JPH0788378A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst

Info

Publication number
JPH0788378A
JPH0788378A JP6008193A JP819394A JPH0788378A JP H0788378 A JPH0788378 A JP H0788378A JP 6008193 A JP6008193 A JP 6008193A JP 819394 A JP819394 A JP 819394A JP H0788378 A JPH0788378 A JP H0788378A
Authority
JP
Japan
Prior art keywords
crystalline silicate
catalyst
exhaust gas
rare earth
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6008193A
Other languages
Japanese (ja)
Other versions
JP3300721B2 (en
Inventor
Shigeru Nojima
野島  繁
Kozo Iida
耕三 飯田
Takafuru Kobayashi
敬古 小林
Akira Serizawa
暁 芹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00819394A priority Critical patent/JP3300721B2/en
Priority to EP94906391A priority patent/EP0642827B1/en
Priority to DE69409891T priority patent/DE69409891T2/en
Priority to PCT/JP1994/000223 priority patent/WO1994019103A1/en
Publication of JPH0788378A publication Critical patent/JPH0788378A/en
Priority to US08/665,820 priority patent/US5677254A/en
Application granted granted Critical
Publication of JP3300721B2 publication Critical patent/JP3300721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for purifying exhaust gas contg. NOx, CO and hydrocarbon. CONSTITUTION:Indium and one or more kinds of rare earth elements are allowed to coexist with a crystalline silicate having an X-ray diffraction pattern shown by table A and a chemical formula (1+ or -0.8)R2O.[aM2O3.bM'O.cAl2 O3]-.ySiO2 (expressed in terms of the molar ratio among oxides in a dehydrate state) to obtain the objective exhaust gas purifying catalyst. In the formula, R is an alkali metal ion and/or an H ion, M is ions of one or more kinds of elements selected among group VIII elements, rare earth elements, Ti, V, Cr, Nb, Sb and Ga, M' is an alkaline earth metal ion of Mg, Ca, Sr or Ba, a>0, 20>b>=0. a+c=1 and 3,000>y>11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物(以下、NO
xと略す)、一酸化炭素(CO)、炭化水素(以下、H
Cと略す)を含有する排気ガスを浄化する触媒に関す
る。
The present invention relates to nitrogen oxides (hereinafter referred to as NO
abbreviated as x), carbon monoxide (CO), hydrocarbon (hereinafter, H)
The present invention relates to a catalyst for purifying exhaust gas containing C).

【0002】[0002]

【従来の技術】自動車等の排ガス処理においては、排ガ
ス中のCO、HCを利用して、貴金属系の触媒を用いて
浄化するのが一般的であるが、理論空燃比付近の極めて
狭い範囲でしかNOxを浄化していない。近年、地球環
境問題の高まりの中で自動車の低燃費化の要求は強く理
論空燃比以上で燃焼させるリーンバーンエンジンがキー
テクノロジーとして注目されている。ただし、自動車の
走行性、加速性を考慮に入れるとリーン領域のみのエン
ジンは不具合点が多く、実際は理論空燃比(ストイキ
オ)付近、リーン領域の双方で燃焼を行わせる必要があ
る。最近、リーン領域のNOxの浄化に関しては、コバ
ルト又は銅を含有した結晶性シリケート触媒が高性能を
有する触媒として脚光をあびている。
2. Description of the Related Art In the treatment of exhaust gas from automobiles and the like, it is common to utilize CO and HC in the exhaust gas to purify it using a noble metal catalyst, but within an extremely narrow range near the theoretical air-fuel ratio. Only NOx is purified. In recent years, the demand for low fuel consumption of automobiles has been strongly demanded due to the increase of global environmental problems, and a lean burn engine that burns at a ratio higher than the theoretical air-fuel ratio has been attracting attention as a key technology. However, considering the driving and acceleration characteristics of the automobile, there are many problems with the engine only in the lean region, and it is necessary to actually perform combustion both in the vicinity of the stoichiometric air-fuel ratio (Stoichio) and in the lean region. Recently, regarding purification of NOx in the lean region, a crystalline silicate catalyst containing cobalt or copper has been highlighted as a catalyst having high performance.

【0003】これらの触媒は反応初期においては十分な
性能を有するが、耐久性において問題点が生じており、
これまで耐久性を向上させるために種々の結晶性シリケ
ートの改良が検討されている。例えば、結晶性シリケー
トの主要な構成元素であるアルミニウムの脱離を防い
で、コバルト又は銅の安定性を図るために、結晶格子中
にVIII族元素や希土類元素(特開平3−165816号
公報)、さらにアルカリ土類金属(特願平3−3191
95)を添加させた新規なシリケートを用いる方法が提
案されている。加えて、アルミニウムの脱離を促進する
スチームの進入を防ぐため、結晶性シリケートの表層に
疎水性のシリカライトを結晶成長させ、耐スチーム性を
向上させた結晶性シリケートの適用も検討されている
(特願平3−192829)。
These catalysts have sufficient performance in the initial stage of the reaction, but have problems in durability,
Up to now, various crystalline silicates have been studied for improvement in order to improve durability. For example, in order to prevent desorption of aluminum, which is a main constituent element of crystalline silicate, and to stabilize cobalt or copper, a Group VIII element or a rare earth element in the crystal lattice (Japanese Patent Laid-Open No. 3-165816). , And alkaline earth metals (Japanese Patent Application No. 3-3191)
A method using a novel silicate added with 95) has been proposed. In addition, in order to prevent the invasion of steam that promotes the desorption of aluminum, the application of a crystalline silicate in which the hydrophobic silicalite is crystal-grown on the surface layer of the crystalline silicate to improve the steam resistance is being studied. (Japanese Patent Application No. 3-192829).

