JPH0787746A - Inverter apparatus - Google Patents

Inverter apparatus

Info

Publication number
JPH0787746A
JPH0787746A JP5228551A JP22855193A JPH0787746A JP H0787746 A JPH0787746 A JP H0787746A JP 5228551 A JP5228551 A JP 5228551A JP 22855193 A JP22855193 A JP 22855193A JP H0787746 A JPH0787746 A JP H0787746A
Authority
JP
Japan
Prior art keywords
switching element
waveform
voltage
inverter device
resonance coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5228551A
Other languages
Japanese (ja)
Inventor
Hideki Omori
英樹 大森
Mitsuru Takechi
充 武智
Kiyoshi Izaki
潔 井崎
Hideyuki Kominami
秀之 小南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5228551A priority Critical patent/JPH0787746A/en
Publication of JPH0787746A publication Critical patent/JPH0787746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To provide an inverter apparatus which is small and low-cost and has a high efficiency in the inverter apparatus which is used for control of an electric motor, for a decentralized-powersupply-line linkage system or the like. CONSTITUTION:A resonant coil 9 is connected in series with a DC power supply 10, and it is connected in parallel with a resonant capacitor 14. A switching element 11 is connected to a detection means 15 and oscillation drive means 20, a DC removal means 18 is connected to the detection means 15, and a waveform command means 21 is connected to the oscillation drive means 20. The detection means 15 is constituted of a rectifier diode and a smoothing capacitor 17, and the DC removal means 18 is composed of a coupling capacitor 19. The oscillation drive means 20 periodically sets the switching element 11 to continuity or cuts it off, and the waveform command means 21 command the continuity time of the switching element 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電動機制御や分
散電源系統連携システムなどに使用されるインバータ装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter device used in, for example, motor control and distributed power system cooperation system.

【0002】[0002]

【従来の技術】近年、この種のインバータ装置には、小
形化・低コスト化・高効率化が求められている。
2. Description of the Related Art In recent years, there has been a demand for miniaturization, cost reduction and high efficiency of this type of inverter device.

【0003】以下、従来のインバータ装置について図8
に基づいて説明する。図8においてEは直流電源、1、
2、3、4はスイッチング素子で、いわゆるフルブリッ
ジインバータを構成する。5は制御回路で前記スイッチ
ング素子1、2、3、4の導通・遮断を周期的に制御す
る。6は前記フルブリッジインバータの出力Va、Vbに
接続されたトランスで、前記トランス6の出力にはチョ
ークコイル7とコンデンサ8で構成された低域通過フィ
ルタが接続され、前記コンデンサ8の両端を出力とす
る。図9は図8の従来例の動作を説明する動作波形図で
ある。図9においてVOは前記トランス6の入力電圧、
VACは前記出力電圧である。前記制御回路5は前記トラ
ンス6の入力電圧VoすなわちVa−Vbが図9のように
パルス幅変調された疑似正弦波になるように前記スイッ
チング素子1、2、3、4の導通・遮断を制御する。前
記疑似正弦波Voは前記トランス6で目的に応じて昇降
圧され前記チョークコイル7と前記コンデンサ8で構成
された前記低域通過フィルタによって図9VACのような
低周波交流電圧が得られる。
Below, a conventional inverter device is shown in FIG.
It will be described based on. In FIG. 8, E is a DC power source, 1,
Switching elements 2, 3 and 4 constitute so-called full bridge inverters. A control circuit 5 periodically controls conduction / interruption of the switching elements 1, 2, 3, and 4. Reference numeral 6 is a transformer connected to the outputs Va and Vb of the full bridge inverter. A low-pass filter composed of a choke coil 7 and a capacitor 8 is connected to the output of the transformer 6 and outputs both ends of the capacitor 8. And FIG. 9 is an operation waveform diagram for explaining the operation of the conventional example of FIG. In FIG. 9, VO is the input voltage of the transformer 6,
VAC is the output voltage. The control circuit 5 controls conduction / interruption of the switching elements 1, 2, 3, 4 so that the input voltage Vo of the transformer 6, that is, Va-Vb, becomes a pseudo sine wave whose pulse width is modulated as shown in FIG. To do. The pseudo sine wave Vo is stepped up or down by the transformer 6 according to the purpose, and a low frequency AC voltage as shown in FIG. 9 VAC is obtained by the low pass filter composed of the choke coil 7 and the capacitor 8.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、スイッチング素子が4つ必要になるため
装置が高価になる上、図9のVOよりわかるように前記
スイッチング素子1、2、3、4はいわゆるハードスイ
ッチング動作を行ってその電圧が急峻に変化するのでス
イッチング損失が大きくなって効率が低くなったり、装
置の冷却機構が大きくなるという課題があった。
However, in the above-mentioned conventional configuration, since four switching elements are required, the apparatus becomes expensive and, as can be seen from VO in FIG. 9, the switching elements 1, 2, 3, In No. 4, a so-called hard switching operation is performed and the voltage thereof changes abruptly, so that there is a problem that switching loss becomes large and efficiency becomes low, and a cooling mechanism of the apparatus becomes large.

【0005】本発明は上記従来の課題を解決するもの
で、小形・安価・高効率のインバータ装置を提供するこ
とを目的とする。
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a small-sized, inexpensive and highly efficient inverter device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、第1の手段として、直流電源に直列に接続
した共振コイルとスイッチング素子と、前記共振コイル
またはスイッチング素子に並列に接続した共振コンデン
サと、前記共振コイルまたは前記スイッチング素子に接
続した検波手段と、前記検波手段に接続した直流除去手
段と、前記スイッチング素子を周期的に導通・遮断する
発振・駆動手段と前記発振・駆動手段に接続し前記スイ
ッチング素子の導通時間を指令する波形指令手段を有
し、前記直流除去手段の出力電圧が交流波形となるよう
に前記導通時間を制御するようにしたものである。
To achieve the above object, the present invention provides, as a first means, a resonance coil and a switching element connected in series to a DC power source, and a resonance coil or a switching element connected in parallel. Resonant capacitor, detecting means connected to the resonant coil or the switching element, direct current removing means connected to the detecting means, oscillation / driving means for periodically connecting / disconnecting the switching element, and the oscillation / driving It has a waveform command means connected to the means for instructing the conduction time of the switching element, and controlling the conduction time so that the output voltage of the DC removing means has an AC waveform.

