JPH0788354A - Composite microballoon - Google Patents

Composite microballoon

Info

Publication number
JPH0788354A
JPH0788354A JP25643393A JP25643393A JPH0788354A JP H0788354 A JPH0788354 A JP H0788354A JP 25643393 A JP25643393 A JP 25643393A JP 25643393 A JP25643393 A JP 25643393A JP H0788354 A JPH0788354 A JP H0788354A
Authority
JP
Japan
Prior art keywords
microballoon
fine
inorg
organic polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25643393A
Other languages
Japanese (ja)
Inventor
Yasushi Isobe
安司 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP25643393A priority Critical patent/JPH0788354A/en
Publication of JPH0788354A publication Critical patent/JPH0788354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To easily disperse inorg. microballoons in resin, to make them lightweight and to improve the heat retaining property and strength by coating the microballoon with a film of fine-grain org. polymer carrying an inorg. fine grain on the surface. CONSTITUTION:An inorg. microballoon is added into a dispersion of a coagulant to coagulate a fine-grain org. polymer, especially of an inorg. sol such as a positively charged alumina sol, then an emulsion of an org. polymer carrying an inorg. fine grain on the surface is added in small amts. under strong agitation, and the polymer is coagulated on the surface of the microballoon to form a gel-like film. The film is densified by drying such a slurry dispersion in a spray drier, and a fine-powder composite microballoon is obtained. The microballoon is not easily broken even with a high shearing force, and the heat resistance is improved. Consequently, the microballoon is mixed in paint or adhesive to make it lightweight and to improve the heat retaining property and strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機物質と有機重合体
よりなる複合皮膜を有するマイクロバルーンに関するも
ので、本発明のマイクロバルーンは、樹脂或いは樹脂と
無機物質との混和材(以下、単に「樹脂等」と称す
る。)中に容易に分散し、これらを軽量化し、また保温
性および強度を向上させることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microballoon having a composite film made of an inorganic substance and an organic polymer. The microballoon of the present invention is a resin or a mixture of a resin and an inorganic substance (hereinafter, simply referred to as an admixture. It can be easily dispersed in the resin, etc.) to reduce the weight thereof and improve the heat retention and strength.

【0002】[0002]

【従来の技術】マイクロバルーンは、微小中空球体とも
呼ばれ、ガラスまたは天然のガラス質材料或いは有機重
合体を主成分とし、加熱によって発泡する成分から発生
した微小泡を内蔵させたり、原料の特性により微小泡を
内蔵させることにより得ることができる。
2. Description of the Related Art Microballoons, also called microhollow spheres, are composed mainly of glass or natural glassy materials or organic polymers, and contain microbubbles generated from components that are foamed by heating, or have characteristics of raw materials. Can be obtained by incorporating fine bubbles.

【0003】しかしながら、これらマイクロバルーンは
樹脂等に分散することがあっても、分散時の若干の剪断
力により容易に破壊を起こし、また加熱によっても変形
を起こし易いという欠点を有していた。従って、これら
マイクロバルーンを樹脂等に分散させても、得られる組
成物の軽量化や保温性または強度の向上に寄与すること
はできなかった。
However, even if these microballoons are dispersed in a resin or the like, they have a drawback that they are easily broken by a slight shearing force at the time of dispersion and are easily deformed by heating. Therefore, even if these microballoons are dispersed in a resin or the like, it is not possible to contribute to the weight reduction and the heat retention or strength of the obtained composition.

【0004】[0004]

【発明が解決しようとする課題】従来のマイクロバルー
ンは、樹脂中に分散する際または加熱により容易に変形
や破壊を起こし、これが解決しようとする課題である。
The conventional microballoons are easily deformed or destroyed when dispersed in resin or by heating, and this is a problem to be solved.

【0005】[0005]

【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意検討した結果、無機物質からなるマイクロ
バルーンを、無機質微粒子を表面に担持した微粒子状有
機重合体の集合体による皮膜で被覆することによって、
上記課題が解決できることを見出し本発明を完成するに
至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above problems, and as a result, formed a microballoon made of an inorganic substance with a film formed by an aggregate of finely divided organic polymers carrying inorganic fine particles on the surface. By coating
The inventors have found that the above problems can be solved and completed the present invention.

