JPH078809A - Waste water treating agent and treatment of waste water - Google Patents

Waste water treating agent and treatment of waste water

Info

Publication number
JPH078809A
JPH078809A JP18192593A JP18192593A JPH078809A JP H078809 A JPH078809 A JP H078809A JP 18192593 A JP18192593 A JP 18192593A JP 18192593 A JP18192593 A JP 18192593A JP H078809 A JPH078809 A JP H078809A
Authority
JP
Japan
Prior art keywords
silicate compound
waste water
present
wastewater treatment
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18192593A
Other languages
Japanese (ja)
Other versions
JP3335719B2 (en
Inventor
Mikio Sakaguchi
阪口  美喜夫
Ichiro Sakamoto
一朗 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP18192593A priority Critical patent/JP3335719B2/en
Publication of JPH078809A publication Critical patent/JPH078809A/en
Application granted granted Critical
Publication of JP3335719B2 publication Critical patent/JP3335719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To obtain a waste water treating agent capable of efficiently treatment a waste water containing particularly heavy metals or oil component by using a crystalline silicate compound expressed by a specific general formula as an anhydride and equal or more than the specified value in a cation exchange capacity as a main component. CONSTITUTION:The waste water treating agent is composed of the crystalline silicate compound as an effective component. The crystalline silicate compound is expressed by xM2O.ySiO2M'O as the general formula of the anhydride. The cation exchange capacity is controlled to >=150mg CaCO3/g. In the formula, M are Na and/or K, M' are Ca and/or Mg, (y)/(x) is 0.5-4.0, (z)/(x) is 0-1.0. The crystalline silicate compound having 0.3-3.0ml/g oil absorption ability can be used as the effective component. And the silicate compound is used for the method for treating the waste water containing heavy metal or oil component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は人体に有害な重金属、海
洋及び河川の水質汚濁の原因となる界面活性剤をはじめ
とする各種油分を含む排水の処理に用いる排水処理剤及
び排水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment agent and a wastewater treatment method used for treating wastewater containing various oils such as heavy metals harmful to humans, surfactants causing water pollution of oceans and rivers, and surfactants. .

【0002】[0002]

【従来の技術・発明が解決しようとする課題】工業排水
中の重金属を取り除く方法として、特開昭55−757
79号公報には重金属を含む排水を鉱物質粉体に吸収さ
せた後に成形し焼成する方法が開示されている。しか
し、該粉体は、カオリン、タルク等の天然の鉱物質であ
るため、排水中の重金属イオンを捕捉する能力(イオン
交換能)が小さく、多量の鉱物質を必要とするため省資
源上好ましくない。また、特開昭53−82049号公
報には鉱物のモンモリナイト及びハイロサイトを主成分
とする無機微粒子と有機高分子量重合体からなる微細複
合体を非イオン界面活性剤を含有する排水に接触させる
方法が開示されている。しかし、この場合も同様に無機
微粒子自体の界面活性剤を捕捉する能力が乏しく多量の
処理剤を必要とするため、排水処理後の処理剤の扱いが
問題となる。また、イオン交換能の大きい非晶質のケイ
酸ソーダを用いる方法があるが、水への溶解性が著しく
高いため、処理後の回収が難しく好ましくない。そこ
で、重金属イオン及び界面活性剤をはじめとする各種油
分を多量に捕捉し、かつ耐水性に優れた無機物の使用が
望まれている。
2. Description of the Related Art As a method for removing heavy metals in industrial wastewater, Japanese Patent Laid-Open No. 55-757.
Japanese Patent Laid-Open No. 79 discloses a method in which wastewater containing heavy metals is absorbed by a mineral powder and then shaped and fired. However, since the powder is a natural mineral substance such as kaolin and talc, it has a small ability to capture heavy metal ions in the waste water (ion exchange ability) and requires a large amount of mineral substance, which is preferable in terms of resource saving. Absent. Further, JP-A-53-82049 discloses a method of contacting a fine composite composed of inorganic fine particles mainly composed of minerals montmorillonite and hyrosite and an organic high molecular weight polymer with waste water containing a nonionic surfactant. Is disclosed. However, in this case as well, the ability of the inorganic fine particles themselves to capture the surfactant is poor and a large amount of the treating agent is required, so that the handling of the treating agent after the wastewater treatment becomes a problem. Further, there is a method of using amorphous sodium silicate having a large ion exchange ability, but it is not preferable because recovery after treatment is difficult because it has extremely high solubility in water. Therefore, it has been desired to use a large amount of various oil components such as heavy metal ions and surfactants and to use an inorganic substance having excellent water resistance.

【0003】[0003]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意検討した結果、排水処理剤に要求
される高いカチオン捕捉能および界面活性剤捕捉能を有
し、かつ耐水性に優れる珪酸塩から構成される排水処理
剤を見出し、本発明を完成するに到った。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that they have a high cation trapping ability and a surfactant trapping ability required for a wastewater treatment agent, and are water resistant. The present invention has been completed by finding a wastewater treatment agent composed of a silicate having excellent properties.