【0004】しかし、これらの触媒を用いることによ
り、リーン雰囲気での耐久性は飛躍的に向上したが、加
速する場合、ガス温度が瞬時に高温になり、かつ、この
時のガス組成は水素等の還元剤が過剰に存在するリッチ
雰囲気になる。この条件においては、上記改良型結晶性
シリケートを適用しても触媒の劣化を防ぐことができな
いため、高温リッチ雰囲気の触媒の耐久性向上がこれら
の触媒の実用化上の大きな課題となっている。
However, although the durability in a lean atmosphere is dramatically improved by using these catalysts, the gas temperature instantly rises to high temperature when accelerated, and the gas composition at this time is hydrogen or the like. A rich atmosphere in which the reducing agent is excessively present. Under these conditions, even if the improved crystalline silicate is applied, deterioration of the catalyst cannot be prevented. Therefore, improvement of durability of the catalyst in a high temperature rich atmosphere is a major problem in practical application of these catalysts. .

【0005】[0005]

【発明が解決しようとする課題】上記問題点は銅やコバ
ルトを活性金属として用いる限りは避けられない。すな
わち、700℃以上の高温では卑金属元素は全てシンタ
リングを起こし凝集してしまうからである。そのため、
開発した結晶性シリケートを用いてリーン雰囲気で脱硝
活性を有する卑金属以外の金属を用いることができれば
耐久性は十分保証され、実用化へ大きく前進すると考え
られる。
The above problems are unavoidable as long as copper or cobalt is used as the active metal. That is, at a high temperature of 700 ° C. or higher, all base metal elements cause sintering and aggregate. for that reason,
It is considered that if the developed crystalline silicate can be used with a metal other than the base metal having denitration activity in a lean atmosphere, the durability will be sufficiently ensured and a great progress will be made toward practical application.

【0006】[0006]

【課題を解決するための手段】これまで、本発明者らは
従来触媒の不具合点を克服するため鋭意検討を行った結
果、イリジウムを担持した結晶性シリケート触媒がリー
ン雰囲気において脱硝性能を有し、かつ、リッチ条件の
高温雰囲気でもほとんど劣化しない触媒であることを見
い出している。さらに、鋭意研究の結果、本発明者らは
上記触媒の高酸素濃度下での脱硝性能を向上させるため
には、イリジウムのほかに希土類元素から選ばれた少な
くとも1種以上の金属を共存させた触媒が有効であるこ
とを見い出し、本発明を完成するに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to overcome the disadvantages of conventional catalysts. As a result, a crystalline silicate catalyst carrying iridium has a denitration performance in a lean atmosphere. Moreover, it has been found that the catalyst hardly deteriorates even in a high temperature atmosphere under rich conditions. Further, as a result of earnest research, the present inventors have made at least one metal selected from rare earth elements coexist in addition to iridium in order to improve the denitration performance of the catalyst under high oxygen concentration. They found that the catalyst is effective, and completed the present invention.

【0007】すなわち、本発明は (1)後記で詳記する表Aで示されるX線回折パターン
を有し、脱水された状態において酸化物のモル比で表わ
して(1±0.8 )R2 O・〔aM2 3 ・bM′O・c
Al2 3 〕・ySiO2 (上記式中、Rはアルカリ金
属イオン及び/又は水素イオン、MはVIII族元素、希土
類元素、チタン、バナジウム、クロム、ニオブ、アンチ
モン及びガリウムからなる群より選ばれた少なくとも1
種以上の元素イオン、M′はマグネシウム、カルシウ
ム、ストロンチウム、バリウムのアルカリ土類金属イオ
ン、a>0、20>b≧0、a+c=1、3000>y
>11)なる化学式を有する結晶性シリケートにイリジ
ウムとさらに希土類元素から選ばれた少なくとも1種以
上の金属を共存させたことを特徴とする排気ガス浄化触
媒。 (2)結晶性シリケートが、予め合成した結晶性シリケ
ートを母結晶とし、その母結晶の外表面に母結晶と同一
の結晶構造を有するSiとOよりなる結晶性シリケート
を成長させた層状複合結晶性シリケートであることを特
徴とする上記(1)記載の排気ガス浄化触媒。である。
That is, the present invention (1) has the X-ray diffraction pattern shown in Table A, which will be described later in detail, and represents (1 ± 0.8) R 2 O expressed by the molar ratio of oxides in the dehydrated state.・ [AM 2 O 3・ bM'O ・ c
Al 2 O 3 ] .ySiO 2 (wherein R is an alkali metal ion and / or hydrogen ion, M is selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium. At least 1
More than one kind of elemental ion, M ′ is an alkaline earth metal ion of magnesium, calcium, strontium, barium, a> 0, 20> b ≧ 0, a + c = 1, 3000> y
An exhaust gas purifying catalyst characterized in that iridium and at least one metal selected from rare earth elements coexist in a crystalline silicate having a chemical formula of> 11). (2) A layered composite crystal in which a crystalline silicate is a pre-synthesized crystalline silicate as a mother crystal, and a crystalline silicate composed of Si and O having the same crystal structure as the mother crystal is grown on the outer surface of the mother crystal. The exhaust gas purifying catalyst according to (1) above, which is an organic silicate. Is.

