus for removing phosphorus in water according to the present invention will be described in detail below with reference to FIG. .

【0025】図中の11は流入水、12は該流入水11
が流入する最初沈澱池であり、この流入水11には溶存
酸素計40と流量計41が付設されている。42は嫌気
−好気槽、14は最終沈澱池、18は汚泥濃縮槽、22
は汚泥消化槽、24は高分子凝集剤注入装置、25は脱
水機、29は脱水濾液一時貯留槽であり、この脱水機2
5から導出された脱水濾液排出管路28が脱水濾液一時
貯留槽29に接続されている。30は撹拌機構、31は
脱水濾液のリン濃度自動測定装置、32は流量計、33
は脱水濾液に対する薬品注入制御演算装置、34は脱水
濾液一時貯留槽29への薬品注入装置、35は沈澱槽で
ある。
In the figure, 11 is inflow water, 12 is the inflow water 11
Is the first settling basin into which the dissolved oxygen meter 40 and the flow meter 41 are attached. 42 is an anaerobic-aerobic tank, 14 is a final settling tank, 18 is a sludge thickening tank, 22
Is a sludge digestion tank, 24 is a polymer coagulant injection device, 25 is a dehydrator, and 29 is a dehydration filtrate temporary storage tank.
The dehydrated filtrate discharge pipe line 28 derived from 5 is connected to the dehydrated filtrate temporary storage tank 29. 30 is a stirring mechanism, 31 is an automatic phosphorus concentration measuring device for dehydrated filtrate, 32 is a flow meter, 33
Is a chemical injection control arithmetic unit for the dehydrated filtrate, 34 is a chemical injection device for the temporary dehydrated filtrate storage tank 29, and 35 is a precipitation tank.

【0026】上記薬品注入制御演算装置33には、リン
濃度自動測定装置31と流量計32及び流入水11の溶
存酸素計40で測定されたDO及び流量計41で測定さ
れた流入水11の流量の各データが入力されている。更
に脱水濾液一時貯留槽29にはpH計43が設置されて
おり、このpH計43にpHフィードバック制御装置4
4と、脱水濾液一時貯留槽29に対するアルカリ注入装
置45とが配備されている。
In the chemical injection control calculation device 33, the phosphorus concentration automatic measuring device 31, the flow meter 32 and the DO of the inflow water 11 measured by the dissolved oxygen meter 40 and the flow rate of the inflow water 11 measured by the flow meter 41. Each data of is input. Furthermore, a pH meter 43 is installed in the dehydration filtrate temporary storage tank 29, and the pH feedback control device 4 is installed in the pH meter 43.
4 and an alkali injection device 45 for the dehydration filtrate temporary storage tank 29.

【0027】本実施例の基本的な動作態様を以下に説明
する。即ち、流入水11が最初沈澱池12に流入する前
に溶存酸素計40によってDOが測定され、次に嫌気−
好気槽42及び最終沈澱池14を経由して処理水15と
して放流される間に、最初沈澱池12の初沈汚泥16が
最終沈澱池14の余剰汚泥17とともに汚泥濃縮槽18
に送り込まれる。この余剰汚泥17の一部は、嫌気−好
気槽42の嫌気槽側に戻され、汚泥濃縮槽18の上澄液
19は、返流水20とともに最初沈澱池12に還流され
る。
The basic operation mode of this embodiment will be described below. That is, before the inflow water 11 first flows into the sedimentation tank 12, the DO is measured by the dissolved oxygen meter 40, and then the anaerobic-
While being discharged as treated water 15 via the aerobic tank 42 and the final sedimentation tank 14, the primary sludge 16 in the primary sedimentation tank 12 and the excess sludge 17 in the final sedimentation tank 14 together with the sludge thickening tank 18
Sent to. Part of this excess sludge 17 is returned to the anaerobic tank side of the anaerobic-aerobic tank 42, and the supernatant 19 of the sludge thickening tank 18 is first returned to the settling tank 12 together with the return water 20.