【0004】即ち、本発明の要旨は、(1)無水物の一
般式としてxM2 O・ySiO2 ・zM' O(式中、M
はNa及び/又はKを示し、M' はCa及び/又はMg
を示し、y/x=0.5〜4.0、z/x=0〜1.0
である。)で表され、カチオン交換容量が150mgC
aCO3 /g以上、あるいは吸油能が0.3〜3.0m
l/gである結晶性の珪酸塩化合物を有効成分とするこ
とを特徴とする排水処理剤、および(2)重金属又は油
分を含有する排水を処理する方法において、前記(1)
の珪酸塩化合物を使用することを特徴とする排水処理方
法に関する。
That is, the gist of the present invention is xM 2 O.ySiO 2 .zM 'O (wherein M is
Represents Na and / or K, M ′ represents Ca and / or Mg
, Y / x = 0.5 to 4.0, z / x = 0 to 1.0
Is. ), The cation exchange capacity is 150 mgC
aCO 3 / g or more, or oil absorption capacity of 0.3 to 3.0 m
A wastewater treatment agent comprising a crystalline silicate compound of 1 / g as an active ingredient, and (2) a method for treating wastewater containing heavy metals or oils, wherein the above (1)
The present invention relates to a wastewater treatment method using the silicate compound of

【0005】本発明における珪酸塩化合物は、無水物で
の組成が、一般式xM2 O・ySiO2 ・zM’Oで表
される結晶性の化合物である。ここでMはNa及び/又
はKを示し、M’はCa及び/又はMgを示す。また、
y/xは0.5〜4.0であり、好ましくは0.8〜
2.1、さらに好ましくは1.0〜1.9である。y/
xが0.5未満では耐水性が不十分であり、4.0を超
えると、イオン交換能が低くなり、排水処理剤としての
使用に適さない。z/xは0〜1.0であり、好ましく
は0.005〜1.0、更に好ましくは0.005〜
0.9、特に好ましくは0.01〜0.6である。z/
xが1.0を超えるとイオン交換能が低く、排水処理剤
としての使用に適さない。x、y、zは前記のy/xお
よびz/xに示されるような関係であれば、特に限定さ
れるものではない。K/Naはカチオン交換速度を高め
る観点から通常0〜8.0であり、好ましくは0.01
〜8.0である。Mg/Caはカチオン交換容量を高め
る観点から通常0〜10であり、好ましくは0.02〜
10である。
The silicate compound in the present invention is a crystalline compound having an anhydrous composition represented by the general formula xM 2 O.ySiO 2 .zM'O. Here, M represents Na and / or K, and M ′ represents Ca and / or Mg. Also,
y / x is 0.5 to 4.0, preferably 0.8 to
2.1, more preferably 1.0 to 1.9. y /
When x is less than 0.5, the water resistance is insufficient, and when it exceeds 4.0, the ion exchange capacity is low and it is not suitable for use as a wastewater treatment agent. z / x is 0 to 1.0, preferably 0.005 to 1.0, and more preferably 0.005.
0.9, particularly preferably 0.01 to 0.6. z /
When x exceeds 1.0, the ion exchange capacity is low and it is not suitable for use as a wastewater treatment agent. x, y, and z are not particularly limited as long as they have the relationship shown in the above y / x and z / x. K / Na is usually 0 to 8.0 from the viewpoint of increasing the cation exchange rate, and preferably 0.01.
Is ~ 8.0. From the viewpoint of increasing the cation exchange capacity, Mg / Ca is usually 0-10, preferably 0.02-
It is 10.

【0006】このような本発明における珪酸塩化合物と
して、種々の態様があるが好適なものを例示すると次の
ようなものが挙げられる。 前記の一般式において、y/x=1.9〜4.0、
z/x=0.005〜1.0、M2 O中のK/Na=0
〜8.0、M’O中のMg/Ca=0〜10で表され
る、カチオン交換容量が150mgCaCO3 /g以
上、及び/又は吸油能が0.3〜3.0ml/gである
結晶性の珪酸塩化合物 前記の一般式において、y/x=0.5〜1.9、
z/x=0.005〜1.0、M2 O中のK/Na=
0.01〜8.0、M’O中のMg/Ca=0.02〜
10で表される、カチオン交換容量が150mgCaC
3 /g以上、及び/又は吸油能が0.3〜3.0ml
/gである結晶性の珪酸塩化合物
As the silicate compound in the present invention, there are various modes, but preferable examples are as follows. In the above general formula, y / x = 1.9 to 4.0,
z / x = 0.005~1.0, M 2 O in the K / Na = 0
8.0, represented by Mg / Ca = 0 in M'O, cation exchange capacity 150mgCaCO 3 / g or more, and / or oil-absorbing ability is 0.3~3.0Ml / g crystals Silicate compound, in the above general formula, y / x = 0.5 to 1.9,
z / x = 0.005-1.0, K / Na in M 2 O =
0.01-8.0, Mg / Ca in M'O = 0.02
Cation exchange capacity represented by 10 is 150 mg CaC
O 3 / g or more, and / or oil absorption capacity is 0.3 to 3.0 ml
/ G crystalline silicate compound

【0007】また、本発明における珪酸塩化合物は、水
和物であってもよく、この場合の水和量はH2 Oのモル
量換算として通常20モル%以下である。
The silicate compound in the present invention may be a hydrate, and the hydration amount in this case is usually 20 mol% or less in terms of the molar amount of H 2 O.