【0007】また本発明は、第2の手段として、直流電
源に直列に接続した共振コイルとスイッチング素子と、
前記共振コイルまたは前記スイッチング素子に並列に接
続した共振コンデンサと、前記共振コイルまたは前記ス
イッチング素子に接続した変圧手段と、前記変圧手段に
接続した検波手段と、前記検波手段に接続した直流除去
手段と、前記スイッチング素子を周期的に導通・遮断す
る発振・駆動手段と前記発振・駆動手段に接続し前記ス
イッチング素子の導通時間を指令する波形指令手段を有
し、前記直流除去手段の出力電圧が交流波形となるよう
に前記導通時間を制御するようにしたものである。
The present invention also provides, as a second means, a resonance coil and a switching element connected in series to a DC power supply,
A resonance capacitor connected in parallel to the resonance coil or the switching element; a transformer connected to the resonance coil or the switching element; a detector connected to the transformer; and a DC remover connected to the detector. An oscillation / driving means for periodically connecting / disconnecting the switching element, and a waveform command means connected to the oscillation / driving means for instructing a conduction time of the switching element, and an output voltage of the direct current removing means is an alternating current. The conduction time is controlled so as to form a waveform.

【0008】さらに本発明は、第3の手段として、直流
電源に直列に接続した高周波トランスとスイッチング素
子と、前記高周波トランスまたは前記スイッチング素子
に並列に接続した共振コンデンサと、前記高周波トラン
スの二次側に接続した検波手段と、前記検波手段に接続
した直流除去手段と、前記スイッチング素子を周期的に
導通・遮断する発振・駆動手段と前記発振・駆動手段に
接続し前記スイッチング素子の導通時間を指令する波形
指令手段を有し、前記直流除去手段の出力電圧が交流波
形となるように前記導通時間を制御するようにしたもの
である。
Further, the present invention provides, as a third means, a high frequency transformer and a switching element connected in series to a DC power supply, a resonance capacitor connected in parallel to the high frequency transformer or the switching element, and a secondary of the high frequency transformer. The detecting means connected to the side, the direct current removing means connected to the detecting means, the oscillation / driving means for periodically connecting / disconnecting the switching element, and the conduction time of the switching element connected to the oscillation / driving means. It has a waveform commanding means for commanding, and controls the conduction time so that the output voltage of the DC removing means has an AC waveform.

【0009】そして本発明は、第4の手段として、前記
第1の手段、第2の手段及び第3の手段において、前記
出力電圧と目的の交流波形の誤差を検出する誤差電圧検
出手段を前記波形指令手段に接続し、前記出力電圧が目
的の交流波形に近付くように前記導通時間を制御するよ
うにしたものである。
The present invention, as a fourth means, is an error voltage detecting means for detecting an error between the output voltage and an intended AC waveform in the first means, the second means and the third means. It is connected to a waveform command means to control the conduction time so that the output voltage approaches an intended AC waveform.

【0010】[0010]

【作用】上記第1の手段によれば、1つのスイッチング
素子のみで成る簡単な構成で、目的の交流波形を得るこ
とができる上、スイッチング素子がいわゆるソフトスイ
ッチング動作を行うのでスイッチング損失が小さくな
り、効率が高く装置の冷却機構も小さくてすむ。従っ
て、小形・安価・高効率のインバータ装置を提供するこ
とができる。
According to the above-mentioned first means, the desired AC waveform can be obtained with a simple structure composed of only one switching element, and the switching element performs so-called soft switching operation, so that the switching loss is reduced. The efficiency is high and the cooling mechanism of the device can be small. Therefore, it is possible to provide a compact, inexpensive, and highly efficient inverter device.

【0011】上記第2の手段によれば、上記第1の手段
の効果に加えて、トランスによって極めて高い電圧や低
い電圧を容易に得ることができ、しかも高周波部分に挿
入しているので高周波対応の小形のトランスを用いるこ
とができる。従って、幅広い出力電圧に対して小形・安
価・高効率のインバータ装置を提供することができる。
また、昇降圧を行わない場合であっても直流電源と出力
の絶縁が容易に得られるのでインバータ装置を利用しや
すい。
According to the second means, in addition to the effect of the first means, an extremely high voltage or a low voltage can be easily obtained by the transformer, and since it is inserted in the high frequency portion, it is compatible with high frequencies. A small transformer can be used. Therefore, it is possible to provide a compact, inexpensive, and highly efficient inverter device for a wide range of output voltages.
Moreover, since the DC power supply and the output can be easily insulated even when the step-up / down is not performed, the inverter device can be easily used.

【0012】上記第3の手段によれば、上記第2の手段
に比して、高周波トランスが共振コイルを兼ねるので部
品が少なくてすむ。従って、幅広い出力電圧に対してさ
らに小形・安価で高効率のインバータ装置を提供するこ
とができる。また、昇降圧を行わない場合であっても直
流電源と出力の絶縁が容易に得られるのでインバータ装
置を利用しやすい。
According to the third means, the high-frequency transformer also serves as the resonance coil as compared with the second means, so that the number of parts can be reduced. Therefore, it is possible to provide a more compact, inexpensive and highly efficient inverter device for a wide range of output voltages. Moreover, since the DC power supply and the output can be easily insulated even when the step-up / down is not performed, the inverter device can be easily used.

【0013】上記第4の手段によれば、出力電圧を帰還
制御するので、回路定数の温度変化や経時変化、また出
力に接続した負荷の変動にかかわらず、正確に目的の交
流波形を得ることができる。従って、小形・安価・高効
率で出力が安定・高精度のインバータ装置を提供するこ
とができる。
According to the fourth means, since the output voltage is feedback-controlled, the target AC waveform can be accurately obtained regardless of changes in circuit constants due to temperature, changes over time, and changes in the load connected to the output. You can Therefore, it is possible to provide a compact, inexpensive, highly efficient inverter device with stable output and high accuracy.

【0014】[0014]