【0008】[0008]

【作用】通常、イリジウムを担持した本発明でいう結晶
性シリケートを用いて、NOx、CO、HCを含有する
排気ガスを浄化する浄化反応式は下記のとおりである。
The purifying reaction formula for purifying exhaust gas containing NOx, CO, and HC using the crystalline silicate of the present invention carrying iridium is as follows.

【0009】[0009]

【化1】 *1)炭化水素(HC)の例としてC3 6 を代表とし
て示した。 *2)含酸素炭化水素の例としてCH2 Oを代表として
示した。 上記反応式において、(1)はHCの活性化、(2)は
HCの燃焼、(3)は脱硝反応、(4)はCOの燃焼を
意味している。
[Chemical 1] * 1) As an example of hydrocarbon (HC), C 3 H 6 is shown as a representative. * 2) CH 2 O is shown as an example of the oxygen-containing hydrocarbon. In the above reaction formula, (1) means activation of HC, (2) means combustion of HC, (3) means denitration reaction, and (4) means combustion of CO.

【0010】イリジウムとさらに希土類元素から選ばれ
た1種以上の金属を担持させた本発明でいう結晶性シリ
ケートも上記反応により脱硝反応が進むが、希土類元素
を添加することにより、高酸素濃度下においても(3)
の脱硝反応をより促進させることができる。
The crystalline silicate of the present invention carrying iridium and one or more kinds of metals selected from rare earth elements also undergoes the denitration reaction due to the above reaction, but by adding the rare earth element, a high oxygen concentration can be obtained. Also in (3)
The NOx removal reaction can be further promoted.

【0011】本発明触媒は、700℃以上の高温リーン
又はリッチ雰囲気に長時間さらされても上記k1
2 ,k3 及びk4 の反応速度定数はほとんど変化せ
ず、耐久性を有する触媒であることを見い出している。
The catalyst of the present invention, even when exposed to a high temperature lean or rich atmosphere of 700 ° C. or higher for a long time, has the above k 1 ,
It has been found that the reaction rate constants of k 2 , k 3 and k 4 hardly change and the catalyst has durability.

【0012】本発明において使用される結晶性シリケー
トは下記表Aに示されるX線回折パターンを有し、脱水
された状態において酸化物のモル比で表わして(1±0.
8 )R2 O・〔aM2 3 ・bM′O・cAl2 3
・ySiO2 (上記式中、Rはアルカリ金属イオン及び
/又は水素イオン、MはVIII族元素、希土類元素、チタ
ン、バナジウム、クロム、ニオブ、アンチモン及びガリ
ウムからなる群より選ばれた少なくとも1種以上の元素
イオン、M′はマグネシウム、カルシウム、ストロンチ
ウム、バリウムのアルカリ土類金属イオン、a>0、2
0>b≧0、a+c=1、3000>y>11)なる化
学式を有するものである。
The crystalline silicates used in the present invention have the X-ray diffraction patterns shown in Table A below and are expressed in the dehydrated state in terms of oxide molar ratio (1 ± 0.
8) R 2 O ・ [aM 2 O 3・ bM'O ・ cAl 2 O 3 ]
YSiO 2 (In the above formula, R is an alkali metal ion and / or hydrogen ion, M is at least one selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium. Element ion of M, M'is alkaline earth metal ion of magnesium, calcium, strontium, barium, a> 0,2
0> b ≧ 0, a + c = 1, 3000>y> 11).

【0013】[0013]

【表1】 VS:非常に強い S:強い M:中級 W:弱い X線源:Cu Kα[Table 1] VS: Very strong S: Strong M: Intermediate W: Weak X-ray source: Cu Kα

【0014】また上記結晶性シリケートが予め合成した
結晶性シリケートを母結晶とし、その母結晶の外表面に
母結晶と同一の結晶構造を有するSiとOよりなる結晶
性シリケートを成長させた層状複合結晶性シリケートを
使用してもよい。この層状複合結晶性シリケートは外表
面に成長したSiとOよりなる結晶性シリケート(シリ
カライトと呼ぶ)の疎水性作用により、H2 Oだけが該
結晶性シリケート内部まで浸透しにくくなり、触媒の反
応活性点の回りにはH2 Oの濃度が低くなる効果を有
し、脱メタル作用を抑制する作用を奏する。そのため、
高温スチーム雰囲気においても結晶性シリケートの構造
は維持されており、イリジウム及び希土類元素に対する
担体効果は保持されているので触媒劣化はほとんどな
い。
A layered composite in which a crystalline silicate synthesized in advance from the above crystalline silicate is used as a mother crystal, and a crystalline silicate composed of Si and O having the same crystal structure as the mother crystal is grown on the outer surface of the mother crystal. Crystalline silicates may be used. This layered composite crystalline silicate has a hydrophobic action of a crystalline silicate composed of Si and O (called silicalite) grown on the outer surface, so that only H 2 O hardly permeates into the inside of the crystalline silicate. It has the effect of lowering the concentration of H 2 O around the reaction active point and exerts the effect of suppressing the demetallizing action. for that reason,
Even in a high temperature steam atmosphere, the structure of crystalline silicate is maintained, and the carrier effect for iridium and rare earth elements is maintained, so there is almost no catalyst deterioration.