【0008】本発明における珪酸塩化合物は、合成によ
り得られるものであって、前記一般式に示されるように
2 O、SiO2 、M' Oの三成分よりなっている。従
って、本発明における珪酸塩化合物を製造するには、そ
の原料として各成分に対応する物質が必要になるが、本
発明においては特に限定されることなく公知の化合物が
適宜用いられる。例えば、M2 O成分、M' O成分とし
ては、各々の当該元素の単独あるいは複合の酸化物、水
酸化物、塩類、当該元素含有鉱物が用いられる。具体的
には例えば、M2 O成分の原料としては、NaOH,K
OH,Na2 CO3 ,K2 CO3 ,Na2 SO4 等が、
M' O成分の原料としては、CaCO3,Ca(OH)
2 、MgCO3 ,Mg(OH)2 ,MgO,ドロマイト
等が挙げられる。SiO2 成分としてはケイ石,ケイ
砂,クリストバライト石,カオリン,タルク,溶融シリ
カ,ケイ酸ソーダ等が用いられる。
The silicate compound in the present invention is obtained by synthesis and is composed of three components of M 2 O, SiO 2 and M'O as shown in the above general formula. Therefore, in order to produce the silicate compound in the present invention, a substance corresponding to each component is required as a raw material thereof, but a known compound is appropriately used in the present invention without any particular limitation. For example, as the M 2 O component and M ′ O component, single or complex oxides, hydroxides, salts of the respective relevant elements, and the element-containing minerals are used. Specifically, for example, as the raw material of the M 2 O component, NaOH, K
OH, Na 2 CO 3 , K 2 CO 3 , Na 2 SO 4 etc.
As the raw material for the M ′ O component, CaCO 3 , Ca (OH)
2 , MgCO 3 , Mg (OH) 2 , MgO, dolomite and the like. As the SiO 2 component, silica stone, silica sand, cristobalite stone, kaolin, talc, fused silica, sodium silicate and the like are used.

【0009】本発明においては、これらの原料成分を目
的とする珪酸塩化合物のx、y、zとなるように所定の
量比で混合し、通常300〜1300℃、好ましくは5
00〜1000℃、さらに好ましくは600〜900℃
の範囲で焼成して結晶化させる方法、及び同様に混合
後、一旦1100℃〜1600℃で溶融してガラス化物
を得た後焼成する方法、更に溶融後水ガラス化し焼成す
る方法が例示される。加熱時間は通常0.1〜24時間
である。このような焼成は通常、電気炉、ガス炉等の加
熱炉で行うことができる。また、焼成後、必要に応じて
粉砕し所定の粒度に調製される。粉砕機としては例えば
ボールミル、ローラーミル等を用いてなされる。このよ
うな製造方法により、前述のような構造上の特徴を有す
る本発明における珪酸塩化合物を得ることができる。
In the present invention, these raw material components are mixed in a predetermined quantitative ratio so that the desired silicate compound is x, y, z, and usually 300 to 1300 ° C., preferably 5
00-1000 ° C, more preferably 600-900 ° C
Examples of the method include calcination in the range of 1 to crystallize, similarly mixing, and then once melting at 1100 ° C to 1600 ° C to obtain a vitrified product, and then calcining, and further melting and water-vitalizing and calcining. . The heating time is usually 0.1 to 24 hours. Such firing can be usually performed in a heating furnace such as an electric furnace or a gas furnace. Further, after firing, the powder is crushed as necessary to have a predetermined particle size. As the crusher, for example, a ball mill, a roller mill or the like is used. With such a production method, the silicate compound of the present invention having the above-mentioned structural features can be obtained.

【0010】また、本発明における珪酸塩化合物の水和
物を調製するには、公知の方法により容易に行うことが
でき、特に制限されるものではない。例えば、前記のよ
うにして得られた珪酸塩化合物の無水物をイオン交換水
に懸濁して水和させ、乾燥せしめて粉末化する方法が挙
げられる。
The hydrate of the silicate compound according to the present invention can be easily prepared by a known method and is not particularly limited. For example, there may be mentioned a method in which the anhydrous silicate compound obtained as described above is suspended in ion-exchanged water to be hydrated, and dried to be powdered.