【0006】本発明の複合マイクロバルーンの要素を以
下に説明する。 (1)無機質のマイクロバルーン 天然または合成のものがあるが、ガラス質のマイクロバ
ルーンが安価で汎用性があり好ましい。無機質のマイク
ロバルーンの例としては、天然のシラスバルーン、ホウ
酸ソーダおよびケイ酸ソーダとを主成分とするホウケイ
酸ガラスマイクロバルーン、ケイ酸ソーダを主成分とす
るガラスマイクロバルーン、並びにシリカとアルミナを
主成分とするセラミックのマイクロバルーン等が挙げら
れる。これらの内、湿式法または乾式法で得られるシリ
カを主成分とするマイクロバルーンが、強度が大きく比
較的安価であるので好ましい。また有機重合体のマイク
ロバルーンは、耐熱性、耐溶剤性または弾性率が小さい
ので本発明の目的に使用できない。
The elements of the composite microballoon of the present invention are described below. (1) Inorganic Micro Balloons There are natural and synthetic micro balloons, but glass micro balloons are preferable because they are inexpensive and versatile. Examples of inorganic microballoons include natural shirasu balloons, borosilicate glass microballoons containing sodium borate and sodium silicate as main components, glass microballoons containing sodium silicate as main components, and silica and alumina. Examples include ceramic microballoons, which are the main components. Of these, microballoons containing silica as a main component, which are obtained by a wet method or a dry method, are preferable because they have high strength and are relatively inexpensive. Further, organic polymer microballoons cannot be used for the purpose of the present invention because they have low heat resistance, solvent resistance or elastic modulus.

【0007】本発明で用いる無機質のマイクロバルーン
の粒径は1μm〜3mmの範囲が、商業的に容易に入手
できるので好ましい。本発明の複合マイクロバルーンを
樹脂に配合した組成物を、回路基板等に用いる際には、
組成物での均一な分散が必要となるので、粒径は小さい
方が好ましい。また真比重は0.10〜1.0g/cm3
の範囲が好ましい。0.10g/cm3未満では、マイク
ロバルーンの皮膜が薄過ぎて強度が低下し、一方1.0
g/cm3 を超えると皮膜が厚過ぎ、マイクロバルーンの
特性が発揮されず、各々好ましくない。
The particle size of the inorganic microballoons used in the present invention is preferably in the range of 1 μm to 3 mm because it can be easily obtained commercially. When the composition obtained by blending the composite microballoon of the present invention with a resin is used for a circuit board etc.,
A smaller particle size is preferable because uniform dispersion in the composition is required. The true specific gravity is 0.10 to 1.0 g / cm 3
Is preferred. If it is less than 0.10 g / cm 3 , the microballoon film is too thin and the strength is reduced.
If it exceeds g / cm 3 , the film is too thick and the characteristics of the microballoon are not exhibited, which is not preferable.

【0008】(2)有機重合体 本発明で用いる有機重合体としては、従来知られた熱可
塑性樹脂および熱硬化性樹脂を使用できるが、水中で容
易に乳化するものが好ましい。このような有機重合体と
しては、例えばアクリロニトリル−ブタジエンゴム、ア
クリルゴム、スチレン−ブタジエンゴムまたはエチレン
−酢酸ビニルゴム;或いは塩化ビニル系樹脂、塩化ビニ
リデン系樹脂、フッ素系樹脂、シリコーン重合体または
スチレン−アクリル酸共重合体等が挙げられる。
(2) Organic Polymer As the organic polymer used in the present invention, conventionally known thermoplastic resins and thermosetting resins can be used, but those which are easily emulsified in water are preferred. Examples of such an organic polymer include acrylonitrile-butadiene rubber, acrylic rubber, styrene-butadiene rubber or ethylene-vinyl acetate rubber; or vinyl chloride resin, vinylidene chloride resin, fluorine resin, silicone polymer or styrene-acryl. Examples thereof include acid copolymers.