【0015】すなわち、従来のシリカ担体等とは異な
り、本発明の結晶性シリケート上においてはイリジウム
及び希土類元素の分散性が如何なる条件においても均一
に保持されており、シンタリング等の現象は認められな
い。
That is, unlike conventional silica carriers and the like, the dispersibility of iridium and rare earth elements is uniformly maintained under any condition on the crystalline silicate of the present invention, and phenomena such as sintering are recognized. Absent.

【0016】本発明触媒は上記結晶性シリケートをイリ
ジウムと希土類元素の金属塩の水溶液に浸漬し、イオン
交換法又は含浸法にて担持する方法によって製造でき
る。担持するイリジウムは0.002wt%以上で十分
に活性が発現し、好ましくは0.02wt%以上で高い
活性を有する。また、共存する希土類元素はランタン
(La)、セリウム(Ce)、プラセオジウム(P
r)、ネオジウム(Nd)、サマリウム(Sm)等があ
げられ、0.002wt%以上の希土類元素を一種以上
添加することによって高活性を奏することができる。以
下、本発明の実施例をあげて本発明を詳述する。
The catalyst of the present invention can be produced by a method of immersing the above-mentioned crystalline silicate in an aqueous solution of iridium and a metal salt of a rare earth element and carrying it by an ion exchange method or an impregnation method. The supported iridium has a sufficient activity at 0.002 wt% or more, and preferably has a high activity at 0.02 wt% or more. Rare earth elements that coexist are lanthanum (La), cerium (Ce), praseodymium (P).
r), neodymium (Nd), samarium (Sm) and the like, and high activity can be achieved by adding 0.002 wt% or more of one or more rare earth elements. Hereinafter, the present invention will be described in detail with reference to Examples of the present invention.

【0017】[0017]

【実施例】【Example】

(実施例1) 〇(母結晶1の合成)水ガラス1号(SiO2 :30
%)5616gを水5429gに溶解し、この溶液を溶
液Aとする。一方、水4175gに硫酸アルミニウム7
18.9g、塩化第2鉄110g、酢酸カルシウム4
7.2g、塩化ナトリウム262g、濃塩酸2020g
を溶解し、この溶液を溶液Bとする。溶液Aと溶液Bを
一定割合で供給し、沈殿を生成させ、十分攪拌してpH
=8.0のスラリ−を得る。このスラリ−を20リット
ルのオートクレーブに仕込み、さらにテトラプロピルア
ンモニウムブロマイドを500g添加し、160℃にて
72時間水熱合成を行い、合成後水洗して乾燥させ、さ
らに500℃、3時間焼成させ結晶性シリケート1を得
る。この結晶性シリケート1は酸化物のモル比で(結晶
水を省く)下記の組成式で表され、結晶構造はX線回折
で前記表Aにて表示されるものである。0.5Na2
・0.5H2 O・〔0.8Al2 3 ・0.2Fe2
3 ・0.25CaO〕・25SiO2
(Example 1) ○ (Synthesis of mother crystal 1) Water glass No. 1 (SiO 2 : 30)
%) 5616 g is dissolved in 5429 g of water, and this solution is referred to as solution A. On the other hand, 4175 g of water and 7 parts of aluminum sulfate
18.9 g, ferric chloride 110 g, calcium acetate 4
7.2 g, sodium chloride 262 g, concentrated hydrochloric acid 2020 g
Is dissolved, and this solution is referred to as solution B. Solution A and solution B are supplied at a constant ratio to form a precipitate, and the mixture is sufficiently stirred to adjust the pH.
= 8.0 is obtained. This slurry was charged into a 20 liter autoclave, 500 g of tetrapropylammonium bromide was further added, hydrothermal synthesis was carried out at 160 ° C. for 72 hours, washed with water after the synthesis, dried, and further calcined at 500 ° C. for 3 hours to crystallize. Obtain sex silicate 1. This crystalline silicate 1 is represented by the following composition formula in terms of the molar ratio of oxides (excluding the water of crystallization), and the crystal structure is represented by the above-mentioned Table A by X-ray diffraction. 0.5Na 2 O
・ 0.5H 2 O ・ [0.8Al 2 O 3・ 0.2Fe 2 O
3・ 0.25CaO] ・ 25SiO 2

【0018】〇(層状複合結晶性シリケート1の合成)
微粉砕した上記母結晶1(結晶性シリケート1)100
0gを水2160gに添加し、さらにコロイダルシリカ
(SiO2 :20%)4590gを添加し十分攪拌を行
い、この溶液を溶液aとする。一方、水2008gに水
酸化ナトリウム105.8gを溶解させ溶液bを得る。
溶液aを攪拌しながら溶液bを徐々に滴下し、沈殿を生
成させてスラリ−を得る。このスラリ−をオートクレー
ブに入れ、テトラプロピルアンモニウムブロマイド56
8gを水2106gに溶解させた溶液を上記オートクレ
ーブに添加する。このオートクレーブで160℃、72
時間水熱合成を行い(200rpmにて攪拌)、攪拌後
洗浄して乾燥後、500℃、3時間焼成を行い層状複合
結晶性シリケート1を得る。
〇 (Synthesis of layered composite crystalline silicate 1)
Finely pulverized mother crystal 1 (crystalline silicate 1) 100
0 g was added to 2160 g of water, 4590 g of colloidal silica (SiO 2 : 20%) was further added, and the mixture was sufficiently stirred to give a solution a. On the other hand, 105.8 g of sodium hydroxide is dissolved in 2008 g of water to obtain a solution b.
While stirring the solution a, the solution b is gradually added dropwise to form a precipitate, thereby obtaining a slurry. This slurry was placed in an autoclave and tetrapropylammonium bromide 56 was added.
A solution prepared by dissolving 8 g in 2106 g of water is added to the autoclave. 160 ℃, 72 in this autoclave
Hydrothermal synthesis is carried out (stirring at 200 rpm) for an hour, and after stirring, washing, drying, and firing at 500 ° C. for 3 hours, layered composite crystalline silicate 1 is obtained.