【0011】本発明における珪酸塩化合物は、吸油能が
0.3〜3.0ml/gのものである。吸油能が0.3
ml/g未満では、重金属イオン、界面活性剤の捕捉速
度が充分でなく排水処理の性能が低下する。また、3.
0ml/gを越えると、比表面積が著しく増大し、耐水
性が低下する。
The silicate compound in the present invention has an oil absorption capacity of 0.3 to 3.0 ml / g. Oil absorption capacity is 0.3
If it is less than ml / g, the trapping rate of heavy metal ions and surfactants is not sufficient and the performance of wastewater treatment is deteriorated. Also, 3.
When it exceeds 0 ml / g, the specific surface area remarkably increases and the water resistance decreases.

【0012】このような本発明における珪酸塩化合物に
吸油能を付与させる方法としては、「多孔材料」(近藤
連一編著、P2、技報堂、昭和48年発行)に記述され
ている粉末の凝集、発泡、ゲル化、水和などの方法、及
び特開昭63−270368号公報に開示されているア
クリル系ポリマー、メチルセルロース、ポリビニルアル
コール等の有機物を添加焼成する方法等が挙げられる。
本発明においては特に限定されるものではない。
As a method for imparting an oil absorbing ability to the silicate compound in the present invention, the agglomeration of powders described in "Porous Material" (edited by Renichi Kondo, P2, Gihodo, 1973), Examples of the method include foaming, gelation, hydration, and the like, and a method of adding an organic substance such as an acrylic polymer, methyl cellulose, polyvinyl alcohol, etc. disclosed in JP-A-63-270368 and firing.
The present invention is not particularly limited.

【0013】このようにして得られた本発明における珪
酸塩化合物またはその水和物は、重金属イオンや界面活
性剤を効率よく捕捉するという観点からカチオン交換容
量として少なくとも150mgCaCO3 /g以上、好
ましくは150〜600mgCaCO3 /gを有するも
のである。本発明においてカチオン交換容量とは、実施
例で示す後述の測定方法により得られるカチオン交換能
の値をいう。
The silicate compound or hydrate thereof in the present invention thus obtained has a cation exchange capacity of at least 150 mgCaCO 3 / g or more, preferably from the viewpoint of efficiently capturing heavy metal ions and surfactants. It has 150 to 600 mg CaCO 3 / g. In the present invention, the cation exchange capacity refers to the value of cation exchange capacity obtained by the measuring method described below shown in Examples.

【0014】本発明において耐水性とは、珪酸塩化合物
の水中での安定性を意味する。従って耐水性に劣ると
は、水中での珪酸塩化合物の安定性が悪く水中でのSi
溶出量が増大することを意味する。一方、耐水性に優れ
るとは、珪酸塩化合物の水中での安定性が高く、水中で
のSi溶出量が非常に少ないことをいう。本発明におけ
る珪酸塩化合物において、水へのSi溶出量はSiO2
換算で通常120mg/g以下であり、好ましくは90
mg/g以下、より好ましくは60mg/g以下であ
り、ほとんどが実質的に水に不溶である。なお、本発明
において実質的に水に不溶であるとは、試料2gをイオ
ン交換水100g中に加え、25℃で30分攪拌した場
合におけるSi溶出量がSiO2 換算で通常100mg
/gより少ないものをいう。
In the present invention, water resistance means stability of a silicate compound in water. Therefore, inferior water resistance means that the stability of the silicate compound in water is poor and the Si in water is poor.
This means that the elution amount is increased. On the other hand, “excellent in water resistance” means that the silicate compound has high stability in water and the amount of Si eluted in water is very small. In the silicate compound of the present invention, the amount of Si eluted into water is SiO 2
It is usually 120 mg / g or less, preferably 90 in terms of conversion.
mg / g or less, more preferably 60 mg / g or less, and most of them are substantially insoluble in water. In the present invention, “substantially insoluble in water” means that the amount of Si eluted when 2 g of a sample is added to 100 g of ion-exchanged water and stirred at 25 ° C. for 30 minutes is usually 100 mg in terms of SiO 2.
Less than / g.

【0015】本発明における珪酸塩化合物は、前記のよ
うに優れた重金属イオン及び界面活性剤捕捉能、油分捕
捉能、吸油能、耐水性とを有するため、これを有効成分
とする排水処理剤は優れた排水処理性能を有する。即
ち、本発明の排水処理剤は、前記のような珪酸塩化合物
を有効成分として含有するものであり、本発明の排水処
理剤は排水中での安定性の観点から、前記の珪酸塩化合
物の他に、有機高分子、金属酸化物、天然鉱物等の添加
剤を種々複合したものからなる。ここで、本発明におけ
る珪酸塩化合物の配合量は、通常20〜98重量%、好
ましくは30〜90重量%である。20重量%未満では
処理能力が低く、98重量%を越えると複合の効果が発
現しない。
Since the silicate compound in the present invention has the excellent heavy metal ion and surfactant trapping ability, oil trapping ability, oil absorption ability and water resistance as described above, a wastewater treatment agent containing this as an active ingredient is It has excellent wastewater treatment performance. That is, the wastewater treatment agent of the present invention contains the above-mentioned silicate compound as an active ingredient, and the wastewater treatment agent of the present invention is a silicate compound of the above-mentioned silicate compound from the viewpoint of stability in wastewater. In addition, it is composed of various composites of additives such as organic polymers, metal oxides and natural minerals. Here, the compounding amount of the silicate compound in the present invention is usually 20 to 98% by weight, preferably 30 to 90% by weight. If it is less than 20% by weight, the treating ability is low, and if it exceeds 98% by weight, the combined effect is not exhibited.