【0028】汚泥濃縮槽18の濃縮汚泥21は、次段の
汚泥消化槽22に送り込まれて嫌気性の消化処理が行わ
れる。そして該汚泥消化槽22の消化汚泥23中に高分
子凝集剤注入装置24から凝集剤が注入されて凝集処理
される。尚、この凝集剤はリン除去能力がない高分子凝
集剤が採用される。そして凝集後に脱水機25にかけて
脱水ケーキ26を得る一方、脱水機25の脱水濾液は、
脱水濾液排出管路28を経由して脱水濾液一時貯留槽2
9に送り込まれる。
The thickened sludge 21 in the sludge thickening tank 18 is sent to the sludge digesting tank 22 in the next stage and subjected to anaerobic digestion treatment. Then, the coagulant is injected into the digested sludge 23 of the sludge digestion tank 22 from the polymer coagulant injecting device 24 to undergo the coagulation treatment. As the coagulant, a polymer coagulant having no phosphorus removing ability is adopted. After the flocculation, the dehydrated cake is applied to the dehydrator 25 to obtain the dehydrated cake 26, while the dehydrated filtrate of the dehydrator 25 is
Dehydration filtrate temporary storage tank 2 via dehydration filtrate discharge conduit 28
It is sent to 9.

【0029】この時に脱水濾液排出管路28からサンプ
リングされた脱水濾液がリン濃度自動測定装置31に供
給されてリン濃度が自動的に測定され、この測定値が電
気信号に変換されて薬品注入制御演算装置33に入力さ
れ、同時に流量計32によって脱水濾液の流量が測定さ
れて、この測定値が同様に電気信号に変換されて薬品注
入制御演算装置33に入力される。
At this time, the dehydrated filtrate sampled from the dehydrated filtrate discharge conduit 28 is supplied to the phosphorus concentration automatic measuring device 31 to automatically measure the phosphorus concentration, and the measured value is converted into an electric signal to control the chemical injection. The flow rate of the dehydrated filtrate is measured by the flow meter 32, and the measured value is similarly converted into an electric signal and input to the chemical injection control calculation unit 33.

【0030】薬品注入制御演算装置33は、脱水濾液の
リン濃度に関するデータと流入水11のDOとからリン
とリン除去用薬品との化学量論的関係に基づく薬品注入
率を演算し、この薬品注入率に流量計32と流入水11
の流量計41によって測定された流量のデータを乗じて
最終薬品注入率を決定し、この最終薬品注入率に基づい
て薬品注入装置34を駆動することによって脱水濾液一
時貯留槽29に薬品の注入が行われる。そして撹拌機構
30の駆動に伴って脱水濾液の撹拌が行われてリン不溶
化処理が実施される。
The chemical injection control calculation unit 33 calculates the chemical injection rate based on the stoichiometric relationship between phosphorus and the chemical for phosphorus removal from the data on the phosphorus concentration of the dehydrated filtrate and the DO of the inflow water 11, and this chemical is calculated. Flow rate 32 and inflow water 11
The final chemical injection rate is determined by multiplying the data of the flow rate measured by the flow meter 41 of the above, and the chemical injection device 34 is driven based on this final chemical injection rate to inject the chemical into the dehydrated filtrate temporary storage tank 29. Done. Then, as the stirring mechanism 30 is driven, the dehydrated filtrate is stirred to perform the phosphorus insolubilization treatment.

【0031】リン不溶化試薬として通常は硫酸バンドと
か消石灰等が使用されるが、本実施例では上記試薬に代
えて硫化カルシウムCaSを採用する。この硫化カルシ
ウムを用いた場合の反応式は以下の通りである。
As the phosphorus insolubilizing reagent, a sulfuric acid band or slaked lime is usually used, but in this embodiment, calcium sulfide CaS is adopted in place of the above reagent. The reaction formula when this calcium sulfide is used is as follows.

【0032】[0032]

【化1】 3O2+4CaS → 2S23 -+4Ca2+・・・・・・・・・・・・・・・(1) 3HPO4 2-+5Ca2++4OH- → Ca5(OH)(PO43+3H2O ・・・・・・・・・・・・・・・(2) 硫化カルシウムCaSは、(1)式のように溶存酸素を
消失させ、Ca2+イオンは(2)式によりリン酸イオン
と反応して、中性から弱アルカリ性域において不溶性の
ハイドロキシアパタイトCa5(OH)(PO4)3とし
て沈澱分離することにより、リンの除去が行われる。従
って雨が降った後のように流入水のDOが高くなった場
合であっても、流入水中のDOがリン不溶化試薬として
の硫化カルシウムCaSの添加によって消失するため、
嫌気−好気槽における嫌気槽の嫌気状態が良好に維持さ
れ、処理水のリン除去能力の低下が生じる惧れがない。
[Formula 1] 3O 2 + 4CaS → 2S 2 O 3 - + 4Ca 2+ ··············· (1) 3HPO 4 2+ 5Ca 2+ + 4OH - → Ca 5 (OH) ( PO 4 ) 3 + 3H 2 O (2) Calcium sulfide CaS causes dissolved oxygen to disappear as shown in equation (1), and Ca 2+ ions (2) ), The phosphorus ion is removed by reacting with the phosphate ion and precipitating and separating as insoluble hydroxyapatite Ca 5 (OH) (PO 4) 3 in the neutral to weakly alkaline region. Therefore, even when the DO of the inflow water becomes high as after raining, the DO in the inflow water disappears by the addition of calcium sulfide CaS as the phosphorus insolubilizing reagent,
Anaerobic-In an aerobic tank, the anaerobic state of the anaerobic tank is maintained in good condition, and there is no fear that the phosphorus removal ability of the treated water will deteriorate.

