JPH0787686B2 - DC motor for rolling mill - Google Patents
DC motor for rolling millInfo
- Publication number
- JPH0787686B2 JPH0787686B2 JP63172741A JP17274188A JPH0787686B2 JP H0787686 B2 JPH0787686 B2 JP H0787686B2 JP 63172741 A JP63172741 A JP 63172741A JP 17274188 A JP17274188 A JP 17274188A JP H0787686 B2 JPH0787686 B2 JP H0787686B2
- Authority
- JP
- Japan
- Prior art keywords
- pole
- motor
- magnetic flux
- main
- speed operation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Control Of Metal Rolling (AREA)
- Control Of Direct Current Motors (AREA)
- Dc Machiner (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圧延機システムに使用される主ロール駆動用
直流電動機および巻取用直流電動機の構造に関する。The present invention relates to the structures of a DC motor for driving a main roll and a DC motor for winding, which are used in a rolling mill system.
従来から、冷間圧延機の主ロール駆動用に使用される直
流電動機あるいは巻取用直流電動機は、厚い圧延板材を
薄い所望の板厚まで圧延するため、広範囲な回転速度、
高ひん度の加減速,逆転、および過酷な圧延トルクにお
いて使用される。電動機の負荷条件としては、定格負荷
(100%)の175%まで常時使用される。Conventionally, a DC motor or a winding DC motor used for driving a main roll of a cold rolling mill is used for rolling a thick rolled sheet material to a thin desired sheet thickness, and thus has a wide range of rotation speeds.
Used for high frequency acceleration / deceleration, reverse rotation, and severe rolling torque. As the load condition of the motor, 175% of the rated load (100%) is always used.
また、近年、生産性の向上から、圧延設備の大容量化,
高速化が図られ、かつコンピエータによる集中制御で自
動化が進められている。In addition, in recent years, due to the improvement in productivity, the capacity of rolling equipment has been increased,
The speed is increased and automation is being promoted by centralized control by a computer.
この様な背景の中で、直流電動機は繰り返しピーク負荷
に対し構造を堅固にし、また加減速を急速に行えるよ
う、低慣性,良整流に考慮が払われる。低慣性は、加減
速時間を短縮し、単位時間当りの生産性をあげ、かつ速
度制御の速応性を上げ製品の品質を高める。Against this background, the DC motor has a low inertia and good rectification so that the structure is robust against repeated peak loads and that acceleration and deceleration can be performed rapidly. The low inertia shortens the acceleration / deceleration time, improves the productivity per unit time, increases the speed control response, and improves the product quality.
良整流はブラシ回りの整流トラブルを軽減できるばかり
でなく、圧延製品の品質を高める。すなわち、例えば補
極磁速量が負荷電流に対して非直線となり、必要補極磁
束量が減少する方向に変化した場合は整流状態が不足整
流となり、ブラシで短絡された整流コイルに短絡電流が
流れ、その電流によつて発生する磁束が主磁束を増加す
る方向に作用する。この結果、直流電動機の回転速度は
減少することになる。次に、必要磁束量が増加する方向
に変化した場合は、整流状態が過整流となりブラシで短
絡された整流コイル中に流れる短絡電流によつて発生す
る磁束が主磁束を減少する方向に作用する。この結果、
直流電動機の回転速度は増加する。この様に、整流状態
の良し悪しは、直流電動機の回転速度に影響を与えるこ
とから圧延製品の品質にも影響を及ぼす。Good straightening not only reduces the trouble of straightening around the brush, but also improves the quality of rolled products. That is, for example, when the commutating pole magnetic velocity becomes non-linear with respect to the load current and the necessary commutating pole magnetic flux changes in the direction of decreasing, the rectification state becomes insufficient rectification, and the short-circuit current flows to the rectification coil short-circuited by the brush. The magnetic flux generated by the flow of the current acts in the direction of increasing the main magnetic flux. As a result, the rotation speed of the DC motor is reduced. Next, when the required magnetic flux amount changes in the increasing direction, the rectified state becomes over-rectified and the magnetic flux generated by the short-circuit current flowing in the rectifying coil short-circuited by the brush acts in the direction of decreasing the main magnetic flux. . As a result,
The rotation speed of the DC motor increases. In this way, the quality of the rectified state affects the rotation speed of the DC motor, and thus also affects the quality of the rolled product.
また、大形直流電動機には回転数に対する無火花帯位置
が変化する無火花帯移動現象のあることが古くから知ら
れ、何ら整流補償を行わない場合は整流状態が悪化し、
ブラシからの発生火花が大きくなり、最悪の場合にはフ
ラツシオーバ事故に至つて直流電動機自身が損傷するば
かりでなく、現在圧延中の製品にも被害を及ぼす。It has long been known that large DC motors have a non-spark band movement phenomenon in which the non-spark band position changes with respect to the rotational speed.If no rectification compensation is performed, the rectification state deteriorates,
The spark generated from the brush becomes large, and in the worst case, a flashover accident will occur, which not only damages the DC motor itself, but also damages the product currently being rolled.
この無火花帯の移動現象を補償する方法が特開昭62−71
463号公報に記載されている。A method of compensating for the movement phenomenon of the non-spark zone is disclosed in Japanese Patent Laid-Open No. 62-71.
It is described in Japanese Patent No. 463.
ところが、実験の結果上記従来技術を適用して直流機を
175%程度の過負荷領域まで運転するとブラシから火花
が生じ、所期の効果が100%を越えた所で達成できない
ことがわかつた。However, as a result of the experiment, applying the above-mentioned conventional technology,
It was found that the brush produced sparks when operated to an overload region of about 175%, and the desired effect could not be achieved when the desired effect exceeded 100%.
本発明の目的は、過負荷175%まで常時運転しても無火
花を補償し、圧延機に適した直流電動機を提供すること
にある。An object of the present invention is to provide a DC electric motor suitable for a rolling mill by compensating for non-spark even when constantly operating up to 175% overload.
本発明は、圧延機用直流電動機が、電機子と、該電機子
を囲んで対向する継鉄に保持されて該電機子へ磁束を入
射する主極鉄心及び補極鉄心と、前記主極鉄心と補極鉄
心の間で前記電機子側に片寄った位置に前記補極鉄心の
磁束を前記主極鉄心に漏洩させる調整磁性部材とを備
え、該調整磁性部材は前記主極鉄心若しくは前記補極鉄
心のいずれか一方との間に、2〜15mmのギャップを設け
て接合されてなることを特徴とする。The present invention relates to a DC motor for a rolling mill, an armature, a main pole core and a commutating pole core that are held by opposing yokes surrounding the armature and inject magnetic flux into the armature, and the main pole core. And an adjusting magnetic member that leaks the magnetic flux of the auxiliary pole core to the main pole core at a position deviated to the armature side between the auxiliary pole and the auxiliary pole, and the adjusting magnetic member is the main pole core or the auxiliary pole. It is characterized in that it is joined to one of the iron cores with a gap of 2 to 15 mm.
調整磁性部材に設けたギャップを適切に選ぶことによ
り、負荷電流に対する補極磁束の直線性が確保できるの
で、圧延機システム特有である広い可変速範囲で、定格
の175%過負荷領域までの運転が要求される圧延機用直
流電流電動機において帯に無火花の整流が行え、この整
流状態の向上により直流電動機の回転速度変化への影響
が小さくなるので圧延製品の品質が向上する。By properly selecting the gap provided in the adjusting magnetic member, the linearity of the compensating pole magnetic flux with respect to the load current can be secured, so the operation can be performed up to the 175% overload range of the rating in the wide variable speed range peculiar to the rolling mill system. In a DC current motor for a rolling mill, which is required to meet the requirements, it is possible to rectify sparks in a band, and the improvement of the rectification state reduces the influence on the change in the rotation speed of the DC motor, thereby improving the quality of rolled products.
本発明の実施例を説明する前に、まず前述の問題が何故
発生するのか種々実験検討を重ねて原因を究明したので
その結果について簡単に説明する。Before explaining the embodiments of the present invention, first, the reasons why the above-mentioned problems occur are repeatedly investigated through various experiments, and the causes are clarified. The results will be briefly described.
第8図は従来の直流機の無火花帯と補極飽和特性を示
す。同図、(イ)は負荷電流(負荷100%を1.0としp.u
で表した。)を横軸に取り、縦軸に補極添加電流をとつ
て表した低速運転時と高速運転時との無火花帯を示す。
同図(イ)より、低速運転時と高速運転時との無火花帯
は、負荷電流の1.0(p.u)以下では重なつているが、負
荷電流が1.0(p.u)以上になると重なりが減少しはじめ
特に2.0(p.u)になると無火花帯が低速運転時には補極
の増磁側へ、高速運転時には減磁側への相反する方向へ
移動するため両無火花帯の重なりが完全に無くなる。FIG. 8 shows a non-spark zone and a saturation polarity characteristic of a conventional DC machine. In the figure, (a) shows the load current (load 100% is 1.0 and pu
Expressed as ) Is plotted on the horizontal axis and the vertical axis is the supplementary pole addition current, showing the non-spark zone during low speed operation and during high speed operation.
As shown in (a) of the figure, the non-spark zone during low-speed operation and during high-speed operation overlaps when the load current is 1.0 (pu) or less, but decreases when the load current becomes 1.0 (pu) or more. At the beginning, especially at 2.0 (pu), the non-spark zone moves in the opposite direction to the demagnetization side of the supplementary pole during low-speed operation, and to the demagnetization side during high-speed operation, so that the two non-spark zones completely disappear.
これは、従来の直流機では定格負荷近傍までは、直流機
本体のみで無火花帯移動減少を補償できるが、過負荷領
域では補償し切れなくなることを表している。この原因
を種々実験で検討した結果、同図(ロ)に示すように、
負荷電流に対する補極磁束量が、軽負荷では比例関係に
あるのに対し、過負荷では非直線になる。特に低速運転
時の補極磁束量は図中のA点から負荷電流に対して非直
線となり、負荷電流の増加と共に飽和する。これに対し
て、高速運転時の補極磁束量は、図中のB点から負荷電
流に対して非直線となり、負荷電流の増加と共に増加率
が大きくなつた。This means that the conventional DC machine can compensate for the reduction of the spark belt movement only by the DC machine body up to the vicinity of the rated load, but cannot compensate in the overload region. As a result of examining various causes in various experiments, as shown in FIG.
The amount of magnetic flux of the pole compensating pole with respect to the load current is in a proportional relationship at a light load, but becomes non-linear at an overload. Especially, at the time of low speed operation, the amount of the magnetic flux of the auxiliary pole becomes non-linear with respect to the load current from point A in the figure, and saturates as the load current increases. On the other hand, the supplementary magnetic flux amount during high-speed operation became non-linear with respect to the load current from point B in the figure, and the rate of increase increased as the load current increased.
この負荷電流に対する補極磁束量の非直線性が同図
(イ)の負荷電流2.0(p.u)での無火花帯の位置を左右
している。The non-linearity of the commutation pole flux with respect to this load current determines the position of the non-spark zone at the load current of 2.0 (pu) in Fig. 9 (a).
次に、この負荷電流に対する補極磁束量の非直線性の原
因について述べる。Next, the cause of the non-linearity of the commutating pole magnetic flux with respect to the load current will be described.
第9図は、第8図の特性を示す直流電動機の要部展開図
で、補極磁束ΦIP,主磁束ΦMP,漏れ磁束ΦLPの流れを示
す。図において開磁巻線5のみ励磁すると主磁束ΦMPの
他に短絡鉄心10を介して主極鉄心4間を短絡する漏れ磁
束ΦLPを発生する。FIG. 9 is a developed view of the main part of the DC motor showing the characteristics shown in FIG. 8, and shows the flow of the auxiliary pole magnetic flux Φ IP , the main magnetic flux Φ MP , and the leakage magnetic flux Φ LP . In the figure, when only the open magnetic winding 5 is excited, in addition to the main magnetic flux Φ MP , a leakage magnetic flux Φ LP that short-circuits the main pole cores 4 via the short-circuiting iron core 10 is generated.
次に、補極巻線9のみを例示すると補極磁束ΦIPを発生
し、短絡鉄心10Bを通るΦIP1,電機子6に至るΦIP2,短
絡鉄心10A,主極鉄心4を経由して電機子6に至るΦIP3
を発生する。Next, when only the commutating pole winding 9 is illustrated, a commutating pole flux Φ IP is generated, and Φ IP1 passing through the short-circuit iron core 10B, Φ IP2 reaching the armature 6, the short-circuit iron core 10A, and the main pole iron core 4 are used to drive the electric machine. Φ IP3 leading to child 6
To occur.
界磁巻線5と補極巻線9とを励磁すると、短絡鉄心10A
を経由する磁束として、漏れ磁束ΦLP,補極磁束ΦIP3が
あるので、界磁起力ATFと補極起磁力ATIPの大小関係で
短絡鉄心10Aを通る磁束がほぼ決まる。When the field winding 5 and the auxiliary pole winding 9 are excited, the short-circuited iron core 10A
As the magnetic flux passing through the, there is a leakage flux [Phi LP, interpole magnetic flux [Phi IP3, magnetic flux passing through the short-circuit core 10A in magnitude of field magnetomotive force AT F and HokyokuOkoshi force AT IP is almost determined.
すなわち、界磁起磁力ATf>補極起磁力ATIPの関係にあ
ると、短絡鉄心10Aを通る漏れ磁束が主極鉄心4から補
極鉄心8への方向となつて補極磁束ΦIAが増加し、逆に
界磁起磁力ATf<補極起磁力ATIPの関係にあると、短絡
鉄心10Aを通る漏れ磁束が主極鉄心8から補極鉄心4へ
の方向となつて補極磁束Φ2Aが減少する。That is, when the field magnetomotive force AT f > the commutating pole magnetomotive force AT IP is satisfied, the leakage flux passing through the short-circuited iron core 10A is in the direction from the main pole core 4 to the commutating pole core 8 and the commutating pole flux Φ IA is If the relationship is such that the field magnetomotive force AT f <reverse pole magnetomotive force AT IP increases, on the contrary, the leakage flux passing through the short-circuited iron core 10A becomes the direction from the main pole core 8 to the commutator pole 4 and the commutation pole flux. Φ 2A decreases.
圧延機用直流電動機の運転においては、規定の速度まで
は電圧制御で加速し、それ以後は界磁制御で加速され
る。この用な運転下においては界磁機磁力ATfと補極機
磁力ATIPの大小関係が任意に変化するため、上述した理
由により、補極磁束が負荷電流に対して非直線となるこ
とが判明した。In the operation of the DC motor for rolling mills, the voltage is accelerated up to a specified speed by voltage control, and thereafter, it is accelerated by field control. Under such an operation, the magnitude relationship between the field magnet force AT f and the commutator magnet force AT IP changes arbitrarily. Therefore, due to the reasons described above, the commutator magnetic flux may become non-linear with respect to the load current. found.
本発明は、主極と補極の間を短絡鉄心で短絡したことに
よつて起こる漏れ磁束により、特に過負荷領域における
運転時の補極磁束量の直線性が損なわれることに鑑み、
短絡鉄心を介した磁気回路の磁気抵抗を調整出来る調整
磁性部材を設けることにより所期の目的を達成したもの
である。The present invention, due to the leakage flux caused by short-circuiting the main pole and the auxiliary pole with the short-circuit iron core, in view of impairing the linearity of the amount of the auxiliary pole magnetic flux during operation, particularly in the overload region,
The intended purpose is achieved by providing an adjusting magnetic member capable of adjusting the magnetic resistance of the magnetic circuit via the short-circuited iron core.
以下、本発明の実施例を第1図〜第7図に基づいて説明
する。Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
第1図は本発明の適用製品である逆転式冷間圧延機の概
略システム構成を示す。図において、11は圧延機、12は
主ロール駆動用直流電動機、13,14は巻取用直流電動
機、15,16は張力計、17,18は厚み計、19は静止レオナー
ド制御装置、20は圧下制御装置、21,22はデフレクタロ
ール、23は圧延板材、24,25はテンシヨンリールであ
る。かかる構成において、圧延板材23は圧延機11の圧下
ロールが圧下制御装置20によつて押圧され、圧下ロール
によつて押圧された主ロールが主ロール駆動用直流電動
機12によつて駆動されて圧延される。圧延された板材23
はデフレクタロール21を介してテンシヨンリール24に巻
き取られ、このテンシヨンリール24は巻取用直流電動機
14にて駆動される。主ロール駆動用直流電動機12は静止
レオナード制御装置19によつて運転され、厚み計17から
の信号を得て自動板厚制御AGC、自動速度制御ASRを介し
て所望の回転速度に制御される。また、巻取用直流電動
機14は同様に静止レオナード制御装置19によつて運転さ
れ、張力計15からの信号を得て自動張力制御ATRを介し
て所望の張力が得られる回転速度に制御される。また、
逆転の場合も同様に制御,運転される。FIG. 1 shows a schematic system configuration of a reversing type cold rolling mill to which the present invention is applied. In the figure, 11 is a rolling mill, 12 is a DC motor for driving a main roll, 13 and 14 are DC motors for winding, 15 and 16 are tensiometers, 17 and 18 are thickness gauges, 19 is a static Leonard control device, and 20 is A rolling control device, 21 and 22 are deflector rolls, 23 is a rolled plate material, and 24 and 25 are tension reels. In such a configuration, the rolled plate material 23 is rolled by pressing the reduction roll of the rolling mill 11 by the reduction control device 20 and driving the main roll pressed by the reduction roll by the main roll driving DC motor 12. To be done. Rolled sheet material 23
Is wound on a tension reel 24 via a deflector roll 21, and this tension reel 24 is a DC motor for winding.
Driven at 14. The DC motor 12 for driving the main roll is operated by the stationary Leonard controller 19, and a signal from the thickness gauge 17 is obtained to control the rotation speed to a desired value via the automatic plate thickness control AGC and the automatic speed control ASR. Further, the DC motor 14 for winding is similarly operated by the stationary Leonard controller 19, and a signal from the tensiometer 15 is obtained to be controlled to a rotation speed at which a desired tension is obtained via the automatic tension control ATR. . Also,
In the case of reverse rotation, the same control and operation are performed.
かかる構成において、直流電動機自体の速度変化は静止
レオナード制御装置19への外乱となり、圧延板材23の製
品品質に影響する。また、主ロール駆動用直流電動機12
および巻取用電動機13,14がフラツシオーバ事故に至る
と、現在圧延中の板材23が製品不良となり、その影響は
大なるものがある。In such a configuration, the change in speed of the DC motor itself becomes a disturbance to the stationary Leonard control device 19, and affects the product quality of the rolled plate material 23. In addition, the DC motor for driving the main roll 12
When the winding electric motors 13 and 14 reach a flashover accident, the plate material 23 currently being rolled becomes a defective product, which has a great influence.
したがつて、圧延機駆動用直流電動機としては過負荷領
域まで無火花帯移動現象が補償できる、補極磁束の自己
調整作用を具備したものが望まれる。Therefore, a DC motor for driving a rolling mill is desired to have a self-adjusting action of the commutating pole magnetic flux that can compensate for the non-spark zone movement phenomenon even in the overload region.
第2図は本発明の一実施例である直流機の要部断面図を
示す。なお、従来と同じ部品には、同じ符号を付けたの
で説明を省略する。図において、補極鉄心8と調整磁性
部材10(10A,10B)とを一体に構成し、該部材10と主極
鉄心4の磁極片部4Aの間にギヤツプ1G1を設けてある。
このような構成でその低速運転時、及び高速運転時の動
作を第3図に示す。FIG. 2 shows a cross-sectional view of the main parts of a DC machine that is an embodiment of the present invention. It should be noted that the same parts as those of the related art are denoted by the same reference numerals, and the description thereof will be omitted. In the figure, a commutating pole core 8 and an adjusting magnetic member 10 (10A, 10B) are integrally formed, and a gear gap 1 G1 is provided between the member 10 and the magnetic pole piece 4A of the main pole core 4.
FIG. 3 shows the operation during such low speed operation and high speed operation in such a configuration.
同図(イ)は低速運転時、(ロ)に高速運転時が示され
ており、ΦMP(ΦMP1,ΦMP2)は主磁束、ΦIP(ΦIP1〜
ΦIP3)は補極磁束、ΦIA(ΦIA1,ΦIA2)は整流起電力
を発生させるための整流補償用磁束である。同図(イ)
の低速運転時は、従来と同様に補償磁束ΦIP1が調整磁
性部材10B,ギヤツプ1G1を介してS極の主極鉄心4に漏
れ、補極磁束ΦIP2が電機子6側へ入射する。そして、
強め界磁で界磁起磁力ATFを過負荷領域での補極起磁力A
TIPより大きいか、または同じ程度に設定しているの
で、補極磁束ΦIP3がN極の主極鉄心4からギヤツプ
1G1、調整磁性部材10Aを介して補極鉄心8に入り、電機
子6側に入射する。この結果、整流補償用補極磁束Φ
IA1は補極磁束ΦIP2とΦIP3の和となつて大きくなる。
これに対し、同図(ロ)の高速運転時では、補極磁束Φ
IP1,ΦIP2については(イ)に示した場合と同様に流れ
るが、弱め界磁で界磁起磁力ATFが補極起磁力ATIPより
小さいために、補極磁束ΦIP3が調整磁性部材10A及びギ
ヤツプ1G1を介して同極(N極)の主極鉄心4へ漏れ
る。この結果、整流補償用補極磁束ΦIPは補極磁束Φ
IP2のみとなつて小さくなる。The figure (a) shows the low speed operation, and the (b) shows the high speed operation. Φ MP (Φ MP1 , Φ MP2 ) is the main magnetic flux and Φ IP (Φ IP1 ~
Φ IP3 ) is the commutation pole flux, and Φ IA (Φ IA1 , Φ IA2 ) is the rectification compensation flux for generating rectification electromotive force. The same figure (a)
During low speed operation, the compensating magnetic flux Φ IP1 leaks to the main pole core 4 of the S pole through the adjusting magnetic member 10B and the gear 1 G1 as in the conventional case, and the commutating magnetic pole Φ IP2 enters the armature 6 side. And
The field magnetomotive force AT F is increased by the strong field, and the competing magnetomotive force A in the overload region A
Since it is set to be larger than or equal to T IP , the auxiliary pole magnetic flux Φ IP3 is applied to the gear gap from the main pole core 4 of the N pole.
1 G1 enters the commutating pole core 8 through the adjusting magnetic member 10A and enters the armature 6 side. As a result, the commutation compensating pole flux Φ
IA1 becomes larger as the sum of the commutation pole fluxes Φ IP2 and Φ IP3 .
On the other hand, during high speed operation in Fig. 2B, the commutating pole flux Φ
IP1, for [Phi IP2 is flowing in the same manner as shown in (b), for field magnetomotive force AT F is less than HokyokuOkoshi force AT IP field weakening, interpole magnetic flux [Phi IP3 adjustment magnetic member Leak to the main pole core 4 of the same pole (N pole) via 10A and the gear 1 G1 . As a result, the commutating pole flux Φ IP for rectification compensation becomes
IP2 only makes it smaller.
すなわち、本発明では主極鉄心4と調整磁性部材10A,10
Bとの間にギヤツプ1G1を設けることにより磁気抵抗を調
整して該部材10Bを介する補極磁束ΦIP1を減少させ、低
速運転時に過負荷領域まで調整磁性部材10Aを通る補極
磁束ΦIP3の大きさを直線的に調整し、補極磁束の自己
調整作用によつて無火花帯移動現象を補償するものであ
る。さらに、過負荷領域では磁気回路の磁気飽和を利用
していないので負荷電流に対する補極磁束量が直線的に
変化するようになる。That is, in the present invention, the main pole core 4 and the adjusting magnetic members 10A, 10
By providing a gear 1 G1 with B, the magnetic pole is adjusted to reduce the commutation pole flux Φ IP1 through the member 10B, and the commutation pole flux Φ IP3 that passes through the adjustment magnetic member 10A to the overload region during low speed operation. Is linearly adjusted, and the self-adjusting action of the magnetic flux of the compensating pole compensates for the non-spark zone movement phenomenon. Further, since the magnetic saturation of the magnetic circuit is not used in the overload region, the amount of the magnetic flux of the commutating pole with respect to the load current changes linearly.
第4図は、本発明の直流機の補極飽和特性と無火花帯を
示し、調整磁性部材10と主極鉄心4との間のギヤツプl
G1=7.5mmで実験した場合である。同図(イ)に示すよ
うに負荷電流に対する補極磁束量が負荷電流の2.0(p.
u)まで直線的に変化し、かつ低速運転時と高速運転時
との補極磁束量の差も負荷電流に対して比例関係になつ
た。この結果、同図(ロ)に示すように低速運転時と高
速運転時との無火花帯が過負荷領域の負荷電流2.0(p.
u)まで完全に重なり、直流機本体のみで無火花帯移動
現象を補償できることが判明した。FIG. 4 shows the auxiliary pole saturation characteristic and the non-sparking band of the DC machine of the present invention, in which the gear gap l between the adjusting magnetic member 10 and the main pole core 4 is shown.
This is the case when the experiment was performed with G1 = 7.5 mm. As shown in (a) of the figure, the amount of supplementary magnetic flux with respect to the load current is 2.0 (p.
u) linearly changed, and the difference in the amount of magnetic flux of the auxiliary pole between low speed operation and high speed operation became proportional to the load current. As a result, as shown in (b) of the same figure, the load current of 2.0 (p.
It has been revealed that it is possible to completely compensate for the spark-zone movement phenomenon by using only the DC machine itself.
しかしながら、過負荷領域の負荷電流2.0(p.u)まで補
極磁束量を直線化するには最適なギヤツプ長さの範囲が
あり、ただ補極磁束量と負荷電流の関係を直線化しただ
けではだめで、負荷電流の2.0(p.u)での低速運転時と
高速運転時との共通の無火花帯が広い範囲で存在するこ
とが重要なる。そこで、ギヤツプ長lG1に対する負荷電
流2.0(p.u)での低速運転時と高速運転時との無火花帯
の重なり幅を検討した。However, there is an optimum range of gear length to linearize the commutation pole flux up to the load current of 2.0 (pu) in the overload region, and it is not enough to linearize the relationship between the commutation pole flux and the load current. Therefore, it is important that there is a wide non-spark zone common to low-speed operation and high-speed operation at a load current of 2.0 (pu). Therefore, the overlapping width of the non-spark zone at low speed operation and high speed operation at a load current of 2.0 (pu) for the gear length l G1 was examined.
第5図は、横軸にギヤツプ長lG1をとり、縦軸に負荷電
流2.0(p.u)での低速運転時と高速運転時との両無火花
帯の重なり幅を示す。重なり幅が100%ということは、
高速運転時の無火花帯が完全に低速運転時の無火花帯中
に収まつていることを示し、重なり幅が0%ということ
はその逆である。In FIG. 5, the horizontal axis shows the gear length l G1 , and the vertical axis shows the overlapping width of both non-spark zones during low speed operation and high speed operation at a load current of 2.0 (pu). The overlapping width of 100% means that
It is shown that the non-spark zone during high-speed operation is completely contained in the non-spark zone during low-speed operation, and the overlapping width of 0% is the opposite.
同図よりギヤツプ長lG1が2mm以下では前述したような負
荷電流に対する補極磁束量の非直線性から無火花帯の重
なり幅が存在せず、ギヤツプ長lG1が2mm以上で負荷電流
に対する補極磁束量の非直線性が改善されて無火花帯の
重なり幅が存在し始め、ギヤツプ長lG1が6mm〜9mmで100
%となり、それ以上では低速運転時と高速運転時との補
極磁束量の差が減少して無火花帯に重なり幅が小さくな
り、lG1=13mm以上では完全になくなる。There is no overlapping width of the non-sparking band from the non-linearity of the interpole magnetic flux Giyatsupu length l G1 than the figure for the load current as described above is 2mm or less, the auxiliary Giyatsupu length l G1 is the load current at 2mm or more The non-linearity of the polar magnetic flux is improved and the overlapping width of the non-spark zone begins to exist, and when the gear length l G1 is 6 mm to 9 mm, it becomes 100.
%, Above that, the difference in the amount of magnetic flux between the poles between low-speed operation and high-speed operation decreases, and the width overlaps with the non-spark zone and becomes smaller. At l G1 = 13 mm or more, it completely disappears.
したがつて、ギヤツプ長をlG1=2mm〜13mmに設定するこ
とにより、負荷電流に対する補極磁束量の直線性が改善
されて過負荷領域でも低速運転時と高速運転時と共通の
無火花帯が存在し、ブラシからの火花発生を防止でき
た。Therefore, by setting the gear length to l G1 = 2 mm to 13 mm, the linearity of the amount of magnetic flux of the interpolating pole with respect to the load current is improved, and even in the overload region, there is no spark zone common to low speed operation and high speed operation. Was present, and sparks from the brush could be prevented.
第6図は、本発明の他の実施例を示したものであり、第
1図と異なるのは同図(イ)に示すように調整磁性部材
10を主極鉄心4と一体に構成し、補極鉄心8と短絡鉄10
との間にギヤツプlG2を設けたものである。同図(ロ)
はギヤツプ長lG2に対して無火花帯の重なり幅を示した
場合であり、ギヤツプ長lG2を4mm〜15mmに設定すること
により、低速運転時と高速運転時との無火花帯の重なり
幅が存在し、ブラシからの火花発生を防止できた。FIG. 6 shows another embodiment of the present invention. What is different from FIG. 1 is that the adjusting magnetic member as shown in FIG.
10 is integrally formed with the main pole core 4, the supplementary pole core 8 and the short-circuit iron 10
It is provided with a gear l G2 between and. Same figure (b)
Is a case of showing the overlapping width of the non-sparking band against Giyatsupu length l G2, by setting the Giyatsupu length l G2 to 4Mm~15mm, non sparking band and a high-speed during operation during low-speed operation overlap width Was present, and sparks from the brush could be prevented.
第7図は、本発明の更に他の実施例を示したもので第1
図と異なるのは調整磁性部材10と主極鉄心4との間にギ
ヤツプlG1を、そして該部材10と補極鉄心8との間にギ
ヤツプlG2を設けたものである。同図(ロ)はギヤツプ
長(lG1+lG2)に対する無火花帯の重なり幅を示した場
合でありギヤツプ長(lG1+lG2)を2mm〜15mmに設定す
ることにより低速運転時と高速運転時との無火花帯の重
なり幅が存在し、ブラシからの火花発生を防止できた。FIG. 7 shows still another embodiment of the present invention.
The difference from the figure is that a gear gap L G1 is provided between the adjusting magnetic member 10 and the main pole core 4, and a gear gap L G2 is provided between the member 10 and the commutating pole core 8. FIG (B) is Giyatsupu length (l G1 + l G2) low-speed operation when a high-speed operation by setting the overlap is a case showing the width Giyatsupu length of the non-sparking bands (l G1 + l G2) to 2mm~15mm against There was a non-sparking band overlap with the time, and sparks from the brush could be prevented.
以上の実験結果を従つて調整磁性部材と主極鉄心との
間、もしくは該部材と補極鉄心との間の少なくとも一方
にギヤツプを設け、そのギヤツプ長を2mm〜15mmに設定
し、調整磁性部材10を通る補極磁束ΦIP3の大きさと方
向を利用して低速運転時に対する高速運転時の補極磁束
量を減少させているので、広い可変速範囲で運転、さら
に過負荷領域まで運転しても低速運転時と高速運転時と
の共通の無火花帯が存在し、ブラシからの火花発生を防
止できる効果があることが確認できた。According to the above experimental results, a gear tape is provided between at least one of the adjusting magnetic member and the main pole iron core, or between the member and the commutating iron core, and the gear tape length is set to 2 mm to 15 mm. Since the size and direction of the commutating pole flux Φ IP3 passing through 10 is used to reduce the commutating pole flux amount during high-speed operation compared to during low-speed operation, it is possible to operate in a wide variable speed range and further to the overload area. It was confirmed that there is a common non-spark zone during low-speed operation and during high-speed operation, which has the effect of preventing spark generation from the brush.
なお、第2図から第7図の本発明の実施例では電機子側
の主極と補極間にギヤツプを有する磁束調整部材を設け
るが、該ギヤツプの代りに非磁性部材と磁束調整部材と
を溶接等により接続して、主極と補極間に設けるように
しても良いことはいうまでもない。In the embodiment of the present invention shown in FIGS. 2 to 7, a magnetic flux adjusting member having a gear cup is provided between the main pole and the auxiliary pole on the armature side. Instead of the gear cup, a non-magnetic member and a magnetic flux adjusting member are provided. Needless to say, they may be connected between the main pole and the auxiliary pole by welding or the like.
本発明によれば、調整磁性部材に設けたギャップを適切
に選ぶことにより、負荷電流に対する補極磁束の直線性
が確保できるので、圧延機システム特有である広い可変
範囲で、定格の175%過負荷領域までの運転が要求され
る圧延機用直流電動機において常に無火花の整流が行
え、この整流状態の向上により直流電動機の回転速度変
化への影響が小さくなるので圧延製品の品質が向上でき
るという効果がある。According to the present invention, by properly selecting the gap provided in the adjusting magnetic member, it is possible to ensure the linearity of the compensating pole magnetic flux with respect to the load current, so that in the wide variable range peculiar to the rolling mill system, the rating of 175% is exceeded. The DC motor for rolling mills, which is required to operate up to the load range, can always perform commutation without sparks, and the improvement of this commutation state reduces the influence on the change in the rotation speed of the DC motor, thus improving the quality of rolled products. effective.
第1図は本発明の適用製品である逆転式冷間圧延機の概
略システム構成、第2図〜第5図は本発明を説明するた
めの図、第6図〜第7図は本発明の他の実施例を説明す
るための図である。第8図,第9図は、従来の直流電動
機を説明するための図である。 1……継鉄、2……主極、3……補極、4……主極鉄
心、5……界磁巻線、6……電機子、7……電機子巻
線、8……補極鉄心、9……補極巻線、10……調整磁性
部材(従来説明では短絡鉄心)、11……圧延機、12……
主ロール駆動用直流電動機、13,14……巻取用直流電動
機、19……静止レオナード制御装置、lG1,lG2……ギヤ
ツプ。FIG. 1 is a schematic system configuration of a reversing type cold rolling mill which is an application product of the present invention, FIGS. 2 to 5 are views for explaining the present invention, and FIGS. 6 to 7 are of the present invention. It is a figure for explaining other examples. FIG. 8 and FIG. 9 are diagrams for explaining a conventional DC motor. 1 ... Yoke, 2 ... Main pole, 3 ... Complement pole, 4 ... Main pole core, 5 ... Field winding, 6 ... Armature, 7 ... Armature winding, 8 ... Complement pole core, 9 ...... Complement pole winding, 10 ... Adjusting magnetic member (short-circuit core in the conventional description), 11 ... Rolling machine, 12 ...
DC motor for driving main rolls, 13,14 …… DC motor for winding, 19 …… Stationary Leonard controller, l G1 , l G2 …… Gear cup.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 二藤部 光弘 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 鈴木 信孝 茨城県日立市会瀬町2丁目9番1号 日立 設備エンジニアリング株式会社内 (56)参考文献 実開 昭61−202171(JP,U) 実開 昭56−166776(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuhiro Nitobe 3-1-1, Saiwaicho, Hitachi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Nobutaka Suzuki 2-chome, Aisemachi, Hitachi, Ibaraki No. 1 in Hitachi Equipment Engineering Co., Ltd. (56) References Actually open 61-202171 (JP, U) Actually open 56-166776 (JP, U)
Claims (1)
主ロール駆動用直流電動機(12)及び圧延板材(23)を
巻き取る巻取用直流電動機(13,14)である圧延機用直
流電動機において、 電機子(6)と、該電機子を囲んで対向する継鉄(1)
に保持されて該電機子へ磁束を入射する主極鉄心(4)
及び補極鉄心(8)と、前記主極鉄心と補極鉄心の間で
前記電機子側に片寄った位置に前記補極鉄心の磁束を前
記主極鉄心に漏洩させる調整磁性部材(10)とを備え、
該調整磁性部材(10)は前記主極鉄心若しくは前記補極
鉄心のいずれか一方との間に、2〜15mmのギャップを設
けて接合されてなることを特徴とする圧延機用直流電動
機。1. A rolling machine which is a DC motor (12) for driving a main roll for applying a driving force to a main roll of the rolling machine (11) and a DC motor (13, 14) for winding up a rolled plate material (23). In a DC motor for use, an armature (6) and a yoke (1) surrounding and surrounding the armature (1)
Main pole core (4), which is held by the armature and injects magnetic flux into the armature
And a supplementary pole core (8), and an adjusting magnetic member (10) for leaking the magnetic flux of the supplementary pole core to the main pole core at a position deviated to the armature side between the main pole core and the supplementary pole core. Equipped with
A DC motor for a rolling mill, characterized in that the adjusting magnetic member (10) is joined to either one of the main pole core or the supplementary pole core with a gap of 2 to 15 mm.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63172741A JPH0787686B2 (en) | 1988-07-13 | 1988-07-13 | DC motor for rolling mill |
US07/353,473 US5015905A (en) | 1988-05-27 | 1989-05-17 | DC dynamoelectric machine with interpoles having magnetic flux bypassing members |
EP89109533A EP0343681B1 (en) | 1988-05-27 | 1989-05-26 | Dynamoelectric DC machine |
DE68917786T DE68917786T2 (en) | 1988-05-27 | 1989-05-26 | Dynamoelectric DC machine. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63172741A JPH0787686B2 (en) | 1988-07-13 | 1988-07-13 | DC motor for rolling mill |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0226258A JPH0226258A (en) | 1990-01-29 |
JPH0787686B2 true JPH0787686B2 (en) | 1995-09-20 |
Family
ID=15947456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63172741A Expired - Lifetime JPH0787686B2 (en) | 1988-05-27 | 1988-07-13 | DC motor for rolling mill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0787686B2 (en) |
-
1988
- 1988-07-13 JP JP63172741A patent/JPH0787686B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0226258A (en) | 1990-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100060223A1 (en) | Permanent magnet rotating electrical machine and permanent magnet motor drive system | |
US20100327787A1 (en) | Permanent-magnet-type rotating electrical machine | |
JP3490307B2 (en) | Permanent magnet type motor | |
US5015905A (en) | DC dynamoelectric machine with interpoles having magnetic flux bypassing members | |
JPH0787686B2 (en) | DC motor for rolling mill | |
US4435664A (en) | Magnetic interpole apparatus for improving commutation characteristics of a dynamoelectric machine | |
JP2824186B2 (en) | Speed control method of wire finishing mill consisting of two block mills | |
JPS6051346B2 (en) | DC machine rectification compensation device | |
JP2714094B2 (en) | DC machine | |
JP2533485B2 (en) | Rectifier compensator for DC machines | |
JPH0368628B2 (en) | ||
JP2622371B2 (en) | Rectifier compensator for DC machines | |
JP2592470B2 (en) | DC machine | |
JPH0520988B2 (en) | ||
JPH0347620A (en) | Tension controller for winder and unwinder | |
JPH06297015A (en) | Method for controlling necking in hot take-up machine | |
SU1170563A1 (en) | Commutator electric machine | |
JPH06233511A (en) | Permanent magnet type synchronous motor, and field controlling method therefor | |
JPS63283485A (en) | Dc machine equipped with braking device for power generation | |
JPS6051347B2 (en) | DC machine rectification compensation device | |
JPH0510904B2 (en) | ||
JPS6237436Y2 (en) | ||
JPH03297513A (en) | Method of controlling tension of take-up machine for steel sheet mill | |
JP2529187B2 (en) | Rectifier compensator for DC machines | |
JPS5919532Y2 (en) | Cold rolling mill rewinding control device |