【実施例】(実施例1)以下、本発明の第1の実施例に
ついて図面を参照しながら説明する。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は本実施例のインバータ装置の回路を
示すもので、9は電圧Eの直流電源10に直列に接続し
た共振コイル、11はスイッチング素子でバイポーラト
ランジスタ12と逆並列ダイオード13で構成する。1
4は前記共振コイル9に並列に接続した共振コンデン
サ、15は前記スイッチング素子11のコレクタ−エミ
ッタに接続した検波手段で整流ダイオード16と平滑コ
ンデンサ17で構成する。18は前記検波手段15に接
続した直流除去手段でカップリングコンデンサ19より
成る。20は前記スイッチング素子11を周期的に導通
・遮断する発振・駆動手段、21は前記発振・駆動手段
20に接続し前記スイッチング素子11の導通時間を指
令する波形指令手段である。図2は本実施例のインバー
タ装置の動作を説明する動作波形図である。図2(a)
は図1の数10kHzで動作するスイッチング素子11
のコレクタ−エミッタ間電圧VOを示す。時刻t0でスイ
ッチング素子11を導通すると共振コイル9に電流が流
れ増加する。導通時間TONの後、時刻t1でスイッチン
グ素子11を遮断すると、共振コイル9の電流は共振コ
ンデンサ14に流れ込みLC共振状態となる。電圧VO
は共振の弧を描いて上昇・下降し、時刻t2で再び零に
達し、逆並列ダイオード13が自然に導通して時刻t0
の状態に戻り発振が継続する。スイッチング素子11
は、遮断・導通時の電圧が図2(a)のVOの通り、共
振によって緩やかに立ち上がり自然に零に達するいわゆ
るソフトスイッチング動作を行うので、状態選移時の電
圧・電流責務が小さく損失が小さい。スイッチング素子
11のピーク電圧VOPは導通時間TONを長くすると高く
なり短くすると低くなるので、導通時間TONで制御する
ことができる。図2(b)のTONは波形指令手段21に
よって数10〜数100Hzで周期的に制御されるスイ
ッチング素子11の導通時間、VOはこの導通時間の変
化に対応して現れるスイッチング素子11の電圧VOの
波形を示す。TONは図2(b)のようにVOのピーク値
法絡線が正弦波になるように与える。共振コイル9の電
圧の平均値は零になるのでVOの平均値は直流電源10
の電圧Eに等しい。図1の検波手段15はVOを法絡線
検波するので、その出力V1は図2(b)のように直流
重畳された正弦波になる。V1の直流分を直流除去手段
18によって除去すると出力VACとして図2(b)のよ
うな交流正弦波が得られる。
FIG. 1 shows a circuit of an inverter device according to the present embodiment. Reference numeral 9 is a resonance coil connected in series to a DC power source 10 of voltage E, 11 is a switching element, which is composed of a bipolar transistor 12 and an antiparallel diode 13. To do. 1
Reference numeral 4 is a resonance capacitor connected in parallel to the resonance coil 9, and reference numeral 15 is a detection means connected to the collector-emitter of the switching element 11, which is composed of a rectifying diode 16 and a smoothing capacitor 17. Reference numeral 18 is a direct current removing means connected to the detecting means 15 and comprises a coupling capacitor 19. Reference numeral 20 is an oscillating / driving means for periodically connecting / disconnecting the switching element 11, and 21 is a waveform commanding means connected to the oscillating / driving means 20 for instructing a conductive time of the switching element 11. FIG. 2 is an operation waveform diagram for explaining the operation of the inverter device of this embodiment. Figure 2 (a)
Is a switching element 11 operating at several tens of kHz in FIG.
Shows the collector-emitter voltage V0 of the. When the switching element 11 is turned on at time t0, a current flows through the resonance coil 9 and increases. When the switching element 11 is cut off at the time t1 after the conduction time TON, the current of the resonance coil 9 flows into the resonance capacitor 14 and enters the LC resonance state. Voltage VO
Goes up and down in an arc of resonance, reaches zero again at time t2, and the anti-parallel diode 13 naturally conducts at time t0.
The state returns to and the oscillation continues. Switching element 11
2 performs a so-called soft switching operation in which the voltage at the time of interruption / conduction rises gently due to resonance and naturally reaches zero as shown by VO in Fig. 2 (a), so the voltage / current duty at the time of state transition is small and there is no loss. small. The peak voltage VOP of the switching element 11 increases as the conduction time TON increases and decreases as the conduction time TON decreases. Therefore, the peak voltage VOP can be controlled by the conduction time TON. 2B, TON is a conduction time of the switching element 11 which is periodically controlled by the waveform command means 21 at several tens to hundreds of Hz, and VO is a voltage VO of the switching element 11 which appears in response to the change of the conduction time. Shows the waveform of. TON is applied so that the VO peak value normal line becomes a sine wave as shown in FIG. Since the average value of the voltage of the resonance coil 9 becomes zero, the average value of VO is 10
Equal to the voltage E of. Since the detection means 15 in FIG. 1 detects VO by the normal line detection, its output V1 becomes a DC superimposed sine wave as shown in FIG. 2 (b). When the DC component of V1 is removed by the DC removing means 18, an AC sine wave as shown in FIG. 2B is obtained as the output VAC.

【0016】以上のように構成された本実施例のインバ
ータ装置は、1つのスイッチング素子のみで成る簡単な
構成で、目的の交流波形を得ることができる上、スイッ
チング素子がいわゆるソフトスイッチング動作を行うの
でスイッチング損失が小さくなり、効率が高く装置の冷
却機構も小さくてすむ。従って、小形・安価な構成かつ
高効率で目的の交流波形を得ることができる。
The inverter device of the present embodiment having the above-described structure has a simple structure including only one switching element and can obtain a desired AC waveform, and the switching element performs so-called soft switching operation. Therefore, the switching loss is reduced, the efficiency is high, and the cooling mechanism of the device is small. Therefore, it is possible to obtain a target AC waveform with a compact and inexpensive structure and high efficiency.

【0017】なお、本実施例では検波手段をスイッチン
グ素子に接続したが、共振コイルに接続しても同じ効果
が得られる。
Although the detecting means is connected to the switching element in this embodiment, the same effect can be obtained by connecting the detecting means to the resonance coil.

【0018】(実施例2)次に、本発明の第2の実施例
について図面を参照しながら説明する。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to the drawings.

【0019】図3は本実施例のインバータ装置の回路を
示すもので、22は電圧Eの直流電源23に直列に接続
した共振コイル、24はスイッチング素子でバイポーラ
トランジスタ25と逆並列ダイオード26で構成する。
27は前記共振コイル22に並列に接続した共振コンデ
ンサ、28は前記スイッチング素子24のコレクタ−エ
ミッタに接続した変圧手段で高周波トランス29と高周
波トランス29の偏磁を防ぐため直流分を除くコンデン
サ30より成る。31は前記変圧手段28に接続した検
波手段で整流ダイオード32とチョークコイル33と平
滑コンデンサ34で構成する。ここでチョークコイル3
3がなくても装置は支障なく動作するが、実施例のよう
にチョークコイル33を接続すると平滑コンデンサ34
への突入電流を抑えることができるので平滑コンデンサ
34の発熱を低減することができる。35は前記検波手
段31に接続した直流除去手段でカップリングコンデン
サ36より成る。63は前記スイッチング素子24を周
期的に導通・遮断する発振・駆動手段、64は前記発振
・駆動手段35に接続し前記スイッチング素子24の導
通時間を指令する波形指令手段である。本実施例では直
流電源23の電圧Eを100V程度とし、出力電圧VAC
として5kV程度の極めて高い電圧を得る場合とする。
数10kHzで動作するスイッチング素子24のコレク
タ−エミッタ間電圧VOは図2(a)と同じで、スイッ
チング素子24は、遮断・導通時の電圧が共振によって
緩やかに立ち上がり自然に零に達するいわゆるソフトス
イッチング動作を行うので、状態選移時の電圧・電流責
務が小さく損失が小さい。またスイッチング素子24の
ピーク電圧は導通時間TONを長くすると高くなり短くす
ると低くなるので、導通時間TONで制御することができ
る。図4は本実施例のインバータ装置の動作を説明する
動作波形図である。TONは波形指令手段64によって数
10〜数100Hzで周期的に制御されるスイッチング
素子24の導通時間、VOはこの導通時間の変化に対応
して現れるスイッチング素子24の電圧VOの波形を示
す。TONは図4のようにVOのピーク値法絡線が正弦波
になるように与える。共振コイル22の電圧の平均値は
零になるのでVOの平均値は直流電源23の電圧Eに等
しい。安価に入手できるスイッチング素子の耐圧は最大
1000V程度までなのでVOの最大値は800V程度
にするが、ここで変圧手段28によってVOを5kV程
度まで昇圧すると、変圧手段28の出力V1として図4
のように平均値が零の高圧が得られる。検波手段31は
VOを略法絡線検波するので、その出力V2は図4のよう
に正弦波になるが検波によってV1の負の部分がなくな
るので直流重畳された波形になる。V2の直流分を直流
除去手段35によって除去すると出力VACとして図4の
ような交流正弦波が得られる。
FIG. 3 shows a circuit of the inverter device of the present embodiment. Reference numeral 22 is a resonance coil connected in series to a DC power source 23 of voltage E, 24 is a switching element, which is composed of a bipolar transistor 25 and an antiparallel diode 26. To do.
Reference numeral 27 is a resonance capacitor connected in parallel to the resonance coil 22, 28 is a transformation means connected to the collector-emitter of the switching element 24, and a high frequency transformer 29 and a capacitor 30 excluding a direct current component in order to prevent bias magnetization of the high frequency transformer 29. Become. Reference numeral 31 is a detecting means connected to the transforming means 28 and is composed of a rectifying diode 32, a choke coil 33 and a smoothing capacitor 34. Here choke coil 3
Although the device operates without any trouble even without 3, there is a smoothing capacitor 34 when the choke coil 33 is connected as in the embodiment.
Since it is possible to suppress the inrush current to the smoothing capacitor 34, it is possible to reduce the heat generation of the smoothing capacitor 34. Reference numeral 35 is a direct current removing means connected to the detecting means 31 and comprises a coupling capacitor 36. Reference numeral 63 is an oscillating / driving means for periodically connecting / disconnecting the switching element 24, and 64 is a waveform commanding means for connecting to the oscillating / driving means 35 and for instructing a conductive time of the switching element 24. In this embodiment, the voltage E of the DC power supply 23 is set to about 100 V, and the output voltage VAC
As an example, an extremely high voltage of about 5 kV is obtained.
The collector-emitter voltage VO of the switching element 24 operating at several tens of kHz is the same as that shown in FIG. 2A, and the switching element 24 is a so-called soft switching in which the voltage at the time of interruption / conduction gently rises due to resonance and naturally reaches zero. Since it operates, the voltage / current duty at the time of state selection is small and the loss is small. Further, the peak voltage of the switching element 24 becomes higher as the conduction time TON becomes longer and becomes lower as the conduction time TON becomes shorter, so that it can be controlled by the conduction time TON. FIG. 4 is an operation waveform diagram for explaining the operation of the inverter device of this embodiment. TON represents the conduction time of the switching element 24 which is periodically controlled by the waveform command means 64 at several tens to several hundreds Hz, and VO represents the waveform of the voltage VO of the switching element 24 which appears in response to the change in the conduction time. TON is given so that the VO peak value normal line becomes a sine wave as shown in FIG. Since the average value of the voltage of the resonance coil 22 becomes zero, the average value of VO is equal to the voltage E of the DC power supply 23. The maximum value of VO is set to about 800V because the withstand voltage of a switching element which can be obtained at a low cost is up to about 1000V.
A high pressure with an average value of zero can be obtained. Since the detection means 31 substantially detects the normal-tangential line of VO, its output V2 becomes a sine wave as shown in FIG. 4, but the negative portion of V1 disappears due to the detection, so that it has a DC superimposed waveform. When the DC component of V2 is removed by the DC removing means 35, an AC sine wave as shown in FIG. 4 is obtained as the output VAC.

【0020】以上のように構成された本実施例のインバ
ータ装置は、第1の実施例での効果に加えて、トランス
によって極めて高い電圧や低い電圧を容易に得ることが
でき、しかも高周波部分に挿入しているので高周波対応
の小形のトランスを用いることができるという効果が得
られる。。従って、幅広い出力電圧に対して小形・安価
な構成かつ高効率で目的の交流波形を得ることができ
る。さらに昇降圧を行わない場合であっても直流電源2
3と出力VACの絶縁が容易に得られるのでインバータ装
置を利用しやすい。
In addition to the effects of the first embodiment, the inverter device of the present embodiment configured as described above can easily obtain extremely high voltage and low voltage by the transformer, and further, in the high frequency part. Since it is inserted, it is possible to obtain the effect that a small transformer compatible with high frequencies can be used. . Therefore, it is possible to obtain a desired AC waveform for a wide range of output voltages with a small and inexpensive structure and high efficiency. Even if the buck-boost is not performed, the DC power supply 2
Since the insulation of 3 and the output VAC can be easily obtained, it is easy to use the inverter device.

【0021】なお、本実施例では検波手段をスイッチン
グ素子に接続したが、共振コイルに接続しても同じ効果
が得られ、この場合共振コイルの電圧は直流分を含まな
いのでコンデンサ30がなくてもよい。
In the present embodiment, the detecting means is connected to the switching element, but the same effect can be obtained by connecting it to the resonance coil. In this case, since the voltage of the resonance coil does not include the direct current component, the capacitor 30 is not necessary. Good.

【0022】(実施例3)次に本発明の第3の実施例に
ついて図面を参照しながら説明する。
(Embodiment 3) Next, a third embodiment of the present invention will be described with reference to the drawings.

【0023】図5は本実施例のインバータ装置の回路を
示すもので、37は直流電源47に直列に一次側を接続
した高周波トランス、38はスイッチング素子でバイポ
ーラトランジスタ39と逆並列ダイオード40で構成す
る。41は前記高周波トランス37の一次側に並列に接
続した共振コンデンサ、42は前記高周波トランス37
の二次側に接続した検波手段で整流ダイオード43と平
滑コンデンサ44で構成する。45は前記検波手段42
に接続した直流除去手段でカップリングコンデンサ46
より成る。47は前記スイッチング素子38を周期的に
導通・遮断する発振・駆動手段、48は前記発振・駆動
手段47に接続し前記スイッチング素子38の導通時間
を指令する波形指令手段である。本実施例では直流電源
47の電圧Eを100V程度とし、出力電圧VACとして
5kV程度の極めて高い電圧を得る場合とする。数10
kHzで動作するスイッチング素子38のコレクタ−エ
ミッタ間電圧VOは図2(a)と同じで、スイッチング
素子38は、遮断・導通時の電圧が共振によって緩やか
に立ち上がり自然に零に達するいわゆるソフトスイッチ
ング動作を行うので、状態選移時の電圧・電流責務が小
さく損失が小さい。またスイッチング素子38のピーク
電圧は導通時間TONを長くすると高くなり短くすると低
くなるので、高周波トランス37の一次側電圧VLは導
通時間TONで制御することができる。図5は本実施例の
インバータ装置の動作を説明する動作波形図である。T
ONは波形指令手段48によって数10〜数100Hzで
周期的に制御されるスイッチング素子38の導通時間、
VOはこの導通時間の変化に対応して現れる高周波トラ
ンス37の一次側電圧VLの波形を示す。TONは図6の
ようにVLのピーク値法絡線が正弦波になるように与え
る。安価に入手できるスイッチング素子の耐圧は最大1
000V程度までなのでVLの最大値は700V程度に
するが、ここで高周波トランス37によってVLを5k
V程度まで昇圧すると、高周波トランス37の二次側出
力電圧V1として図6のように高圧が得られる。検波手
段43はVOを法絡線検波するので、その出力V2は図6
のように正弦波になるが検波によってV1の負の部分が
なくなるので直流重畳された波形になる。V2の直流分
を直流除去手段46によって除去すると出力VACとして
図6のような交流正弦波が得られる。
FIG. 5 shows a circuit of the inverter device of the present embodiment. 37 is a high frequency transformer in which the primary side is connected in series to a DC power source 47, 38 is a switching element and is composed of a bipolar transistor 39 and an antiparallel diode 40. To do. 41 is a resonance capacitor connected in parallel to the primary side of the high frequency transformer 37, and 42 is the high frequency transformer 37.
The rectifying diode 43 and the smoothing capacitor 44 are the detecting means connected to the secondary side of the. 45 is the detection means 42
DC coupling means connected to the coupling capacitor 46
Consists of Reference numeral 47 is an oscillating / driving means for periodically connecting / disconnecting the switching element 38, and 48 is a waveform commanding means connected to the oscillating / driving means 47 for instructing a conductive time of the switching element 38. In this embodiment, the voltage E of the DC power supply 47 is set to about 100 V, and an extremely high voltage of about 5 kV is obtained as the output voltage VAC. Number 10
The collector-emitter voltage VO of the switching element 38 operating at kHz is the same as that in FIG. 2A, and the switching element 38 has a so-called soft switching operation in which the voltage during cutoff / conduction gently rises due to resonance and naturally reaches zero. Therefore, the voltage / current duty at the time of state selection is small and the loss is small. Further, since the peak voltage of the switching element 38 increases as the conduction time TON increases and decreases as the conduction time TON decreases, the primary side voltage VL of the high frequency transformer 37 can be controlled by the conduction time TON. FIG. 5 is an operation waveform diagram for explaining the operation of the inverter device of this embodiment. T
ON is a conduction time of the switching element 38 which is periodically controlled by the waveform command means 48 at several tens to several hundreds Hz,
VO represents the waveform of the primary side voltage VL of the high frequency transformer 37 which appears in response to the change of the conduction time. TON is given so that the VL peak value normal line becomes a sine wave as shown in FIG. The maximum breakdown voltage of switching elements that can be obtained at low cost is 1
The maximum value of VL is about 700V because it is up to about 000V, but VL is set to 5k by the high frequency transformer 37 here.
When the voltage is increased to about V, a high voltage is obtained as the secondary side output voltage V1 of the high frequency transformer 37 as shown in FIG. Since the detecting means 43 detects the Vo by the normal line, its output V2 is shown in FIG.
Although it becomes a sine wave as shown by the above, the negative part of V1 disappears by the detection, so that it becomes a DC superimposed waveform. When the DC component of V2 is removed by the DC removing means 46, an AC sine wave as shown in FIG. 6 is obtained as the output VAC.

【0024】以上のように構成された本実施例のインバ
ータ装置は、高周波トランス37が共振コイルを兼ねる
ので、上記第2の実施例での効果に加えて、部品が少な
くすることができるという効果が得られる。従って、幅
広い出力電圧に対してさらに小形・安価で高効率のイン
バータ装置を提供することができる。また、昇降圧を行
わない場合であっても直流電源と出力の絶縁が容易に得
られるのでインバータ装置を利用しやすい。
In the inverter device of the present embodiment constructed as described above, since the high frequency transformer 37 also serves as a resonance coil, in addition to the effect of the second embodiment, the number of parts can be reduced. Is obtained. Therefore, it is possible to provide a more compact, inexpensive and highly efficient inverter device for a wide range of output voltages. Moreover, since the DC power supply and the output can be easily insulated even when the step-up / down is not performed, the inverter device can be easily used.

【0025】(実施例4)次に本発明の第4の実施例に
ついて図面を参照しながら説明する。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to the drawings.

【0026】図7は本実施例のインバータ装置の回路を
示すもので、図3に示した本発明の第2の実施例でのイ
ンバータ装置の波形指令手段64に出力電圧VACと目的
の交流波形Vsの誤差を検出する誤差電圧検出手段65
を接続したものである。誤差電圧検出手段65は目的の
交流波形Vsを発生する交流波形発生手段66と誤差増
幅器67より成る。48は電圧Eの直流電源49に直列
に接続した共振コイル、50はスイッチング素子でバイ
ポーラトランジスタ51と逆並列ダイオード52で構成
する。53は前記共振コイル48に並列に接続した共振
コンデンサ、54は前記スイッチング素子50のコレク
タ−エミッタに接続した変圧手段で高周波トランス55
と高周波トランス55の偏磁を防ぐため直流分を除くコ
ンデンサ56より成る。57は前記変圧手段54に接続
した検波手段で整流ダイオード58とチョークコイル5
9と平滑コンデンサ60で構成する。61は前記検波手
段57に接続した直流除去手段でカップリングコンデン
サ62より成る。63は前記スイッチング素子51を周
期的に導通・遮断する発振・駆動手段である。図3と同
様に、出力VACとして交流正弦波が得られるが、図5の
場合は、出力電圧VACと目的の交流波形VSを比較して
その誤差が小さくなるようにスイッチング素子51の導
通時間TONを制御する。
FIG. 7 shows the circuit of the inverter device of this embodiment. The output voltage VAC and the desired AC waveform are supplied to the waveform command means 64 of the inverter device of the second embodiment of the present invention shown in FIG. Error voltage detecting means 65 for detecting an error of Vs
Is connected. The error voltage detecting means 65 comprises an AC waveform generating means 66 for generating a target AC waveform Vs and an error amplifier 67. Reference numeral 48 is a resonance coil connected in series to a DC power source 49 of voltage E, and reference numeral 50 is a switching element which is composed of a bipolar transistor 51 and an anti-parallel diode 52. Reference numeral 53 is a resonance capacitor connected in parallel with the resonance coil 48, and 54 is a transformation means connected to the collector-emitter of the switching element 50, which is a high frequency transformer 55.
And a capacitor 56 for removing the direct current component in order to prevent the high-frequency transformer 55 from being demagnetized. Reference numeral 57 is a detection means connected to the transformation means 54 and is a rectifying diode 58 and a choke coil 5.
9 and the smoothing capacitor 60. Reference numeral 61 is a direct current removing means connected to the detecting means 57, and comprises a coupling capacitor 62. Reference numeral 63 is an oscillating / driving means for periodically connecting / disconnecting the switching element 51. Similar to FIG. 3, an AC sine wave is obtained as the output VAC, but in the case of FIG. 5, the conduction time TON of the switching element 51 is compared so that the output voltage VAC is compared with the target AC waveform VS to reduce the error. To control.

【0027】以上のように構成された本実施例のインバ
ータ装置は、出力電圧を帰還制御するので、回路定数の
温度変化や経時変化、また出力に接続した負荷の変動に
かかわらず、正確に目的の交流波形を得ることができ
る。従って、小形・安価・高効率で出力が安定・高精度
のインバータ装置を提供することができる。
Since the inverter device of the present embodiment configured as described above feedback-controls the output voltage, it is possible to accurately target the output voltage regardless of changes in circuit constants due to temperature, changes over time, and changes in the load connected to the output. The AC waveform of can be obtained. Therefore, it is possible to provide a compact, inexpensive, highly efficient inverter device with stable output and high accuracy.

【0028】なお、本実施例では本発明の第2の実施例
のインバータ装置に誤差電圧検出手段を加えて帰還制御
した場合について説明したが、本発明の第1の手段及び
第3の手段に誤差検出手段を加えて帰還制御した場合も
同様の効果が得られることは明かである。
In this embodiment, the case where the feedback control is performed by adding the error voltage detecting means to the inverter device of the second embodiment of the present invention has been described, but the first means and the third means of the present invention are used. It is obvious that the same effect can be obtained when the feedback control is performed by adding the error detecting means.

【0029】以上の実施例において、共振コンデンサは
共振コイルまたは高周波トランスの一次側に並列に接続
した例で説明したが、スイッチング素子に第2の共振コ
ンデンサを接続してもよく、スイッチング素子のみに共
振コンデンサを並列に接続してもよい。また、直流電源
として交流電源を整流したものなど任意の電源を用いる
ことができる。検波手段は略法絡線検波するものであれ
ばどのような構成でもよい。直流除去手段はカップリン
グコンデンサによらなくても直流分を打ち消す直流電圧
を重畳するなど他の方法でもよい。スイッチング素子と
してはバイポーラトランジスタで説明したが、MOSF
ET、IGBT、GTOサイリスタなどどのようなスイ
ッチング素子を用いてもよい。誤差電圧検出手段は交流
発生発生手段と誤差増幅器の組合せで説明したがマイク
ロコンピュータを用いて演算するなど他の方法でもよ
い。また、出力電圧としては正弦波で説明したが台形波
でも三角波でも任意の交流波形を得ることができる。な
お、第2及び第3の実施例においては昇圧により高電圧
を得る場合について説明したが、降圧することもできる
し、昇降圧しなくてもよい。
In the above embodiments, the resonance capacitor is connected to the primary side of the resonance coil or the high frequency transformer in parallel. However, the second resonance capacitor may be connected to the switching element, and only the switching element is connected. The resonance capacitors may be connected in parallel. Further, as the DC power supply, any power supply such as a rectified AC power supply can be used. The detecting means may have any configuration as long as it can detect a substantially normal line. The DC removing means may be another method such as superimposing a DC voltage for canceling the DC component without using the coupling capacitor. As a switching element, a bipolar transistor has been explained, but a MOSF
Any switching element such as ET, IGBT, GTO thyristor may be used. The error voltage detecting means has been described as the combination of the AC generating means and the error amplifier, but other methods such as calculation using a microcomputer may be used. Although the output voltage has been described as a sine wave, an arbitrary AC waveform can be obtained as a trapezoidal wave or a triangular wave. In addition, in the second and third embodiments, the case where a high voltage is obtained by boosting has been described, but it is also possible to lower the voltage or to raise or lower the voltage.

【0030】[0030]

【発明の効果】以上のように本発明は、直流電源に直列
に接続した共振コイルとスイッチング素子と、前記共振
コイルまたはスイッチング素子に並列に接続した共振コ
ンデンサと、前記共振コイルまたは前記スイッチング素
子に接続した検波手段と、前記検波手段に接続した直流
除去手段と、前記スイッチング素子を周期的に導通・遮
断する発振・駆動手段と前記発振・駆動手段に接続し前
記スイッチング素子の導通時間を指令する波形指令手段
を有し、前記直流除去手段の出力電圧が交流波形となる
ように前記導通時間を制御することにより、1つのスイ
ッチング素子のみで成る簡単な構成で、目的の交流波形
を得ることができる上、スイッチング素子がいわゆるソ
フトスイッチング動作を行うのでスイッチング損失が小
さくなり、効率が高く装置の冷却機構も小さくてすむ。
従って、小形・安価・高効率のインバータ装置を提供す
ることができる。
As described above, according to the present invention, a resonance coil and a switching element connected in series to a DC power source, a resonance capacitor connected in parallel to the resonance coil or the switching element, and the resonance coil or the switching element are provided. Connected detection means, direct current removal means connected to the detection means, oscillation / driving means for periodically connecting / disconnecting the switching element, and connecting to the oscillation / driving means to instruct the conduction time of the switching element. By having the waveform command means and controlling the conduction time so that the output voltage of the direct current removing means has an alternating current waveform, a desired alternating current waveform can be obtained with a simple configuration including only one switching element. In addition, the switching element performs so-called soft switching operation, which reduces switching loss and improves efficiency. Cooling mechanism Ku device requires also small.
Therefore, it is possible to provide a compact, inexpensive, and highly efficient inverter device.

【0031】また本発明は、直流電源に直列に接続した
共振コイルとスイッチング素子と、前記共振コイルまた
は前記スイッチング素子に並列に接続した共振コンデン
サと、前記共振コイルまたは前記スイッチング素子に接
続した変圧手段と、前記変圧手段に接続した検波手段
と、前記検波手段に接続した直流除去手段と、前記スイ
ッチング素子を周期的に導通・遮断する発振・駆動手段
と前記発振・駆動手段に接続し前記スイッチング素子の
導通時間を指令する波形指令手段を有し、前記直流除去
手段の出力電圧が交流波形となるように前記導通時間を
制御することにより、トランスによって極めて高い電圧
や低い電圧を容易に得ることができ、しかも高周波部分
に挿入しているので高周波対応の小形のトランスを用い
ることができる。従って、幅広い出力電圧に対して小形
・安価・高効率のインバータ装置を提供することができ
る。また、昇降圧を行わない場合であっても直流電源と
出力の絶縁が容易に得られるのでインバータ装置を利用
しやすい。
The present invention also provides a resonance coil and a switching element connected in series to a DC power source, a resonance capacitor connected in parallel to the resonance coil or the switching element, and a transformer means connected to the resonance coil or the switching element. A detecting means connected to the transforming means, a direct current removing means connected to the detecting means, an oscillating / driving means for periodically connecting / disconnecting the switching element, and a switching element connected to the oscillating / driving means. It is possible to easily obtain an extremely high voltage or a low voltage by the transformer by controlling the conduction time so that the output voltage of the direct current removing means has an AC waveform. Moreover, since it is inserted in the high frequency part, a small transformer compatible with high frequencies can be used. Therefore, it is possible to provide a compact, inexpensive, and highly efficient inverter device for a wide range of output voltages. Moreover, since the DC power supply and the output can be easily insulated even when the step-up / down is not performed, the inverter device can be easily used.

【0032】さらに本発明は、直流電源に直列に接続し
た高周波トランスとスイッチング素子と、前記高周波ト
ランスまたは前記スイッチング素子に並列に接続した共
振コンデンサと、前記高周波トランスの二次側に接続し
た検波手段と、前記検波手段に接続した直流除去手段
と、前記スイッチング素子を周期的に導通・遮断する発
振・駆動手段と前記発振・駆動手段に接続し前記スイッ
チング素子の導通時間を指令する波形指令手段を有し、
前記直流除去手段の出力電圧が交流波形となるように前
記導通時間を制御することにより、高周波トランスが共
振コイルを兼ねるので部品が少なくてすむ。従って、幅
広い出力電圧に対してさらに小形・安価で高効率のイン
バータ装置を提供することができる。また、昇降圧を行
わない場合であっても直流電源と出力の絶縁が容易に得
られるのでインバータ装置を利用しやすい。
Further, according to the present invention, a high frequency transformer and a switching element connected in series to a DC power source, a resonance capacitor connected in parallel to the high frequency transformer or the switching element, and a detection means connected to the secondary side of the high frequency transformer. A direct current removing means connected to the detecting means, an oscillating / driving means for periodically connecting / disconnecting the switching element, and a waveform instructing means for connecting to the oscillating / driving means to instruct a conduction time of the switching element. Have,
By controlling the conduction time so that the output voltage of the DC removing means has an AC waveform, the high frequency transformer also serves as a resonance coil, so that the number of parts can be reduced. Therefore, it is possible to provide a more compact, inexpensive and highly efficient inverter device for a wide range of output voltages. Moreover, since the DC power supply and the output can be easily insulated even when the step-up / down is not performed, the inverter device can be easily used.

【0033】そして本発明は、前記出力電圧と目的の交
流波形の誤差を検出する誤差電圧検出手段を前記波形指
令手段に接続し、前記出力電圧が目的の交流波形に近付
くように前記導通時間を制御することにより、出力電圧
を帰還制御するので、回路定数の温度変化や経時変化、
また出力に接続した負荷の変動にかかわらず、正確に目
的の交流波形を得ることができる。従って、小形・安価
・高効率で出力が安定・高精度のインバータ装置を提供
することができる。
According to the present invention, an error voltage detecting means for detecting an error between the output voltage and a target AC waveform is connected to the waveform command means, and the conduction time is set so that the output voltage approaches the target AC waveform. By controlling the output voltage by feedback control, the circuit constant changes with temperature and time,
Further, the target AC waveform can be accurately obtained regardless of the fluctuation of the load connected to the output. Therefore, it is possible to provide a compact, inexpensive, highly efficient inverter device with stable output and high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるインバータ装置
の概略構成図
FIG. 1 is a schematic configuration diagram of an inverter device according to a first embodiment of the present invention.

【図2】同装置の動作を説明する動作波形図FIG. 2 is an operation waveform diagram for explaining the operation of the device.

【図3】本発明の第2の実施例におけるインバータ装置
の概略構成図
FIG. 3 is a schematic configuration diagram of an inverter device according to a second embodiment of the present invention.

【図4】同装置の動作を説明する動作波形図FIG. 4 is an operation waveform diagram for explaining the operation of the device.

【図5】本発明の第3の実施例におけるインバータ装置
の概略構成図
FIG. 5 is a schematic configuration diagram of an inverter device according to a third embodiment of the present invention.

【図6】同装置の動作を説明する動作波形図FIG. 6 is an operation waveform diagram explaining the operation of the device.

【図7】本発明の第4の実施例におけるインバータ装置
の概略構成図
FIG. 7 is a schematic configuration diagram of an inverter device according to a fourth embodiment of the present invention.

【図8】従来のインバータ装置の概略構成図FIG. 8 is a schematic configuration diagram of a conventional inverter device.

【図9】同装置の動作を説明する動作波形図FIG. 9 is an operation waveform diagram illustrating the operation of the device.

【符号の説明】[Explanation of symbols]

9、14、22 共振コイル 10、23、47 直流電源 11、24、38 スイッチング素子 14、27、41 共振コンデンサ 15、31、42 検波手段 18、35、45 直流除去手段 20、47、63 発振・駆動手段 21、48、64 波形指令手段 9, 14, 22 Resonance coil 10, 23, 47 DC power supply 11, 24, 38 Switching element 14, 27, 41 Resonance capacitor 15, 31, 42 Detection means 18, 35, 45 DC removal means 20, 47, 63 Oscillation / Drive means 21, 48, 64 Waveform command means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小南 秀之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideyuki Konan 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】直流電源に直列に接続した共振コイルとス
イッチング素子と、前記共振コイルまたはスイッチング
素子に並列に接続した共振コンデンサと、前記共振コイ
ルまたは前記スイッチング素子に接続した検波手段と直
流除去手段と、前記スイッチング素子を周期的に導通・
遮断する発振・駆動手段と、前記スイッチング素子の導
通時間を指令する波形指令手段とを備え、前記導通時間
の制御により前記直流除去手段の出力電圧を交流波形と
するインバータ装置。
1. A resonance coil and a switching element connected in series to a DC power source, a resonance capacitor connected in parallel to the resonance coil or the switching element, a detecting means and a DC removing means connected to the resonance coil or the switching element. And the switching element is periodically conducted.
An inverter device comprising an oscillating / driving means for shutting off, and a waveform command means for instructing a conduction time of the switching element, wherein the output voltage of the direct current removing means is an AC waveform by controlling the conduction time.
【請求項2】直流電源に直列に接続した共振コイルとス
イッチング素子と、前記共振コイルまたは前記スイッチ
ング素子に並列に接続した共振コンデンサと、前記共振
コイルまたは前記スイッチング素子に接続した変圧手段
と、前記変圧手段に接続した検波手段と直流除去手段
と、前記スイッチング素子を周期的に導通・遮断する発
振・駆動手段と、前記スイッチング素子の導通時間を指
令する波形指令手段とを備え、前記導通時間の制御によ
り前記直流除去手段の出力電圧を交流波形とするインバ
ータ装置。
2. A resonance coil and a switching element connected in series to a DC power source, a resonance capacitor connected in parallel to the resonance coil or the switching element, a transformer means connected to the resonance coil or the switching element, The detecting means and the direct current removing means connected to the transforming means, the oscillating / driving means for periodically connecting / disconnecting the switching element, and the waveform commanding means for instructing the conductive time of the switching element are provided. An inverter device for controlling the output voltage of the DC removing means to have an AC waveform.
【請求項3】直流電源に直列に接続した高周波トランス
とスイッチング素子と、前記高周波トランスまたは前記
スイッチング素子に並列に接続した共振コンデンサと、
前記高周波トランスの二次側に接続した検波手段と直流
除去手段と、前記スイッチング素子を周期的に導通・遮
断する発振・駆動手段と前記スイッチング素子の導通時
間を指令する波形指令手段とを備え、前記導通時間の制
御により前記直流除去手段の出力電圧を交流波形とする
インバータ装置。
3. A high frequency transformer and a switching element connected in series to a DC power source, and a resonance capacitor connected in parallel to the high frequency transformer or the switching element.
A detection means and a direct current removal means connected to the secondary side of the high frequency transformer; an oscillating / driving means for periodically connecting / disconnecting the switching element; and a waveform commanding means for instructing a conduction time of the switching element, An inverter device in which the output voltage of the direct-current removing means has an alternating-current waveform by controlling the conduction time.
【請求項4】波形指令手段に接続され直流除去手段の出
力電圧と目的の交流波形の誤差を検出する誤差電圧検出
手段を備え、スイッチング素子の導通時間を制御して前
記出力電圧を目的の交流波形に近付ける請求項1、請求
項2、叉は請求項3記載のインバータ装置。
4. An error voltage detecting means, which is connected to the waveform commanding means and detects an error between the output voltage of the direct current removing means and the target AC waveform, controls the conduction time of the switching element to control the output voltage to the target AC. The inverter device according to any one of claims 1, 2, and 3, which is close to a waveform.
JP5228551A 1993-09-14 1993-09-14 Inverter apparatus Pending JPH0787746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5228551A JPH0787746A (en) 1993-09-14 1993-09-14 Inverter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5228551A JPH0787746A (en) 1993-09-14 1993-09-14 Inverter apparatus

Publications (1)

Publication Number Publication Date
JPH0787746A true JPH0787746A (en) 1995-03-31

Family

ID=16878150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5228551A Pending JPH0787746A (en) 1993-09-14 1993-09-14 Inverter apparatus

Country Status (1)

Country Link
JP (1) JPH0787746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195510A (en) * 2010-03-08 2011-09-21 艾默龙电子科技(嘉兴)有限公司 Single-switch oscillating inverter
CN102273046A (en) * 2009-01-08 2011-12-07 Nec东金株式会社 Electric power transmitting apparatus and noncontact electric power transmission system
JP2013093961A (en) * 2011-10-25 2013-05-16 Azusa Tech Co Uninterruptible power supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273046A (en) * 2009-01-08 2011-12-07 Nec东金株式会社 Electric power transmitting apparatus and noncontact electric power transmission system
CN102195510A (en) * 2010-03-08 2011-09-21 艾默龙电子科技(嘉兴)有限公司 Single-switch oscillating inverter
JP2013093961A (en) * 2011-10-25 2013-05-16 Azusa Tech Co Uninterruptible power supply device

Similar Documents

Publication Publication Date Title
USRE39926E1 (en) Arc-machining power supply with switching loss reducing element
EP0471421B1 (en) Stabilizing power source apparatus
JP2529481B2 (en) Magnetron drive power supply circuit
EP0658968B1 (en) Switching regulator
US6819057B2 (en) Ballast self oscillating inverter with phase controlled voltage feedback
JP2003324956A (en) Method of controlling series resonant bridge inverter circuit and the circuit
JPH07118915B2 (en) Resonant DC-DC converter
US5617305A (en) Current resonance type switching power supply circuit
JP3666433B2 (en) Magnetron drive power supply
JPH0787746A (en) Inverter apparatus
EP1460752A1 (en) A parallel feed-forward compensating type power factor correction circuit for a three-phase power source
JP2001211658A (en) Halogen power converter having complementary switch
JP2982364B2 (en) Inverter for induction heating
JP3500799B2 (en) Power supply circuit
JPH07135769A (en) Dc resonance converter
JPH08308236A (en) Switching power source circuit
JP2719746B2 (en) X-ray power supply control circuit
JP2615653B2 (en) Inverter circuit
JP2543259B2 (en) Power supply
JP3211380B2 (en) Power converter
JPH11225474A (en) Dc-dc converter
JP2764528B2 (en) Power supply for driving switching elements
JPH09117143A (en) Switching power supply circuit
JPH0270267A (en) Parallel resonance converter
JPH0683573B2 (en) Resonant converter and control method thereof