【0033】又、CaSとDOの反応によって生成した
チオ硫酸イオンS23 -は、嫌気槽における脱窒反応の
電子供与体となり、窒素の除去効率が高められる。
[0033] Further, CaS and thiosulfate ions produced by the reaction of DO S 2 O 3 - becomes the electron donor denitrification in the anaerobic tank, the nitrogen removal efficiency is enhanced.

【0034】上記の反応時にpH計43によって脱水濾
液一時貯留槽29内のpH値が測定され、pHフィード
バック制御装置44により上記のpH値が8程度である
ようにアルカリ注入装置45から水酸化ナトリウムNa
OH溶液が注入される。
At the time of the above reaction, the pH value in the dehydrated filtrate temporary storage tank 29 is measured by the pH meter 43, and the pH feedback control device 44 adjusts the above pH value to about 8 from the alkali injecting device 45 to the sodium hydroxide. Na
The OH solution is injected.

【0035】具体的には、リン不溶化試薬としての硫化
カルシウムCaSの注入率は、流入水11のDOと流入
水量から水処理系に入る溶存酸素量を算出し、それと当
量のCaS量を算出して、濾液処理量で除した値とす
る。これを数式で表現すると
Specifically, the injection rate of calcium sulfide CaS as the phosphorus insolubilizing agent is calculated by calculating the dissolved oxygen amount entering the water treatment system from the DO of the inflow water 11 and the inflow water amount, and calculating the equivalent CaS amount. Then, the value is divided by the filtrate throughput. If you express this with a mathematical formula

【0036】[0036]

【化2】 ICaS=DOIN×QIN×KCaS-DO/QFIL・・・・・・・・・・・・・・・・・(3) となる。ここで Embedded image I CaS = DO IN × Q IN × K CaS-DO / Q FIL (3) here

【0037】[0037]

【化3】 ICaS;CaSの注入率(ppm) DOIN;流入水の溶存酸素濃度(ppm又はmg/l) QIN;流入水量(m3/hr) QFIL;脱水濾液処理量(m3/hr) KCaS-DO;CaSのDO当量換算係数(KCaS-DO=4×7
2/3×16=6.0) CaSの添加は、溶存酸素を消失させるとともにCa2+
イオンがリンと反応してハイドロキシアパタイトとして
沈澱させる効果があるが、流入水の溶存酸素濃度が低い
場合にはCaSの添加量が少なくなり、リンを除去する
ために必要とするカルシウムイオンが不足する。このよ
うな場合には消石灰を補充するが、消石灰の注入率は脱
水濾液のリン濃度を計測して、これに濾液処理量を乗じ
て脱水濾液中のリンの量を算出し、CaS添加によるカ
ルシウムイオンと当量のリンを差し引き、当量のCa
(OH)2の量を計算することによって決定する。これ
を数式で表現すると
Embedded image I CaS ; CaS injection rate (ppm) DO IN ; Dissolved oxygen concentration of influent water (ppm or mg / l) Q IN ; Influent water amount (m 3 / hr) Q FIL ; Dehydrated filtrate treatment amount (m 3 / hr) K CaS-DO ; Ca equivalent DO equivalent conversion coefficient (K CaS-DO = 4 × 7
2/3 × 16 = 6.0) Addition of CaS causes dissolved oxygen to disappear and Ca 2+
Ions have the effect of reacting with phosphorus and precipitating as hydroxyapatite, but when the dissolved oxygen concentration of the inflow water is low, the amount of CaS added is small, and the calcium ions required for removing phosphorus are insufficient. . In such a case, slaked lime is replenished, but the injection rate of slaked lime is measured by measuring the phosphorus concentration of the dehydrated filtrate, and the amount of phosphorus in the dehydrated filtrate is calculated by multiplying this by the filtrate treatment amount. Ion and phosphorus equivalent are subtracted, equivalent Ca
Determined by calculating the amount of (OH) 2 . If you express this with a mathematical formula

【0038】[0038]