【0019】上記層状複合結晶性シリケート1を4Nの
NH4 Cl水溶液40℃に3時間攪拌してNH4 イオン
交換を実施した。イオン交換後洗浄して100℃、24
時間乾燥させた後、400℃、3時間焼成してH型の層
状複合結晶性シリケート1を得た。
The layered composite crystalline silicate 1 was subjected to NH 4 ion exchange by stirring in a 4N NH 4 Cl aqueous solution at 40 ° C. for 3 hours. Washed after ion exchange at 100 ℃, 24
After drying for an hour, it was baked at 400 ° C. for 3 hours to obtain an H-type layered composite crystalline silicate 1.

【0020】〇(触媒化)次に、上記100部のH型の
層状複合結晶性シリケート1に対して、バインダーとし
てアルミナゾル3部、シリカゾル55部(SiO2 :2
0%)及び水200部加え、充分攪拌を行いウォッシュ
コート用スラリ−とした。次にコージェライト用モノリ
ス基材(400セルの格子目)を上記スラリ−に浸漬
し、取り出した後余分なスラリを吹きはらい200℃で
乾燥させた。コート量は基材1リットルあたり200g
担持し、このコート物をハニカムコート物1とする。
(Catalyst) Next, to 100 parts of the above H-type layered composite crystalline silicate 1, 3 parts of alumina sol as a binder and 55 parts of silica sol (SiO 2 : 2)
(0%) and 200 parts of water were added, and the mixture was sufficiently stirred to obtain a washcoat slurry. Next, the monolith substrate for cordierite (lattice of 400 cells) was dipped in the slurry, taken out, and then excess slurry was blown off and dried at 200 ° C. Coating amount is 200g per liter of substrate
It is carried, and this coated product is referred to as a honeycomb coated product 1.

【0021】次に、塩化イリジウムと塩化セリウム水溶
液(IrCl4 ・H2 O:2.88g+CeCl3 :1
0g/200cc、H2 O)に上記ハニカムコート物を
浸漬し1時間含浸した後、基材の壁の付着した液をふき
とり200℃で乾燥させた。次で500℃で窒素雰囲気
で12時間パージ処理を行い、ハニカム触媒1を得た。
Next, iridium chloride and cerium chloride aqueous solution (IrCl 4 · H 2 O: 2.88 g + CeCl 3 : 1)
The honeycomb coated product was dipped in 0 g / 200 cc, H 2 O) and impregnated for 1 hour, and then the liquid adhering to the wall of the substrate was wiped off and dried at 200 ° C. Next, a purging process was performed at 500 ° C. in a nitrogen atmosphere for 12 hours to obtain a honeycomb catalyst 1.

【0022】(実施例2)実施例1の母結晶1の合成法
において塩化第2鉄の代わりに塩化コバルト、塩化ルテ
ニウム、塩化ロジウム、塩化ランタン、塩化セリウム、
塩化チタン、塩化バナジウム、塩化クロム、塩化アンチ
モン、塩化ガリウム及び塩化ニオブを各々酸化物換算で
Fe2 3 と同じモル数だけ添加した以外は母結晶1と
同様の操作を繰り返して母結晶2〜12を調製した。こ
れらの母結晶の結晶構造はX線回折で前記表Aに表示さ
れるものであり、その組成は酸化物のモル比(脱水され
た形態)で表わして(1±0.8)R2 O・(0.2M
2 3 ・0.8Al2 3 ・0.25CaO)・25S
iO2 である。ここでRはNa及びH,MはCo,R
u,Rh,La,Ce,Ti,V,Cr,Sb,Ga,
Nbである。これら母結晶の構成は後記の表Bに示す。
(Example 2) In the synthesis method of the mother crystal 1 of Example 1, instead of ferric chloride, cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride,
Mother crystal 2 is repeated by repeating the same operation as mother crystal 1 except that titanium chloride, vanadium chloride, chromium chloride, antimony chloride, gallium chloride and niobium chloride are added in the same mole number as Fe 2 O 3 in terms of oxide. 12 was prepared. The crystal structure of these mother crystals is shown in Table A above by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of (1 ± 0.8) R 2 O.・ (0.2M
2 O 3 / 0.8Al 2 O 3 / 0.25CaO) / 25S
iO 2 . Where R is Na and H, M is Co, R
u, Rh, La, Ce, Ti, V, Cr, Sb, Ga,
Nb. The structures of these mother crystals are shown in Table B below.