【0009】無機質微粒子を表面に担持した微粒子状有
機重合体は、例えば上記有機重合体を構成する単量体を
通常の方法で乳化重合し、得られた微粒子状有機重合体
の表面に無機質微粒子を担持させて得ることができる。
この際、微粒子状重合体の表面と無機質微粒子間に充分
な親和力を有することが好ましい。例えば、微粒子状重
合体の表面に無機質微粒子としてコロイダルシリカを担
持させるためには、微粒子状重合体の表面にシラノール
基を存在させることにより表面を変性することが良い。
上記のように表面を変性させた微粒子状有機重合体の製
法は、種々あるが、コア−シェル型エマルジョン重合法
によって得たものは、乳化状態での安定性が高く、また
カプセル化の際の成膜性が良く好ましい。
The fine particle organic polymer having the fine inorganic particles supported on the surface thereof is obtained by, for example, emulsion-polymerizing the monomers constituting the above organic polymer by a usual method, and the fine inorganic particles on the surface of the fine particle organic polymer. Can be carried to obtain.
At this time, it is preferable that the surface of the fine particle polymer and the inorganic fine particles have a sufficient affinity. For example, in order to support colloidal silica as inorganic fine particles on the surface of the fine particle polymer, it is preferable to modify the surface by allowing silanol groups to be present on the surface of the fine particle polymer.
There are various methods for producing a finely divided organic polymer having a surface modified as described above, but those obtained by the core-shell type emulsion polymerization method have high stability in an emulsified state, and when encapsulated. The film-forming property is good, which is preferable.

【0010】コア−シェル型エマルジョン重合法は、予
めコアとなる有機重合体のエマルジョンを生成し、次に
該エマルジョン中に、シェルとなる重合体の原料である
単量体を添加し、共重合させて得ることができる。コア
となる有機重合体のエマルジョンの生成のために使用さ
れる界面活性剤としては、アニオン系界面活性剤、特に
スルホン酸ナトリウムまたは硫酸ナトリウムの誘導体を
用いると分子量が大きい有機重合体を得ることができ好
ましい。またコアとなる有機重合体の粒径は、0.05
〜1.0μmが好ましい。またコアとなる有機重合体成
分は、得られるコア−シェル型重合体の内、10〜90
重量%含まれることが好ましく、より好ましくは50〜
90重量%である。10重量%未満では、マイクロバル
ーンの皮膜とした際に有機重合体自体の特性が十分発揮
されず好ましくない。
In the core-shell type emulsion polymerization method, an emulsion of an organic polymer serving as a core is formed in advance, and then a monomer which is a raw material of a polymer serving as a shell is added to the emulsion to perform copolymerization. You can get it. As a surfactant used for forming an emulsion of an organic polymer serving as a core, an anionic surfactant, particularly a derivative of sodium sulfonate or sodium sulfate can be used to obtain an organic polymer having a large molecular weight. It is possible and preferable. The particle size of the core organic polymer is 0.05
˜1.0 μm is preferable. The organic polymer component serving as the core is 10 to 90 out of the resulting core-shell type polymer.
It is preferably contained by weight%, more preferably 50 to
90% by weight. When it is less than 10% by weight, the characteristics of the organic polymer itself are not sufficiently exhibited when it is formed into a film of microballoons, which is not preferable.

【0011】シェルとなる重合体の原料である単量体と
しては、アクリロニトリル、メタクリロニトリル、N
−ビニルピロリドンまたはN−ビニルカプロラクタム;
アクリルオキシ基、メタクリルオキシ基またはビニル
オキシ基を有するアルコキシシラン;並びにスチレ
ン、ビニルトルエン、メチル(メタ)アクリレートまた
はエチル(メタ)アクリレート等の他のビニル基を有す
る単量体の3成分を組み合わせて用いると、重合体粒子
の安定なエマルジョンが形成され易く好ましい。
Monomers which are raw materials for the shell polymer include acrylonitrile, methacrylonitrile and N.
-Vinylpyrrolidone or N-vinylcaprolactam;
Used in combination with three components of an alkoxysilane having an acryloxy group, a methacryloxy group or a vinyloxy group; and another monomer having a vinyl group such as styrene, vinyltoluene, methyl (meth) acrylate or ethyl (meth) acrylate. It is preferable that a stable emulsion of polymer particles is easily formed.