【化4】 ICa(OH)2=PO4−PFIL×QFIL×KP-Ca(OH)2 −ICaS×KCaS-Ca(OH)2/QFIL・・・・・・・・・・・・(4) となる。ここで Embedded image I Ca (OH) 2 = PO 4 −P FIL × Q FIL × K P-Ca (OH) 2 −I CaS × K CaS-Ca (OH) 2 / Q FIL ... (4) here

【0039】[0039]

【化5】 ICa(OH)2;Ca(OH)2の注入率(ppm) PO4−PFIL;脱水濾液のPO4−P濃度(ppm又は
mg/l) QFIL;脱水濾液処理量(m3/hr) KP-Ca(OH)2;PO4−PのCa(OH)2当量換算係数
(KP-Ca(OH)2=5×74/3×31=4.0) ICaS;CaSの注入率(ppm) KCaS-Ca(OH)2;CaSのCa(OH)2当量換算係数
(KCaS-Ca(OH)2=74/72=1.03) である。
Embedded image I Ca (OH) 2 ; Ca (OH) 2 injection rate (ppm) PO 4 -P FIL ; PO 4 -P concentration in the dehydrated filtrate (ppm or mg / l) Q FIL ; (M 3 / hr) K P-Ca (OH) 2 ; Ca 4 (OH) 2 equivalent conversion coefficient of PO 4 -P (K P-Ca (OH) 2 = 5 × 74/3 × 31 = 4.0) I CaS CaS injection rate (ppm) K CaS-Ca (OH) 2 ; CaS Ca (OH) 2 equivalent conversion coefficient (K CaS-Ca (OH) 2 = 74/72 = 1.03).

【0040】このように処理された脱水濾液は沈澱槽3
5に送り込まれ、上記薬品の注入によって不溶化された
沈澱物36が槽の底部から引き抜かれて脱水機25に戻
され、再度脱水処理される。この沈澱槽35の上澄液3
7は返流水20として前記上澄液19とともに最初沈澱
池12に返流される。
The dehydrated filtrate treated in this way is used in the precipitation tank 3
The precipitate 36 that has been sent to the tank 5 and insolubilized by the injection of the above chemicals is withdrawn from the bottom of the tank and returned to the dehydrator 25, where it is again dehydrated. Supernatant liquid 3 of this settling tank 35
7 is returned as return water 20 together with the supernatant 19 to the sedimentation tank 12.

【0041】上記リン濃度自動測定装置31の測定手段
に関しては、本願出願人が先に提案した特願平4−31
7590号に開示した滴定方式による装置を採用すれば
良いが、この測定原理を簡単に説明すると、検体を凝集
分離槽に取り入れて凝集剤の注入により固形物の凝集を
行い、開口部を下向きにして挿入したロートを用いて液
だけをゆっくり吸引して試料溶液とし、この一定量を反
応槽内でリン不溶化試薬注入によってリンを沈澱させ、
この反応槽の下方に配備した自動真空濾過機構を用いて
液体だけを吸引除去した後、沈澱物を濃塩酸で溶解し、
窒素ガスの通気によって溶解炭酸を揮散した後、蒸留水
を加えて滴定用試料溶液とし、電導ビュレットによるア
ルカリの滴定を行って滴定に要したアルカリ溶液の量か
ら計算式を用いて試料溶液中のリン酸イオン態リンの濃
度を算出するものである。この装置によれば、検体中の
高濃度のリン測定する際に、試料を無希釈で測定し、且
つ全操作の自動化を可能にするという特徴を有してい
る。
Regarding the measuring means of the phosphorus concentration automatic measuring device 31, the applicant of the present application has previously proposed Japanese Patent Application No. 4-31.
Although the device based on the titration method disclosed in No. 7590 may be adopted, the measuring principle will be briefly described. The sample is taken into the aggregating / separating tank, and the solid matter is agglomerated by injecting the aggregating agent, and the opening is directed downward. Using the funnel inserted as described above, only the liquid is slowly sucked to form a sample solution, and a certain amount of this is precipitated by injecting the phosphorus insolubilizing reagent in the reaction tank,
Only the liquid was sucked and removed using the automatic vacuum filtration mechanism arranged below this reaction tank, and the precipitate was dissolved with concentrated hydrochloric acid,
After volatilizing the dissolved carbonic acid by aeration of nitrogen gas, add distilled water to make a sample solution for titration, perform alkali titration with a conductive burette, and use the formula from the amount of the alkaline solution required for the titration The concentration of phosphate ion-state phosphorus is calculated. According to this device, when measuring a high concentration of phosphorus in a sample, the sample is measured without dilution, and all the operations can be automated.