【0023】これらの母結晶2〜12を微粉砕し、実施
例1の層状複合結晶性シリケート1の合成と同様の方法
にて、母結晶1の代わりに母結晶2〜12を用い、オー
トクレーブを用いて水熱合成させた結果、層状複合結晶
性シリケート2〜12を得た。
These mother crystals 2 to 12 were finely pulverized, and the mother crystals 2 to 12 were used in place of the mother crystal 1 in the same manner as in the synthesis of the layered composite crystalline silicate 1 of Example 1, and an autoclave was prepared. As a result of hydrothermal synthesis using the same, layered composite crystalline silicates 2 to 12 were obtained.

【0024】実施例1の母結晶1の合成法において酢酸
カルシウムの代わりに酢酸マグネシウム、酢酸ストロン
チウム、酢酸バリウムを各々酸化物換算でCaOと同じ
モル数だけ添加した以外は母結晶1と同様の操作を繰り
返して母結晶13〜15を調製した。これらの母結晶の
結晶構造はX線回折で前記表Aに表示されるものであ
り、その組成は酸化物のモル比(脱水された形態)で表
わして0.5NaO2 ・0.5H2 O・(0.2Fe2
3 ・0.8Al2 3 ・0.25MeO)・25Si
2 である。ここでMeはMg,Sr,Baである。こ
れらの母結晶13〜15を微粉砕して、実施例1の層状
複合結晶性シリケート1の合成と同様の方法にてオート
クレーブを用いて水熱合成を行い層状複合結晶性シリケ
ート13〜15を得た。
The same operation as in the mother crystal 1 except that magnesium acetate, strontium acetate, and barium acetate were added instead of calcium acetate in the same manner as CaO in the method of synthesizing the mother crystal 1 of Example 1. Were repeated to prepare mother crystals 13 to 15. The crystal structure of these mother crystals is shown in Table A above by X-ray diffraction, and its composition is expressed by the molar ratio of oxides (dehydrated form) of 0.5NaO 2 .0.5H 2 O.・ (0.2Fe 2
O 3 · 0.8Al 2 O 3 · 0.25MeO) · 25Si
It is O 2 . Here, Me is Mg, Sr, or Ba. These mother crystals 13 to 15 were finely pulverized, and hydrothermal synthesis was carried out using an autoclave in the same manner as in the synthesis of the layered composite crystalline silicate 1 of Example 1 to obtain layered composite crystalline silicates 13 to 15. It was

【0025】上記層状複合結晶性シリケート2〜15を
用いて実施例1と同様の方法でH型の層状複合結晶性シ
リケート2〜15を得、このシリケートをさらに実施例
1の触媒の調製と同様の工程にてコージェライトモノリ
ス基材にコートしてハニカムコート物2〜15を得た。
次に塩化イリジウムと塩化セリウム水溶液に浸漬し実施
例1と同様の処理にてハニカム触媒2〜15を得た。
Using the above layered composite crystalline silicates 2 to 15, H type layered composite crystalline silicates 2 to 15 were obtained in the same manner as in Example 1, and this silicate was further prepared in the same manner as in the preparation of the catalyst of Example 1. In the step, the cordierite monolith substrate was coated to obtain honeycomb coated products 2 to 15.
Next, it was immersed in an aqueous solution of iridium chloride and cerium chloride and treated in the same manner as in Example 1 to obtain honeycomb catalysts 2 to 15.

【0026】(実施例3)実施例1と2で得た母結晶1
〜15を用いて実施例1と同様の方法でH型の結晶性シ
リケート16〜30を得、このシリケートをさらに実施
例1の触媒の調製と同様の工程にてハニカムコート物及
びハニカム触媒16〜30を得た。
Example 3 Mother crystal 1 obtained in Examples 1 and 2
To H-type crystalline silicates 16 to 30 are obtained in the same manner as in Example 1 using Nos. 15 to 15, and the silicate is further subjected to the same steps as in the preparation of the catalyst of Example 1 for the honeycomb-coated product and the honeycomb catalyst 16-. I got 30.

【0027】(実施例4)実施例1及び実施例2に示し
た母結晶1〜15(層状複合化及びイオン交換していな
いもの)をコージェライトモノリス基材にコートしてハ
ニカムコート物31〜45を得、これを実施例1と同様
に塩化イリノジウムと塩化セリウム水溶液に浸漬してハ
ニカム触媒31〜45を得た。
Example 4 Cordierite monolith substrates were coated with the mother crystals 1 to 15 (those not layered and ion-exchanged) shown in Examples 1 and 2 to form honeycomb-coated products 31 to 31. 45 was obtained, and this was immersed in an aqueous solution of iridium chloride and cerium chloride in the same manner as in Example 1 to obtain honeycomb catalysts 31 to 45.

【0028】(実施例5)実施例1で得た層状複合結晶
性シリケート1をコートしたハニカムコート物1を用い
て、塩化セリウム水溶液の代わりに、塩化ランタン(L
aCl3 ・7H2O:10g/200cc、H2 O)、
塩化プラセオジウム(PrCl3 ・7H2O:10g/
200cc、H2 O)、塩化ネオジウム(NdCl3
6H2 O:10g/200cc、H2 O)、塩化サマリ
ウム(SmCl3 ・6H2 O:10g/200cc、H
2 O)、塩化ユーロピウム(EuCl3 :10g/20
0cc、H2 O)の各水溶液に浸漬し、実施例1と同様
の方法により触媒化を行い、ハニカム触媒46〜50を
得た。
(Example 5) Using the honeycomb coated article 1 coated with the layered composite crystalline silicate 1 obtained in Example 1, lanthanum chloride (L) was used instead of the cerium chloride aqueous solution.
aCl 3 .7H 2 O: 10 g / 200 cc, H 2 O),
Praseodymium chloride (PrCl 3 · 7H 2 O: 10g /
200 cc, H 2 O), neodymium chloride (NdCl 3 ·
6H 2 O: 10 g / 200 cc, H 2 O), samarium chloride (SmCl 3 · 6H 2 O: 10 g / 200 cc, H
2 O), europium chloride (EuCl 3 : 10 g / 20
(0 cc, H 2 O) and then catalyzed by the same method as in Example 1 to obtain honeycomb catalysts 46 to 50.