【0016】また、本発明の排水処理剤は、重金属イオ
ン、界面活性剤をはじめとする各種油分を含有する排水
の処理に用いられるが、本発明の排水処理剤は、重金属
の種類、油分の種類に限定されることなく優れた排水処
理効果を発揮する。本発明の排水処理剤の使用量は、通
常0.1〜100g/リットルである。ここで、本発明
でいう油分とは、JIS K102工業排水試験方法に
おいて、「(24)ヘキサン抽出物質」として規定され
たものである。又、ここでいう重金属イオンには、放射
性重金属イオンも含まれる。
Further, the wastewater treatment agent of the present invention is used for treating wastewater containing various oil components such as heavy metal ions and surfactants. The wastewater treatment agent of the present invention contains heavy metal types and oil components. Exhibits excellent wastewater treatment effects regardless of type. The amount of the wastewater treatment agent of the present invention used is usually 0.1 to 100 g / liter. Here, the oil component in the present invention is defined as "(24) hexane extract substance" in JIS K102 industrial wastewater test method. Further, the heavy metal ions referred to here include radioactive heavy metal ions.

【0017】また、本発明において重金属を含有する排
水を処理する方法として、本発明における珪酸塩化合物
を単独で排水中に添加してもよく、また前記のような本
発明の排水処理剤を添加してもよい。同様に油分を含有
する排水を処理する方法として、本発明における珪酸塩
化合物を単独で排水中に添加してもよく、また前記のよ
うな本発明の排水処理剤を添加してもよい。
As a method of treating wastewater containing heavy metals in the present invention, the silicate compound of the present invention may be added to the wastewater alone, or the above-mentioned wastewater treatment agent of the present invention may be added. You may. Similarly, as a method of treating wastewater containing oil, the silicate compound of the present invention may be added to the wastewater alone, or the wastewater treatment agent of the present invention as described above may be added.

【0018】[0018]

【実施例】以下、実施例、比較例および試験例により本
発明をさらに詳しく説明するが、本発明はこれらの実施
例等によりなんら限定されるものではない。尚、本実施
例及び比較例における測定値は、次に示す方法により測
定した。
EXAMPLES The present invention will be described in more detail with reference to Examples, Comparative Examples and Test Examples, but the present invention is not limited to these Examples. The measured values in the examples and comparative examples were measured by the following method.

【0019】(1)カチオン交換能 試料0.1gを精秤し、塩化カルシウム水溶液(濃度は
CaCO3 として500ppm)100ml中に加え、
25℃で60分間撹拌した後、孔サイズ0.2μmのメ
ンブランフィルター(アドバンテック社、ニトロセルロ
ース製)を用いて濾過を行い、その濾液10ml中に含
まれるCa量をEDTA滴定により測定した。その値より試料
のカルシウムイオン交換容量(カチオン交換容量)を求
めた。但し、500mgCaCO3 /g以上の場合は、
塩化カルシウム溶液の量を200mlにして測定した値
である。
(1) Cation exchange capacity: 0.1 g of a sample was accurately weighed and added to 100 ml of an aqueous calcium chloride solution (concentration: 500 ppm as CaCO 3 ),
After stirring at 25 ° C. for 60 minutes, filtration was performed using a membrane filter having a pore size of 0.2 μm (manufactured by Advantech, nitrocellulose), and the amount of Ca contained in 10 ml of the filtrate was measured by EDTA titration. The calcium ion exchange capacity (cation exchange capacity) of the sample was determined from the value. However, in the case of 500 mgCaCO 3 / g or more,
It is a value measured with the amount of the calcium chloride solution being 200 ml.

【0020】(2)吸油能 粉末2gを攪拌し、JIS 5101の顔料試験法(吸
油能)に準じて試験を行い、次式により算出した。 吸油能(ml/g)=滴下したあまに油の容量(ml)
/試料の質量(g)
(2) Oil absorption capacity 2 g of the powder was stirred and tested in accordance with the pigment test method (oil absorption capacity) of JIS 5101, and calculated by the following formula. Oil absorption capacity (ml / g) = volume of linseed oil dropped (ml)
/ Sample mass (g)

【0021】(3)Si溶出量 試料2gをイオン交換水100g中に加え、2℃で30
分間撹拌する。その後遠心分離を行い、その上澄みを孔
サイズ0.2μmのメンブランフィルターを用いて濾過
する。濾液中のSi濃度をプラズマ発光分析(ICP)
により測定し、SiO2 換算でSiの溶出量を求めた。
(3) Si elution amount 2 g of the sample was added to 100 g of ion-exchanged water, and the amount was 30 at 2 ° C.
Stir for minutes. After that, centrifugation is performed, and the supernatant is filtered using a membrane filter having a pore size of 0.2 μm. Plasma emission analysis (ICP) of Si concentration in the filtrate
And the elution amount of Si was calculated in terms of SiO 2 .