【0042】[0042]

【発明の効果】以上詳細に説明したように、本発明にか
かる水中のリン除去方法及び装置によれば、嫌気−好気
槽によって消化処理が行われた後の消化汚泥が、高分子
凝集剤の注入により凝集処理されてから脱水機によって
脱水処理され、この脱水機の脱水濾液が脱水濾液一時貯
留槽に送り込まれて一時貯留されるとともに該脱水濾液
のリン濃度が自動測定装置によって自動的に測定され、
この脱水濾液のリン濃度に関するデータと流入水のDO
とからリンとリン除去用薬品との化学量論的関係に基づ
く薬品注入率が演算され、この薬品注入率に脱水濾液の
流量計と流入水の流量計によって測定された流量のデー
タを乗じて最終薬品注入率が決定されて、この最終薬品
注入率に基づいて薬品注入装置から脱水濾液一にリン不
溶化試薬の注入が行われて、リン不溶化処理を実施する
ことができる。
As described in detail above, according to the method and apparatus for removing phosphorus in water according to the present invention, the digested sludge after the digestion treatment by the anaerobic-aerobic tank is a polymer flocculant. Is dehydrated by a dehydrator, and the dehydrated filtrate of this dehydrator is sent to a temporary storage tank of the dehydrated filtrate for temporary storage and the phosphorus concentration of the dehydrated filtrate is automatically measured by an automatic measuring device. Measured,
Data on phosphorus concentration of this dehydrated filtrate and DO of inflow water
The chemical injection rate is calculated from and based on the stoichiometric relationship between phosphorus and the phosphorus removal chemical, and this chemical injection rate is multiplied by the flow rate data measured by the flowmeter of the dehydrated filtrate and the flowmeter of the inflow water. The final chemical injection rate is determined, and the phosphorus insolubilizing reagent is injected from the chemical injection device into the dehydrated filtrate based on the final chemical injection rate to perform the phosphorus insolubilization treatment.

【0043】従って脱水濾液がそのまま水処理系に返流
されていないため、処理水のリン濃度を効果的に低減す
ることが出来て、嫌気−好気槽から排出される消化汚泥
の脱水濾液を含む返流水によって水処理系へのリンの負
荷が高くならず、リンの排出規制に対しても対処可能と
なる。
Therefore, since the dehydrated filtrate is not directly returned to the water treatment system, the phosphorus concentration of the treated water can be effectively reduced, and the dehydrated filtrate of the digested sludge discharged from the anaerobic-aerobic tank can be removed. The contained return water does not increase the load of phosphorus on the water treatment system, and it becomes possible to deal with phosphorus emission regulations.

【0044】上記動作時に、pH計によって脱水濾液一
時貯留槽内のpH値が測定され、pHフィードバック制
御装置により上記のpH値が8程度であるようにアルカ
リ注入装置から水酸化ナトリウム溶液が注入される。こ
のような薬品注入制御を実施することにより、脱水濾液
のリン濃度に応じて過不足なく薬品を注入することが可
能となり、特に薬品の注入過剰にともなう該薬品の無駄
が生じないという効果が得られる。
At the time of the above operation, the pH value in the temporary storage tank of the dehydrated filtrate is measured by the pH meter, and the sodium hydroxide solution is injected from the alkali injection device so that the pH value is about 8 by the pH feedback control device. It By carrying out such chemical injection control, it becomes possible to inject the chemicals just enough according to the phosphorus concentration of the dehydrated filtrate, and there is an effect that the chemicals are not wasted due to excessive injection of the chemicals. To be

【0045】特に雨が降った後のように流入水のDOが
高くなった場合であっても、流入水中のDOがリン不溶
化試薬としての硫化カルシウムの添加によって消失する
ため、嫌気−好気槽における嫌気槽の嫌気状態を良好に
維持して処理水のリン除去能力の低下を効果的に防止す
ることができる。
Even when the DO of the inflow water becomes high especially after raining, the DO in the inflow water disappears by the addition of calcium sulfide as the phosphorus insolubilizing reagent, so that the anaerobic-aerobic tank The anaerobic state of the anaerobic tank can be favorably maintained and the reduction of the phosphorus removal ability of the treated water can be effectively prevented.

【0046】上記脱水濾液の溶解性リンの濃度は、消化
状態によっても変動することが知られており、従ってリ
ン濃度の測定によって消化状態の良否を判断する目安に
することが出来る。特に溶解性リンの濃度が異常に低い
場合には消化不足であるものと考えることができる。
It is known that the concentration of soluble phosphorus in the dehydrated filtrate varies depending on the digested state, and therefore the measurement of the phosphorus concentration can be used as a standard for judging the quality of the digested state. Particularly when the concentration of soluble phosphorus is abnormally low, it can be considered that the digestion is insufficient.