【0029】(比較例1)実施例1でイリジウムのみを
α−Al2 3 に担持した場合の触媒51を得た。ま
た、α−Al2 3 担体に実施例1と同様イリジウムと
セリウムを担持させたハニカム触媒52を得た。
(Comparative Example 1) A catalyst 51 in which only iridium was supported on α-Al 2 O 3 in Example 1 was obtained. Further, to obtain a honeycomb catalyst 52 was supported the same iridium and cerium as in Example 1 α-Al 2 0 3 carrier.

【0030】以上、本発明の実施例触媒及び比較触媒の
構成を表Bに示す。
The constitutions of the example catalyst and the comparative catalyst of the present invention are shown in Table B above.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】(実験例1)実施例1、2、3、4、5及
び比較例1にて調製したハニカム触媒1〜52の活性評
価試験を実施した。活性評価条件は下記の通り。 〇(ガス組成) NO:400ppm、CO:1000ppm、C
2 4 :1000ppm、C 3 6 :340ppm、O
2 :8%、CO2 :10%、H2 O:10%、残:
2 、GHSV 30000h-1、触媒形状:15mm
×15mm×60mm(144セル数)
(Experimental Example 1) Examples 1, 2, 3, 4, 5 and
And the activity evaluation of the honeycomb catalysts 1 to 52 prepared in Comparative Example 1
Value test was conducted. The activity evaluation conditions are as follows. ○ (gas composition) NO: 400ppm, CO: 1000ppm, C
2HFour: 1000 ppm, C 3H6: 340ppm, O
2: 8%, CO2: 10%, H2O: 10%, balance:
N 2, GHSV 30000h-1, Catalyst shape: 15mm
× 15mm × 60mm (144 cells)

【0036】反応温度350、450℃における初期状
態の触媒の脱硝率を後記表Cに示す。
The denitration rate of the catalyst in the initial state at reaction temperatures of 350 and 450 ° C. is shown in Table C below.

【0037】(実験例2)ハニカム触媒1〜52をリッ
チ雰囲気(還元雰囲気)で強制劣化試験を実施した。強
制劣化試験は下記の通り。 〇(ガス組成) H2 :3%、H2 O:10%、残:N2 GHSV:5000h-1、温度:700℃、ガス供給時
間:6時間 触媒形状:15mm×15mm×60mm(144セ
ル)
(Experimental Example 2) The honeycomb catalysts 1 to 52 were subjected to a forced deterioration test in a rich atmosphere (reducing atmosphere). The forced deterioration test is as follows. 〇 (gas composition) H 2: 3%, H 2 O: 10%, remaining: N 2 GHSV: 5000h -1, temperature: 700 ° C., gas supply time: 6 hours catalyst shape: 15mm × 15mm × 60mm (144 cells )

【0038】上記強制劣化条件にて処理した触媒1〜5
2を実験例1の活性評価条件において活性評価試験を実
施した。反応温度350、450℃における強制劣化試
験後の触媒の脱硝率を表Cに併せて示す。表Cに示すよ
うに本発明触媒1〜50は高温還元雰囲気においても触
媒の活性を高く維持することを確認した。
Catalysts 1-5 treated under the above-mentioned forced deterioration conditions
2 was subjected to an activity evaluation test under the activity evaluation conditions of Experimental Example 1. Table C also shows the denitration rate of the catalyst after the forced deterioration test at reaction temperatures of 350 and 450 ° C. As shown in Table C, it was confirmed that the catalysts 1 to 50 of the present invention maintain high catalyst activity even in a high temperature reducing atmosphere.

【0039】[0039]

【表6】 [Table 6]

【0040】[0040]

【表7】 [Table 7]

【0041】[0041]

【表8】 [Table 8]

【0042】[0042]

【表9】 [Table 9]

【0043】[0043]