【0022】実施例1〜10 2号珪酸ソーダ(SiO2 / Na2 O=2.55、水分
59.9%)、水酸化ナトリウム、水酸化カリウム、無
水炭酸カルシウム、水酸化マグネシウムを表1に示す組
成となるよう混合を行った。この混合物に対してポリビ
ニルピロリドン0〜2%を添加し、700℃の温度下、
空気気流中において焼成を行い60メッシュ以下に粉砕
した後、本発明における珪酸塩化合物粉末1〜10を得
た。これらの粉体の吸油能は0.3〜3.0ml/gで
あり、また、カチオン交換能は、150mgCaCO3
/g以上であり、優れた排水処理特性を有するものであ
った。また、Si溶出量は120mg/g以下であり、
耐水性も良好なものであった。
Examples 1 to 10 No. 2 sodium silicate (SiO 2 / Na 2 O = 2.55, water content 59.9%), sodium hydroxide, potassium hydroxide, anhydrous calcium carbonate and magnesium hydroxide are shown in Table 1. Mixing was performed so as to obtain the composition shown. To this mixture was added polyvinylpyrrolidone 0-2%, and at a temperature of 700 ° C,
After calcination in an air stream and crushing to 60 mesh or less, silicate compound powders 1 to 10 in the present invention were obtained. The oil absorption capacity of these powders is 0.3 to 3.0 ml / g, and the cation exchange capacity is 150 mg CaCO 3.
/ G or more, and had excellent wastewater treatment characteristics. Also, the amount of Si eluted is 120 mg / g or less,
The water resistance was also good.

【0023】[0023]

【表1】 [Table 1]

【0024】比較例1〜5 特級試薬のメタ珪酸ソーダ(Na2 O・SiO2 )を7
00℃で1時間焼成したもの、日本タルク(株)製の精
製モンモリナイト、共立窯業原料(株)製の精製ハイロ
サイト、共立窯業原料(株)製の精製カオリン、富士タ
ルク工業(株)製の精製タルクを、すべて60メッシュ
以下に粉砕したものをそれぞれ比較粉末1〜5とした
(表2)。
Comparative Examples 1 to 5 Sodium metasilicate (Na 2 O.SiO 2 ) as a special grade reagent
Baking at 00 ° C for 1 hour, purified montmorillonite manufactured by Nippon Talc Co., Ltd., refined hyrosite manufactured by Kyoritsu Ceramic Raw Materials Co., Ltd., refined kaolin manufactured by Kyoritsu Ceramic Raw Material Co., Ltd., Fuji Talc Industrial Co., Ltd. All of the purified talc was crushed to 60 mesh or less and used as comparative powders 1 to 5 (Table 2).

【0025】[0025]

【表2】 [Table 2]

【0026】試験例1 クロムイオンを100ppm含有するモデル排水250
cc中に、実施例1〜5及び比較例1、3、5で得られ
た珪酸塩化合物等を各1g投入し、30分間攪拌し、5
種C番の濾紙で濾過した後、濾液中への残留クロムイオ
ン量を原子吸光法(357.9nm)で測定した。その
結果を表3に示すが、本発明における珪酸塩化合物を用
いた場合、比較例と比較して残留クロムイオン量は極め
て低値であった。
Test Example 1 Model drainage 250 containing 100 ppm of chromium ions
1 g of each of the silicate compounds and the like obtained in Examples 1 to 5 and Comparative Examples 1, 3, and 5 was put into cc, and the mixture was stirred for 30 minutes, and 5
After filtering with a filter paper of No. C, the amount of chromium ions remaining in the filtrate was measured by the atomic absorption method (357.9 nm). The results are shown in Table 3. When the silicate compound of the present invention was used, the residual chromium ion amount was extremely low as compared with the comparative example.

【0027】[0027]

【表3】 [Table 3]

【0028】試験例2 バリウムイオンを500ppm含有するモデル排水25
0cc中に、実施例6〜10及び比較例2、5で得られ
た珪酸塩化合物等を各1g投入し、30分間攪拌し、5
種C番の濾紙で濾過した後、濾液中への残留バリウムイ
オン量をEDTA滴定法で測定した。その結果を表4に
示すが、本発明における珪酸塩化合物を用いた場合、比
較例と比較して残留バリウムイオン量は極めて低値であ
った。
Test Example 2 Model drainage 25 containing 500 ppm of barium ion
1 g of each of the silicate compounds and the like obtained in Examples 6 to 10 and Comparative Examples 2 and 5 was put into 0 cc, and the mixture was stirred for 30 minutes.
After filtering with a filter paper of No. C, the amount of barium ions remaining in the filtrate was measured by the EDTA titration method. The results are shown in Table 4. When the silicate compound of the present invention was used, the residual barium ion amount was extremely low as compared with the comparative example.