【0047】従って本発明によれば、従来の下水汚泥処
理装置等における脱水濾液を対象としてリンを除去する
ことにより、処理水のリン濃度が効果的に低減されると
いう大きな効果が発揮される。
Therefore, according to the present invention, by removing the phosphorus from the dehydrated filtrate in the conventional sewage sludge treatment apparatus, the phosphorus concentration of the treated water can be effectively reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるリン除去方法を適用した処理装
置を全体的に示す概要図。
FIG. 1 is a schematic diagram showing an overall processing apparatus to which a phosphorus removing method according to the present invention is applied.

【図2】従来の嫌気−好気活性汚泥処理法の一例を示す
概要図。
FIG. 2 is a schematic diagram showing an example of a conventional anaerobic-aerobic activated sludge treatment method.

【図3】本発明の前提となる従来の下水汚泥処理装置の
一例を示す概要図。
FIG. 3 is a schematic diagram showing an example of a conventional sewage sludge treatment device which is a premise of the present invention.

【符号の説明】[Explanation of symbols]

11…流入水 12…最初沈澱池 14…最終沈澱池 16…初沈汚泥 17…余剰汚泥 18…汚泥濃縮槽 20…返流水 21…濃縮汚泥 22…汚泥消化槽 24…高分子凝集剤注入装置 25…脱水機 28…脱水濾液排出管路 29…脱水濾液一時貯留槽 31…リン濃度自動測定装置 32,41…流量計 33…薬品注入制御演算装置 34…薬品注入装置 35…沈澱槽 40…溶存酸素計 42…嫌気−好気槽 43…pH計 44…pHフィードバック制御装置 45…アルカリ注入装置 11 ... Influent water 12 ... First settling basin 14 ... Final settling basin 16 ... First settling sludge 17 ... Excess sludge 18 ... Sludge thickening tank 20 ... Returning water 21 ... Concentrated sludge 22 ... Sludge digesting tank 24 ... Polymer coagulant injection device 25 Dehydrator 28 Dehydration filtrate discharge pipe 29 Dehydration filtrate temporary storage tank 31 Phosphorus concentration automatic measuring device 32, 41 ... Flow meter 33 ... Chemical injection control calculation device 34 ... Chemical injection device 35 ... Precipitation tank 40 ... Dissolved oxygen Total 42 ... Anaerobic-aerobic tank 43 ... pH meter 44 ... pH feedback control device 45 ... Alkaline injection device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流入水を嫌気−好気性の汚泥消化槽に導
いて処理し、且つ濃縮した消化汚泥に高分子凝集剤を注
入してから脱水機により脱水処理し、脱水濾液のリン濃
度を測定して、該リン濃度に関するデータからリンとリ
ン除去用薬品との化学量論的関係に基づいて最終薬品注
入率を演算し、この最終薬品注入率に基づいて薬品注入
装置から脱水濾液一時貯留槽に対する薬品の注入を行
い、リン不溶化処理を実施してから該脱水濾液を返流水
として再度水処理系によって処理するようにした水中の
リン除去方法において、 前記流入水に溶存酸素計と流量計を付設する一方、脱水
濾液一時貯留槽にpH計とpHフィードバック制御装置
及びアルカリ注入装置とを配備し、脱水濾液のリン濃度
及び流入水の溶存酸素に関するデータとからリンとリン
除去用薬品との化学量論的関係に基づく薬品注入率を演
算し、この薬品注入率に脱水濾液及び流入水の流量に関
するデータを乗じて最終薬品注入率を決定して、この最
終薬品注入率に基づいて脱水濾液にリン不溶化試薬を注
入してリン不溶化処理を実施することを特徴とする水中
のリン除去方法。
1. The inflowing water is introduced into an anaerobic-aerobic sludge digestion tank for treatment, and the concentrated digested sludge is injected with a polymer flocculant and then dehydrated by a dehydrator to adjust the phosphorus concentration of the dehydrated filtrate. Measure and calculate the final chemical injection rate based on the stoichiometric relationship between phosphorus and the chemicals for phosphorus removal from the data regarding the phosphorus concentration, and temporarily store the dehydrated filtrate from the chemical injection device based on this final chemical injection rate. In a method for removing phosphorus in water, in which a chemical is injected into a tank and phosphorus insolubilization treatment is performed, and then the dehydrated filtrate is treated again as return water by a water treatment system, a dissolved oxygen meter and a flow meter are added to the inflow water. On the other hand, a pH meter, a pH feedback control device and an alkali injection device were installed in the dehydrated filtrate temporary storage tank, and phosphorus was determined from the phosphorus concentration of the dehydrated filtrate and the data on dissolved oxygen in the inflow water. The chemical injection rate is calculated based on the stoichiometric relationship with the chemicals for removal of water, and the final chemical injection rate is determined by multiplying the chemical injection rate with the data on the flow rates of dehydrated filtrate and inflow water. A method for removing phosphorus in water, which comprises injecting a phosphorus insolubilizing reagent into the dehydrated filtrate based on the rate to perform the phosphorus insolubilizing treatment.