【発明の効果】以上、説明したように、本発明による排
気ガス浄化触媒は耐久性に富む安定な触媒であることを
可能にし、ガソリン車のリーンバーンエンジン排ガス用
やディーゼルエンジン排ガス浄化用触媒として利用が可
能である。
As described above, the exhaust gas purifying catalyst according to the present invention can be a stable catalyst with high durability, and can be used as a lean burn engine exhaust gas catalyst for a gasoline vehicle or a diesel engine exhaust gas purifying catalyst. It is available.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/04 ZAB 9343−4G B01D 53/36 104 A (72)発明者 芹沢 暁 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B01J 29/04 ZAB 9343-4G B01D 53/36 104 A (72) Inventor Akira Serizawa 1 Akinoura-cho, Nagasaki-shi, Nagasaki Prefecture No. 1 Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 本文で詳記する表Aに示されるX線回折
パターンを有し、脱水された状態において酸化物のモル
比で表わして(1±0.8 )R2 O・〔aM2 3 ・b
M′O・cAl2 3 〕・ySiO2 (上記式中、Rは
アルカリ金属イオン及び/又は水素イオン、MはVIII族
元素、希土類元素、チタン、バナジウム、クロム、ニオ
ブ、アンチモン及びガリウムからなる群より選ばれた少
なくとも1種以上の元素イオン、M′はマグネシウム、
カルシウム、ストロンチウム、バリウムのアルカリ土類
金属イオン、a>0、20>b≧0、a+c=1、30
00>y>11)なる化学式を有する結晶性シリケート
にイリジウムとさらに希土類元素から選ばれた少なくと
も1種以上の金属を共存させてなることを特徴とする排
気ガス浄化触媒。
1. An X-ray diffraction pattern shown in Table A, which is described in detail in the present text, and expressed as the molar ratio of oxides in the dehydrated state is (1 ± 0.8) R 2 O. [aM 2 O 3・ B
M'O.cAl 2 O 3 ] .ySiO 2 (wherein R is an alkali metal ion and / or a hydrogen ion, M is a Group VIII element, a rare earth element, titanium, vanadium, chromium, niobium, antimony and gallium. At least one elemental ion selected from the group, M ′ is magnesium,
Alkaline earth metal ions of calcium, strontium and barium, a> 0, 20> b ≧ 0, a + c = 1, 30
An exhaust gas purifying catalyst comprising a crystalline silicate having a chemical formula of 00>y> 11) and at least one metal selected from iridium and a rare earth element.
【請求項2】 結晶性シリケートが予め合成した結晶性
シリケートを母結晶とし、その母結晶の外表面に母結晶
と同一の結晶構造を有するSiとOよりなる結晶性シリ
ケートを成長させた層状複合結晶性シリケートであるこ
とを特徴とする請求項1記載の排気ガス浄化触媒。
2. A layered composite in which a crystalline silicate synthesized in advance from a crystalline silicate is used as a mother crystal, and a crystalline silicate composed of Si and O having the same crystal structure as the mother crystal is grown on the outer surface of the mother crystal. The exhaust gas purifying catalyst according to claim 1, which is a crystalline silicate.
JP00819394A 1993-02-16 1994-01-28 Exhaust gas purification catalyst Expired - Fee Related JP3300721B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00819394A JP3300721B2 (en) 1993-04-27 1994-01-28 Exhaust gas purification catalyst
EP94906391A EP0642827B1 (en) 1993-02-16 1994-02-15 Exhaust gas cleaning catalyst
DE69409891T DE69409891T2 (en) 1993-02-16 1994-02-15 EXHAUST GAS PURIFICATION CATALYST
PCT/JP1994/000223 WO1994019103A1 (en) 1993-02-16 1994-02-15 Exhaust gas cleaning catalyst
US08/665,820 US5677254A (en) 1993-02-16 1996-06-19 Catalyst for purifying an exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10069893 1993-04-27
JP5-100698 1993-04-27
JP00819394A JP3300721B2 (en) 1993-04-27 1994-01-28 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH0788378A true JPH0788378A (en) 1995-04-04
JP3300721B2 JP3300721B2 (en) 2002-07-08

Family

ID=26342660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00819394A Expired - Fee Related JP3300721B2 (en) 1993-02-16 1994-01-28 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3300721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696470A1 (en) 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases
US7160839B2 (en) 2001-01-11 2007-01-09 Ict Co., Ltd. Catalyst for purifying nitrogen oxides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696470A1 (en) 1994-08-12 1996-02-14 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases
US5710084A (en) * 1994-08-12 1998-01-20 Mitsubishi Jukogyo Kabushiki Kaisha Catalysts for cleaning exhaust gases
US7160839B2 (en) 2001-01-11 2007-01-09 Ict Co., Ltd. Catalyst for purifying nitrogen oxides

Also Published As

Publication number Publication date
JP3300721B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
EP0678325B1 (en) Catalyst and method for exhaust gas purification
JP3129377B2 (en) Exhaust gas purification catalyst
EP0642827B1 (en) Exhaust gas cleaning catalyst
JP3129373B2 (en) Exhaust gas purification catalyst
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JP3300721B2 (en) Exhaust gas purification catalyst
JP3129346B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3310781B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2781639B2 (en) Exhaust gas treatment method
JP3129348B2 (en) Exhaust gas treatment catalyst
JP2778801B2 (en) Exhaust gas treatment catalyst
JP3276193B2 (en) Exhaust treatment catalyst
JP3015568B2 (en) Exhaust gas treatment catalyst
JP3249243B2 (en) Exhaust gas treatment catalyst
JP3310755B2 (en) Exhaust gas treatment catalyst
JP3015524B2 (en) Exhaust gas treatment catalyst
JPH07136463A (en) Method for treating exhaust gas
JP3229117B2 (en) Ammonia decomposition method
JP2846974B2 (en) Exhaust gas purification catalyst
JP2999039B2 (en) Exhaust gas purification catalyst
JP2000093803A (en) Catalyst for purification of exhaust gas and purification of exhaust gas
JP3129350B2 (en) Exhaust gas purification catalyst, production method thereof and exhaust gas purification method
JP2601018B2 (en) Exhaust gas purification catalyst
JP2923064B2 (en) Manufacturing method of exhaust gas purification catalyst
JP3453172B2 (en) DeNOx method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

LAPS Cancellation because of no payment of annual fees