【0029】[0029]

【表4】 [Table 4]

【0030】試験例3 界面活性剤(エマルゲンPP−230;ポリオキシエチ
レンポリオキシプロピレン;曇天=24℃)を0.5g
/リットル含有するモデル排水中に実施例1、3、5と
比較例1、3で得られた珪酸塩化合物等を各1g投入
し、60分間攪拌し、5種C番の濾紙で濾過した。次い
で、この濾液をJIS K102工業排水試験方法(1
7)にもとづき、100℃における過マンガン酸カリウ
ムによるCOD測定を行い、界面活性剤の残留濃度を求
めた。その結果を表5に示すが、本発明における珪酸塩
化合物を用いた場合、比較例と比較してエマルゲンPP
−230の残留濃度は極めて低値であった。
Test Example 3 0.5 g of a surfactant (Emulgen PP-230; polyoxyethylene polyoxypropylene; cloudy weather = 24 ° C.)
1 g of each of the silicate compounds obtained in Examples 1, 3 and 5 and Comparative Examples 1 and 3 was put into the model wastewater containing 1 / liter of the mixture, the mixture was stirred for 60 minutes, and filtered through a 5th type C filter paper. Then, this filtrate is subjected to JIS K102 industrial drainage test method (1
Based on 7), COD measurement with potassium permanganate at 100 ° C. was performed to determine the residual concentration of the surfactant. The results are shown in Table 5. When the silicate compound of the present invention is used, the emulgen PP is compared with the comparative example.
The residual concentration of -230 was extremely low.

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【発明の効果】本発明における珪酸塩化合物は、優れた
重金属イオン及び界面活性剤捕捉能、油分捕捉能、吸油
能、耐水性とを有するため、これを有効成分とする排水
処理剤は優れた排水処理性能を有する。従って、重金属
又は油分(特に界面活性剤)を含有する排水の処理にお
いて、本発明における珪酸塩化合物を使用することによ
り、これらを有効に捕捉し回収除去することができる。
The silicate compound of the present invention has excellent heavy metal ion and surfactant trapping ability, oil trapping ability, oil absorption ability, and water resistance. Therefore, a wastewater treatment agent containing this as an active ingredient is excellent. Has wastewater treatment performance. Therefore, in the treatment of wastewater containing heavy metals or oils (particularly surfactants), by using the silicate compound in the present invention, these can be effectively captured and recovered and removed.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 無水物の一般式としてxM2 O・ySi
2 ・zM' O(式中、MはNa及び/又はKを示し、
M' はCa及び/又はMgを示し、y/x=0.5〜
4.0、z/x=0〜1.0である。)で表される、カ
チオン交換容量が150mgCaCO3 /g以上である
結晶性の珪酸塩化合物を有効成分とすることを特徴とす
る排水処理剤。
1. The general formula of the anhydride is xM 2 O.ySi.
O 2 · zM ′ O (In the formula, M represents Na and / or K,
M ′ represents Ca and / or Mg, and y / x = 0.5 to
It is 4.0 and z / x = 0-1.0. ), A wastewater treatment agent comprising a crystalline silicate compound having a cation exchange capacity of 150 mgCaCO 3 / g or more as an active ingredient.
【請求項2】 無水物の一般式としてxM2 O・ySi
2 ・zM' O(式中、MはNa及び/又はKを示し、
M' はCa及び/又はMgを示し、y/x=0.5〜
4.0、z/x=0〜1.0である。)で表される、吸
油能が0.3〜3.0ml/gである結晶性の珪酸塩化
合物を有効成分とすることを特徴とする排水処理剤。
2. The general formula of the anhydride is xM 2 O.ySi.
O 2 · zM ′ O (In the formula, M represents Na and / or K,
M ′ represents Ca and / or Mg, and y / x = 0.5 to
It is 4.0 and z / x = 0-1.0. ), A wastewater treatment agent comprising a crystalline silicate compound having an oil absorption capacity of 0.3 to 3.0 ml / g as an active ingredient.
【請求項3】 請求項1又は2に記載の一般式におい
て、珪酸塩化合物がy/x=1.9〜4.0、z/x=
0.005〜1.0、M2 O中のK/Na=0〜8.
0、M’O中のMg/Ca=0〜10で表される請求項
1又は2記載の排水処理剤。
3. The general formula according to claim 1 or 2, wherein the silicate compound is y / x = 1.9 to 4.0, z / x =
0.005~1.0, K / Na = 0~8 in M 2 O.
The waste water treatment agent according to claim 1 or 2, wherein Mg / Ca in M'O is represented by 0 or 0.
【請求項4】 請求項1又は2に記載の一般式におい
て、珪酸塩化合物がy/x=0.5〜1.9、z/x=
0.005〜1.0、M2 O中のK/Na=0.01〜
8.0、M’O中のMg/Ca=0.02〜10で表さ
れる請求項1又は2記載の排水処理剤。
4. The general formula according to claim 1 or 2, wherein the silicate compound is y / x = 0.5 to 1.9, z / x =
0.005~1.0, K / Na = 0.01~ in M 2 O
The wastewater treatment agent according to claim 1 or 2, which is represented by 8.0 and Mg / Ca in M'O = 0.02 to 10.
【請求項5】 珪酸塩化合物のSi溶出量が、120m
g/g以下である請求項1〜4いずれか記載の排水処理
剤。
5. The amount of Si elution of the silicate compound is 120 m
The wastewater treatment agent according to any one of claims 1 to 4, which is g / g or less.
【請求項6】 重金属を含有する排水を処理する方法に
おいて、請求項1〜5いずれかに記載の珪酸塩化合物を
使用することを特徴とする排水処理方法。
6. A method for treating wastewater containing heavy metals, which comprises using the silicate compound according to any one of claims 1 to 5.
【請求項7】 油分を含有する排水を処理する方法にお
いて、請求項1〜5いずれかに記載の珪酸塩化合物を使
用することを特徴とする排水処理方法。
7. A method for treating wastewater containing oil, which comprises using the silicate compound according to any one of claims 1 to 5.
JP18192593A 1993-06-27 1993-06-27 Wastewater treatment agent and wastewater treatment method Expired - Fee Related JP3335719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18192593A JP3335719B2 (en) 1993-06-27 1993-06-27 Wastewater treatment agent and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18192593A JP3335719B2 (en) 1993-06-27 1993-06-27 Wastewater treatment agent and wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH078809A true JPH078809A (en) 1995-01-13
JP3335719B2 JP3335719B2 (en) 2002-10-21

Family

ID=16109305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18192593A Expired - Fee Related JP3335719B2 (en) 1993-06-27 1993-06-27 Wastewater treatment agent and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3335719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098240A (en) * 2005-10-03 2007-04-19 Kurita Water Ind Ltd Nonionic surfactant-containing water treatment method and apparatus
JP2010082516A (en) * 2008-09-30 2010-04-15 Nippon Paper Industries Co Ltd Anaerobic treatment method for pulp wastewater
US9029427B2 (en) 2005-11-11 2015-05-12 Asahi Kasei Chemicals Corporation Controlled release solid preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098240A (en) * 2005-10-03 2007-04-19 Kurita Water Ind Ltd Nonionic surfactant-containing water treatment method and apparatus
US9029427B2 (en) 2005-11-11 2015-05-12 Asahi Kasei Chemicals Corporation Controlled release solid preparation
JP2010082516A (en) * 2008-09-30 2010-04-15 Nippon Paper Industries Co Ltd Anaerobic treatment method for pulp wastewater

Also Published As

Publication number Publication date
JP3335719B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
Duan et al. Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu (II) from wastewater
Shim et al. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash
CA2105671C (en) Combined filtration and fixation of heavy metals
EP0487913A1 (en) Highly reactive reagents and compositions for the purification of waste gas and waste water, their preparation and their use
TWI597243B (en) Hazardous material handling materials and methods of their manufacture, handling of hazardous materials
JP2006205154A (en) Method for manufacturing adsorbent consisting essentially of hydroxyapatite crystal
JP2005040685A (en) Heavy metal adsorbent material and heavy metal treatment method
JP2005255737A (en) Method for producing heavy metal adsorbent from waste and heavy metal adsorbent obtained by the method
JP2011240325A (en) Agent for eliminating heavy metal ion and phosphate ion in wastewater, and method for eliminating heavy metal ion and phosphate ion using the same
Pachana et al. Alkali-activated material synthesized from palm oil fuel ash for Cu/Zn ion removal from aqueous solutions
JP5599256B2 (en) Heavy metal elution control material and elution control method
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
US5043081A (en) Method of chemically fixing liquid aqueous sludge by means of a pozzolanic reaction
JPH078809A (en) Waste water treating agent and treatment of waste water
JPH10137716A (en) Waste treating material and treatment of waste
JP2001347104A (en) Powdery decontaminant and method of decontaminating clean water and waste water
JPH10165920A (en) Nodulizing agent of slurry and solidifying agent using the same
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
JPS6245394A (en) Simultaneous removal of arsenic and silicon
JP3692443B2 (en) Production method of hydro-glossular using coal gasification slag
JP3355281B2 (en) Treatment agent and treatment method for metal-containing acidic wastewater
JP2021151947A (en) Method for producing inorganic industrial waste recycled product
JP2001205047A (en) Method for treating waste gas and soot dust
JP2007021485A (en) Method for purifying waste water using crystalline sodium silicate and agent therefor
JPH0810739A (en) Waste treating material and treating method of waste

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100802

LAPS Cancellation because of no payment of annual fees