【請求項2】 上記リン不溶化試薬として硫化カルシウ
ムを用いるとともに、流入水の溶存酸素濃度が低く、リ
ンを除去するために必要とするカルシウムイオンが不足
する場合には、消石灰を補充するようにした請求項1記
載の水中のリン除去方法。
2. When calcium sulfide is used as the phosphorus insolubilizing reagent and slaked lime is replenished when the dissolved oxygen concentration of the inflowing water is low and the calcium ions required for removing phosphorus are insufficient. The method for removing phosphorus from water according to claim 1.
【請求項3】 前記pH計によって脱水濾液一時貯留槽
内のpH値を測定し、pHフィードバック制御装置によ
り、該pH値が8程度であるようにアルカリ注入装置か
ら脱水濾液一時貯留槽へ水酸化ナトリウム溶液を注入す
るようにした請求項1,2記載の水中のリン除去方法。
3. The pH value in the dehydrated filtrate temporary storage tank is measured by the pH meter, and the pH is controlled by the pH feedback controller from the alkali injecting device to the dehydrated filtrate temporary storage tank so that the pH value is about 8. The method for removing phosphorus in water according to claim 1, wherein a sodium solution is injected.
【請求項4】 流入水を処理する嫌気−好気性の汚泥消
化槽と、濃縮された消化汚泥に高分子凝集剤を注入後に
脱水処理する脱水機と、この脱水濾液のリン濃度を測定
して、該リン濃度に関するデータからリンとリン除去用
薬品との化学量論的関係に基づいて最終薬品注入率を演
算する薬品注入制御演算装置と、最終薬品注入率に基づ
いて薬品注入装置から脱水濾液一時貯留槽に対する薬品
の注入を行う薬品注入装置とを具備して成る水中のリン
除去装置において、 前記流入水に溶存酸素計と流量計を付設する一方、脱水
濾液一時貯留槽にpH計とpHフィードバック制御装置
及びアルカリ注入装置とを配備し、脱水濾液のリン濃度
及び流入水の溶存酸素に関するデータとからリンとリン
除去用薬品との化学量論的関係に基づく薬品注入率を演
算し、この薬品注入率に脱水濾液及び流入水の流量に関
するデータを乗じて最終薬品注入率を決定して、この最
終薬品注入率に基づいて脱水濾液にリン不溶化試薬を注
入してリン不溶化処理を実施することを特徴とする水中
のリン除去装置。
4. An anaerobic-aerobic sludge digestion tank for treating inflow water, a dehydrator for dehydrating after injecting a polymer coagulant into concentrated digested sludge, and measuring the phosphorus concentration of this dehydrated filtrate. , A chemical injection control arithmetic unit for calculating the final chemical injection rate based on the stoichiometric relationship between phosphorus and the chemical for phosphorus removal from the data on the phosphorus concentration, and dehydrated filtrate from the chemical injection apparatus based on the final chemical injection rate In a phosphorus removing device in water comprising a chemical injection device for injecting a chemical into a temporary storage tank, a dissolved oxygen meter and a flow meter are attached to the inflow water, while a pH meter and a pH are provided in the dehydrated filtrate temporary storage tank. A feedback control device and an alkali injection device were installed to determine the chemical injection rate based on the stoichiometric relationship between phosphorus and the phosphorus removal chemical from the data on the phosphorus concentration in the dehydrated filtrate and the dissolved oxygen in the inflow water. The final chemical injection rate is determined by multiplying this chemical injection rate by the data on the flow rates of dehydrated filtrate and inflow water, and based on this final chemical injection rate, the phosphorus insolubilization reagent is injected into the dehydrated filtrate to perform the phosphorus insolubilization treatment. An apparatus for removing phosphorus in water, characterized in that
JP23530993A 1993-09-22 1993-09-22 Method and apparatus for removing phosphorus from water Expired - Fee Related JP3201095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23530993A JP3201095B2 (en) 1993-09-22 1993-09-22 Method and apparatus for removing phosphorus from water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23530993A JP3201095B2 (en) 1993-09-22 1993-09-22 Method and apparatus for removing phosphorus from water