【0012】アクリルオキシ基、メタクリルオキシ基ま
たはビニルオキシ基を有するアルコキシシランの具体例
としては、γ−アクリルオキシプロピルトリメトキシシ
ラン、γ−メタクリルオキシプロピルトリメトキシシラ
ン、γ−(メタ)アクリルオキシプロピルトリス(トリ
メチルシロキシ)シラン、ビニルトリメトキシシラン、
ビニルトリス(メトキシエトキシ)シランまたはビニル
トリクロロシラン等が挙げられる。
Specific examples of the alkoxysilane having an acryloxy group, a methacryloxy group or a vinyloxy group include γ-acryloxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane and γ- (meth) acryloxypropyltris. (Trimethylsiloxy) silane, vinyltrimethoxysilane,
Examples thereof include vinyltris (methoxyethoxy) silane and vinyltrichlorosilane.

【0013】表面を変性させた微粒子状有機重合体の他
の製造方法としては、有機重合体のエマルジョンを生成
させ、これにシラン系カップリング剤、チタネート系カ
ップリング剤またはアルミニウム系シランカップリング
剤を添加し反応させる方法がある。
Another method for producing a surface-modified fine particle organic polymer is to produce an emulsion of an organic polymer, and add a silane coupling agent, titanate coupling agent or aluminum silane coupling agent to the emulsion. There is a method of adding and reacting.

【0014】(3)無機質微粒子 本発明で用いられる無機質微粒子は、径が50mμ以下
が好ましく、また超微粒子状粉末を水中に分散せしめた
コロイド状の形態であると、前記の表面を変性させた微
粒子状有機重合体の表面に担持し易いので更に好まし
い。このような無機質微粒子としては、コロイダルシリ
カ、アルミナゾル、ジルコニアゾル、酸化アンチモンゾ
ル、酸化スズゾル、径が50mμ以下のシリカまたはア
ルミナ粉末等が挙げられる。
(3) Inorganic Fine Particles The inorganic fine particles used in the present invention preferably have a diameter of 50 mμ or less, and the surface is modified to be a colloidal form in which ultrafine powder is dispersed in water. It is more preferable because it can be easily carried on the surface of the fine particle organic polymer. Examples of such inorganic fine particles include colloidal silica, alumina sol, zirconia sol, antimony oxide sol, tin oxide sol, silica or alumina powder having a diameter of 50 mμ or less.

【0015】微粒子状有機重合体の表面に無機質微粒子
を担持させる方法は、例えば前記の無機質微粒子を直接
または水系媒体に分散させ、好ましくは上記のように表
面を変性した前記の有機重合体のエマルジョン中に攪拌
下に徐々に添加する方法が好ましい。この際系を40〜
60℃に加温すると担持が容易に行われるので好まし
い。
The method of supporting the inorganic fine particles on the surface of the fine particle organic polymer is, for example, an emulsion of the organic polymer in which the inorganic fine particles are dispersed directly or in an aqueous medium, and the surface is modified as described above. A method of gradually adding it with stirring is preferred. At this time, the system is 40 ~
It is preferable to heat to 60 ° C. because loading is easily performed.

【0016】有機重合体エマルジョンと無機質微粒子の
併用割合は、最終の複合マイクロバルーンの皮膜に求め
られる特性に応じて調整されるが、エマルジョン中の有
機重合体成分と無機質成分の合計量の、2〜98重量%
が有機重合体成分であるのが一般的であり、好ましくは
20〜90重量%である。2重量%未満では、皮膜にお
ける有機重合体の性能が表れず、98重量%を超える
と、複合マイクロバルーン製造時に、微粒子状有機重合
体の分散性が悪くなり好ましくない。
The combined ratio of the organic polymer emulsion and the inorganic fine particles is adjusted according to the properties required for the final composite microballoon film, but it is 2 in the total amount of the organic polymer component and the inorganic component in the emulsion. ~ 98% by weight
Is generally an organic polymer component, preferably 20 to 90% by weight. If it is less than 2% by weight, the performance of the organic polymer in the film does not appear, and if it exceeds 98% by weight, the dispersibility of the particulate organic polymer is deteriorated during the production of the composite microballoons, which is not preferable.

【0017】微粒子状有機重合体の表面に無機質微粒子
が担持されたことは、例えば粘着性の高い有機重合体の
場合には、無機質微粒子担持前後の有機重合体エマルジ
ョンからフィルムを形成させて、それらの粘着性の大幅
な減少の有無を測定することにより、確認することがで
きる。
The fact that the inorganic fine particles are carried on the surface of the fine particle organic polymer means that, for example, in the case of an organic polymer having high adhesiveness, a film is formed from an organic polymer emulsion before and after carrying the inorganic fine particles, and It can be confirmed by measuring the presence or absence of a significant decrease in the tackiness of.

【0018】(4)マイクロバルーンの被覆方法 微粒子状有機重合体を凝集させる凝集剤、特に好ましく
は陽性に荷電したアルミナゾル等の無機質ゾルの分散液
中に、無機質のマイクロバルーンを添加し、続いて高攪
拌下に、無機質微粒子を表面に担持した有機重合体のエ
マルジョンを少量ずつ添加すると、無機質のマイクロバ
ルーンの表面で凝集してゲル状の皮膜が形成される。
(4) Method of coating microballoons An inorganic microballoon is added to a dispersion liquid of an aggregating agent for aggregating the fine particle organic polymer, particularly preferably a positively charged inorganic sol such as alumina sol, and the like. When an emulsion of an organic polymer carrying inorganic fine particles on the surface is added little by little under high agitation, a gel-like film is formed by aggregation on the surface of the inorganic microballoons.

【0019】無機質のマイクロバルーン100重量部に
対して、無機質微粒子を表面に担持した有機重合体は1
0〜500重量部の範囲が好ましい。10重量部未満で
は耐衝撃性が小さくなり、逆に500重量部を超えると
皮膜の厚みが増し、マイクロバルーンとしての機能が低
下する。
For 100 parts by weight of inorganic microballoons, the number of organic polymers having inorganic fine particles on the surface is 1
A range of 0 to 500 parts by weight is preferable. If it is less than 10 parts by weight, the impact resistance tends to be low, and conversely if it exceeds 500 parts by weight, the thickness of the film increases and the function as a microballoon deteriorates.

【0020】このようにして得られたスラリー状の分散
体をスプレー乾燥機にかけると、皮膜が緻密となり、微
粉末状の複合マイクロバルーンが得られる。この際、サ
イクロンを用いて捕集すると、複合マイクロバルーンを
粒度別に分級することができる。
When the slurry-like dispersion thus obtained is subjected to a spray dryer, the coating becomes dense and fine powder-like composite microballoons are obtained. At this time, by collecting using a cyclone, the composite microballoons can be classified according to particle size.

【0021】[0021]

【作用】本発明の複合マイクロバルーンは、大きな剪断
力を受けても容易に破壊せず、かつ耐熱性が良好であ
る。この理由は定かではないが、無機質のマイクロバル
ーン表面、微粒子状有機重合体および該有機重合体に担
持された無機質微粒子の相互作用により、上記特長が発
揮されるものと推定される。
The composite microballoon of the present invention does not easily break even when subjected to a large shearing force, and has good heat resistance. The reason for this is not clear, but it is presumed that the above-mentioned characteristics are exhibited by the interaction between the surface of the inorganic microballoon, the fine particle organic polymer and the inorganic fine particles carried by the organic polymer.

【0022】[0022]

【実施例】以下、実施例を挙げて、本発明を更に詳しく
説明する。 実施例1 (シラノール基を有するコア−シェル型エマルジョンの
合成)2リットル内容積のステンレス製オートクレーブ
に、純水1000cc、レベノールWZ(ポリオキシエ
チレンアルキルフェニルエーテル硫酸ナトリウムの26
重量%水溶液、花王(株)製)19.2g、過硫酸カリ
ウム2.5g、第3級ドデシルメルカプタン1.0g、
ブチルアクリレート250gおよびブタジエン250g
を仕込み、プロペラ型攪拌翼で350rpmの攪拌下、
50℃にて15時間反応を行い、その後レベノールWZ
19.2g、過硫酸カリウム0.5g、スチレン60
g、アクリロニトリル30gおよびNUCシランモノマ
ーA−171(ビニルトリメトキシシラン、日本ユニカ
ー(株)製)10gを仕込み、更に70℃で5時間乳化
重合を続けた。
EXAMPLES The present invention will be described in more detail with reference to examples. Example 1 (Synthesis of core-shell type emulsion having silanol group) 1000 cc of pure water and Lebenol WZ (26 of sodium polyoxyethylene alkylphenyl ether sulfate) were placed in a stainless steel autoclave having an internal volume of 2 liters.
Wt% aqueous solution, manufactured by Kao Corporation) 19.2 g, potassium persulfate 2.5 g, tertiary dodecyl mercaptan 1.0 g,
Butyl acrylate 250 g and butadiene 250 g
Was charged with stirring with a propeller type stirring blade at 350 rpm,
The reaction is carried out at 50 ° C for 15 hours, and then Lebenol WZ
19.2 g, potassium persulfate 0.5 g, styrene 60
g, 30 g of acrylonitrile and 10 g of NUC silane monomer A-171 (vinyltrimethoxysilane, manufactured by Nippon Unicar Co., Ltd.) were added, and emulsion polymerization was continued at 70 ° C. for 5 hours.

【0023】得られたエマルジョンはブチルアクリレー
ト/ブタジエン共重合体ゴム粒子をコアとして、シェル
部分にシラノール基を有するスチレン/アクリロニトリ
ル共重合体が形成されたもので、固形分は36重量%で
あった。
The resulting emulsion was a styrene / acrylonitrile copolymer having silanol groups in the shell portion, with butyl acrylate / butadiene copolymer rubber particles as the core, and the solid content was 36% by weight. .

【0024】(無機質微粒子の担持)前記の表面にシラ
ノール基を有する有機重合体エマルジョン1100gを
2リットルビーカーに仕込み、プロペラ型攪拌翼で20
0rpmの攪拌下、消泡剤として、2,4,7,9−テ
トラメチル−5−デシン−4,7ジオール 3gを添加
し、次にスノーテックスUP(固形分20重量%、径5
〜20mμ、長さ40〜300mμの細長い形状のコロ
イド状シリカの水性ゾル。日産化学工業(株)製)38
0gを徐々に添加して、40〜45℃にて1時間攪拌を
続けて調製液を得た。
(Support of Inorganic Fine Particles) 1100 g of an organic polymer emulsion having a silanol group on the surface was charged into a 2 liter beaker, and a propeller-type stirring blade was used for 20 minutes.
With stirring at 0 rpm, 3 g of 2,4,7,9-tetramethyl-5-decyne-4,7 diol was added as a defoaming agent, and then Snowtex UP (solid content 20% by weight, diameter 5
An aqueous sol of elongated colloidal silica having a length of ˜20 mμ and a length of 40 to 300 μm. NISSAN CHEMICAL INDUSTRIES, LTD.) 38
0 g was gradually added, and stirring was continued at 40 to 45 ° C. for 1 hour to obtain a preparation liquid.

【0025】(ホウケイ酸ガラスマイクロバルーンの分
散液の調製)ホウケイ酸ガラスマイクロバルーン(平均
粒径45μm、真比重0.40g/cm3 、富士デヴィソ
ン化学(株)製 H−40)230g、アルミナゾル2
00(陽性に荷電した粒径30〜100mμのアルミナ
ゾル、濃度10重量%、日産化学工業(株)製)320
gおよび純水8リットルを内容積12リットルのステン
レス製容器に仕込み、プロペラ型攪拌翼で10分間40
0rpmで攪拌して分散液を得た。
(Preparation of dispersion liquid of borosilicate glass microballoon) Borosilicate glass microballoon (average particle diameter 45 μm, true specific gravity 0.40 g / cm 3 , H-40 manufactured by Fuji Davison Chemical Co., Ltd.) 230 g, alumina sol 2
00 (positively charged alumina sol having a particle size of 30 to 100 mμ, concentration 10% by weight, manufactured by Nissan Chemical Industries, Ltd.) 320
g and 8 liters of pure water were placed in a stainless steel container having an internal volume of 12 liters, and 40 minutes for 10 minutes with a propeller type stirring blade.
The dispersion was obtained by stirring at 0 rpm.

【0026】(複合マイクロバルーンの合成)プロペラ
型攪拌翼で10分間400rpmで攪拌しつつ、上記の
マイクロバルーン分散液に上記の無機質微粒子を担持し
た有機重合体の調製液全量を1時間かけて徐々に添加し
た。得られたスラリー状混合物を40メッシュのろ布に
通して粗粒子を除去した後、そのままディスク型スプレ
ー乾燥機に通して乾燥したところ、平均粒径50μm
で、ブタジエン共重合体、シリカおよびアルミナよりな
る複合皮膜を平均68重量%有する微粉末状複合マイク
ロバルーンを得た。この複合マイクロバルーンの粒子構
造の500倍の走査型電子顕微鏡写真を添付する。
(Synthesis of composite microballoon) While stirring with a propeller-type stirring blade for 10 minutes at 400 rpm, the total amount of the prepared organic polymer prepared by supporting the above-mentioned inorganic fine particles in the above microballoon dispersion was gradually added over 1 hour. Was added to. The obtained slurry-like mixture was passed through a 40-mesh filter cloth to remove coarse particles, and then passed through a disc-type spray dryer to be dried, whereby an average particle diameter of 50 μm was obtained.
Thus, a fine powdery composite microballoon having an average of 68% by weight of a composite coating film of a butadiene copolymer, silica and alumina was obtained. Attached is a 500 × scanning electron micrograph of the particle structure of this composite microballoon.

【0027】実施例2 無機質マイクロバルーンとして、セラミックス製マイク
ロバルーン(平均粒径45μm、真比重0.69g/cm
3 、シリカ分59.7重量%およびアルミナ分38.3
重量%、小野田セメント(株)製 マイクロセルズSL
75)504gを使用した以外は実施例1と同じ条件で
製造し、平均粒径47μmで、ブタジエン共重合体、シ
リカおよびアルミナよりなる複合皮膜を平均50重量%
有する微粉末状複合マイクロバルーンを得た。この複合
マイクロバルーンの粒子構造の1000倍の走査型電子
顕微鏡写真を添付する。
Example 2 As an inorganic microballoon, a ceramic microballoon (average particle diameter 45 μm, true specific gravity 0.69 g / cm 3) was used.
3 , silica content 59.7% by weight and alumina content 38.3
% By weight, Onoda Cement Co., Ltd. Microcells SL
75) Produced under the same conditions as in Example 1 except that 504 g was used, the average particle size was 47 μm, and a composite film consisting of a butadiene copolymer, silica, and alumina was 50% by weight on average.
A fine powdery composite microballoon having the above was obtained. Attached is a 1000 × scanning electron micrograph of the particle structure of this composite microballoon.

【0028】[0028]

【発明の効果】本発明の複合マイクロバルーンは、樹脂
に対する分散性に優れ、また大きな剪断力を受けても容
易に破壊せず、また耐熱性の大きなものである。上記の
特長を利用して、本発明の複合マイクロバルーンは、塗
料、接着剤または成型材料に配合して、これらの軽量
化、保温性および強度を向上させるものである。
INDUSTRIAL APPLICABILITY The composite microballoons of the present invention have excellent dispersibility in resins, are not easily broken even when subjected to a large shearing force, and have high heat resistance. Utilizing the above features, the composite microballoon of the present invention is blended with a paint, an adhesive or a molding material to improve the weight reduction, heat retention and strength thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得た複合マイクロバルーンの粒子構
造の500倍の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph (× 500) of the particle structure of the composite microballoon obtained in Example 1.

【図2】実施例2で得た複合マイクロバルーンの粒子構
造の1000倍の走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph (× 1000) of the particle structure of the composite microballoon obtained in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機質のマイクロバルーンを、無機質微
粒子を表面に担持した微粒子状有機重合体による皮膜で
被覆してなる複合マイクロバルーン。
1. A composite microballoon obtained by coating an inorganic microballoon with a film made of a particulate organic polymer having inorganic particles supported on the surface thereof.
JP25643393A 1993-09-20 1993-09-20 Composite microballoon Pending JPH0788354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25643393A JPH0788354A (en) 1993-09-20 1993-09-20 Composite microballoon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25643393A JPH0788354A (en) 1993-09-20 1993-09-20 Composite microballoon

Publications (1)

Publication Number Publication Date
JPH0788354A true JPH0788354A (en) 1995-04-04

Family

ID=17292598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25643393A Pending JPH0788354A (en) 1993-09-20 1993-09-20 Composite microballoon

Country Status (1)

Country Link
JP (1) JPH0788354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108146A (en) * 2007-10-29 2009-05-21 Sanyo Chem Ind Ltd Hollow resin particle and its manufacturing method
JP2010275453A (en) * 2009-05-29 2010-12-09 Matsumoto Yushi Seiyaku Co Ltd Hollow particle and adhesive composition containing the same
JP2016503100A (en) * 2012-12-20 2016-02-01 スリーエム イノベイティブ プロパティズ カンパニー COMPOSITE PARTICLES CONTAINING FLUOROPOLYMER, METHOD FOR PRODUCING THE SAME, AND ARTICLE CONTAINING THE COMPOSITE PARTICLES

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108146A (en) * 2007-10-29 2009-05-21 Sanyo Chem Ind Ltd Hollow resin particle and its manufacturing method
JP2010275453A (en) * 2009-05-29 2010-12-09 Matsumoto Yushi Seiyaku Co Ltd Hollow particle and adhesive composition containing the same
JP2016503100A (en) * 2012-12-20 2016-02-01 スリーエム イノベイティブ プロパティズ カンパニー COMPOSITE PARTICLES CONTAINING FLUOROPOLYMER, METHOD FOR PRODUCING THE SAME, AND ARTICLE CONTAINING THE COMPOSITE PARTICLES
US9790347B2 (en) 2012-12-20 2017-10-17 3M Innovation Properties Company Composite particles including a fluoropolymer, methods of making, and articles including the same
US9815969B2 (en) 2012-12-20 2017-11-14 3M Innovative Properties Company Composite particles including a fluoropolymer, methods of making, and articles including the same
US10351694B2 (en) 2012-12-20 2019-07-16 3M Innovative Properties Company Composite particles including a fluoropolymer, methods of making, and articles including the same

Similar Documents

Publication Publication Date Title
JP5044074B2 (en) Thermally foamable microsphere and method for producing the same
CN100381484C (en) Process for preparing core-shell type polysiloxane composite particles
EP0823450B1 (en) Composite and moldings produced therefrom
JPH04348143A (en) Silicone rubber powdery article and production thereof
JP2844886B2 (en) Polymer powder
CN101090942A (en) Process for producing aggregated latex particle
JPH06254380A (en) Composite microballoon
JPS59189143A (en) Manufacture of graft rubber-containing polymer powder
JPH0788354A (en) Composite microballoon
JPH11199671A (en) Production of organic and inorganic composite particle
JPH06246149A (en) Composite microballoon
JP3509085B2 (en) Synthetic resin powder for plastisol and method for producing the same
JP2004292686A (en) Aqueous composition for coating material
JPH086069B2 (en) Paint composition
JPH0539313A (en) Deionization
JPH05123565A (en) Microcapsule
JP3036065B2 (en) Process for producing filled polytetrafluoroethylene granulated powder
JP2009138047A (en) Method for preparing organic-inorganic composite emulsion
JPH0788355A (en) Microcapsule
JP3019302B2 (en) Method for producing polymer powder
JPH04261433A (en) Polymer powder particle and its production
JP4838448B2 (en) Acrylic plastisol for rotary screen printing
JPH07150201A (en) Coating type metallic powder
JPH04225829A (en) Polymer powder
JPH04309528A (en) Production of polymer powder