Publications (2)

Publication Number Publication Date
JPH0788497A true JPH0788497A (en) 1995-04-04
JP3201095B2 JP3201095B2 (en) 2001-08-20

Family

ID=16984207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23530993A Expired - Fee Related JP3201095B2 (en) 1993-09-22 1993-09-22 Method and apparatus for removing phosphorus from water

Country Status (1)

Country Link
JP (1) JP3201095B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321931A (en) * 2003-04-24 2004-11-18 Mitsubishi Electric Corp Method and apparatus for treating organic waste liquid
JP4647814B2 (en) * 2001-03-27 2011-03-09 住友重機械エンバイロメント株式会社 Organic wastewater treatment equipment
JP2012157837A (en) * 2011-02-02 2012-08-23 Ishigaki Co Ltd Nitrogen removal system and nitrogen removal method for dehydration filtrate
JP2013192965A (en) * 2012-03-15 2013-09-30 Swing Corp Treatment method and treatment apparatus of organic wastewater and organic waste
KR20170109322A (en) * 2016-03-21 2017-09-29 현대건설주식회사 Phosphorus adsorption advanced wastewater treatment system
JP2019118866A (en) * 2017-12-28 2019-07-22 株式会社東芝 Water treatment apparatus and water treatment method
CN114934555A (en) * 2022-03-25 2022-08-23 张乃翠 Tower type water conservancy sludge cleaning equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647814B2 (en) * 2001-03-27 2011-03-09 住友重機械エンバイロメント株式会社 Organic wastewater treatment equipment
JP2004321931A (en) * 2003-04-24 2004-11-18 Mitsubishi Electric Corp Method and apparatus for treating organic waste liquid
JP2012157837A (en) * 2011-02-02 2012-08-23 Ishigaki Co Ltd Nitrogen removal system and nitrogen removal method for dehydration filtrate
JP2013192965A (en) * 2012-03-15 2013-09-30 Swing Corp Treatment method and treatment apparatus of organic wastewater and organic waste
KR20170109322A (en) * 2016-03-21 2017-09-29 현대건설주식회사 Phosphorus adsorption advanced wastewater treatment system
JP2019118866A (en) * 2017-12-28 2019-07-22 株式会社東芝 Water treatment apparatus and water treatment method
CN114934555A (en) * 2022-03-25 2022-08-23 张乃翠 Tower type water conservancy sludge cleaning equipment
CN114934555B (en) * 2022-03-25 2024-03-01 陕西赛普润医疗科技有限公司 Tower type water conservancy sludge cleaning equipment

Also Published As

Publication number Publication date
JP3201095B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
EP0509609B1 (en) Method and apparatus for processing manure
US5798043A (en) Control of anaerobic wastewater treatment
Ra et al. Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment
US5232583A (en) Installation for processing manure, fermented manure and kjeldahl-n containing waste water
US7135116B2 (en) Process for recovery of nutrients from wastewater
CN108640418A (en) The processing method of phosphor-containing organic wastewater in a kind of fire retardant production process
Sklyar et al. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater
WO1997034837A1 (en) Method and apparatus for treating selenium-containing waste water
JP3653392B2 (en) Waste water treatment method and waste water treatment equipment
JP3201095B2 (en) Method and apparatus for removing phosphorus from water
JP4685224B2 (en) Waste water treatment method and waste water treatment equipment
JPH06296978A (en) Device for removing phosphorus from digested sludge dehydration filtrate
CN110589969A (en) Efficient and stable synchronous nitrogen and phosphorus removal device and method for sewage treatment plant
JP3799557B2 (en) Wastewater treatment method
JPH0416238B2 (en)
CN211470924U (en) Efficient stable synchronous nitrogen and phosphorus removal device for sewage treatment plant
CN101279795A (en) Chemical phosphorus removal method and apparatus based on anoxic-anaerobic-oxidation ditch
KR100314745B1 (en) Nitrogenous Wastwater Treatment Methods
JPH0420677B2 (en)
JPH0810791A (en) Method for removing phosphorus
JP3915245B2 (en) Aluminum recovery equipment from aluminum-containing sludge
US4228003A (en) Method of removing phosphates from waste water
JPH0318959B2 (en)
JP2509473B2 (en) Method for dephosphorizing organic wastewater
JPH0291000A (en) Batch-wise type soil water treatment process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees