JPS6051346B2 - DC machine rectification compensation device - Google Patents

DC machine rectification compensation device

Info

Publication number
JPS6051346B2
JPS6051346B2 JP12651477A JP12651477A JPS6051346B2 JP S6051346 B2 JPS6051346 B2 JP S6051346B2 JP 12651477 A JP12651477 A JP 12651477A JP 12651477 A JP12651477 A JP 12651477A JP S6051346 B2 JPS6051346 B2 JP S6051346B2
Authority
JP
Japan
Prior art keywords
brush
commutator
winding
magnetic flux
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12651477A
Other languages
Japanese (ja)
Other versions
JPS5460406A (en
Inventor
和雄 田原
孝行 松井
正二 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12651477A priority Critical patent/JPS6051346B2/en
Publication of JPS5460406A publication Critical patent/JPS5460406A/en
Publication of JPS6051346B2 publication Critical patent/JPS6051346B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Current Collectors (AREA)
  • Dc Machiner (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は直流機の整流補償装置に関する。[Detailed description of the invention] The present invention relates to a rectification compensation device for a DC machine.

直流機の整流性能は機械の性能および寿命を左右する
といつても過言ではなく、従来から多くの研究がなされ
ている。最近は電算機の発達で詳細な計算により整流性
能も定量的に把握されつつあ・るが、最終的には実機の
無火花帯を測定して整流の良否を判定しているのが現状
である。 整流補償としては、従来、無火花帯が回転速
度で移動するのを補償する方式や、光学的にブラシから
発生する火花を検出し、電機子電流の変化率を小さくし
て極端な整流悪化を抑制する方式等が提案されている。
It is no exaggeration to say that the rectification performance of a DC machine affects the performance and life of the machine, and much research has been conducted in the past. Recently, with the development of computers, rectification performance is being understood quantitatively through detailed calculations, but the current situation is that the quality of rectification is ultimately determined by measuring the no-spark zone of the actual equipment. be. Conventional methods of commutation compensation include methods that compensate for the movement of the non-spark zone at rotational speed, and methods that optically detect sparks generated from brushes and reduce the rate of change in armature current to prevent extreme deterioration of commutation. Methods to suppress this have been proposed.

しかし、前者の方式は、回転速度で無火花帯が移動する
のを補償するのみで、通常の整流状態の補償を行なうこ
とができない。
However, the former method only compensates for movement of the non-spark zone at rotational speed, but cannot compensate for the normal commutation state.

また、後者の方式は、電機子電流変化時に補極磁束等の
遅れによる過渡時の整流悪化を抑制するためのものであ
り、定常運転時の整流悪化については補償できない欠点
がある。本発明の目的は、上記した従来技術の欠点を除
き、定常運転時および過渡時の整流および無火花帯の移
動も補償することのできる整流補償装置を提供するにあ
る。
Furthermore, the latter method is intended to suppress deterioration of commutation during transient times due to delays in the interpole magnetic flux, etc. when the armature current changes, and has the drawback that deterioration of commutation during steady operation cannot be compensated for. An object of the present invention is to provide a rectification compensator capable of compensating for rectification during steady operation and transient operation and also for movement of the non-sparking zone, while eliminating the drawbacks of the prior art described above.

この目的を達成するため、本発明は、ブラシの近傍に整
流子と摺接する検出ブラシを設けて、ブラシから整流子
片が離れるときの、ブラシと当該整流子片間の電圧を、
ブラシと検出ブラシとの間の電圧として検出し、この検
出電圧が正の所定値より大になつたときには、整流磁束
を増大し、負の所定値より小になつたときには整流磁束
を減少するようにしたことを特徴とする。
In order to achieve this object, the present invention provides a detection brush that is in sliding contact with the commutator near the brush, and detects the voltage between the brush and the commutator piece when the commutator piece separates from the brush.
It is detected as a voltage between the brush and the detection brush, and when this detection voltage becomes larger than a positive predetermined value, the rectifying magnetic flux is increased, and when it becomes smaller than a negative predetermined value, the rectifying magnetic flux is decreased. It is characterized by the following.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

直流機の整流現象は、第1図に示すように、電機子巻線
1と整流子2からなる回転子において、,整流子2の表
面をブラシ3が摺動して、第1図イから第1図ハに移行
する間に、整流子片A,Bに接続されている電機子巻線
1のコイル(太線表示)を流れる電流1が+Iaから−
1aまで反転する現象である。
As shown in Figure 1, the rectification phenomenon of a DC machine occurs when a brush 3 slides on the surface of the commutator 2 in a rotor consisting of an armature winding 1 and a commutator 2. During the transition to FIG.
This is a phenomenon that inverts up to 1a.

この電流1が変化する時には、漏れ磁束が発生して電機
子巻線1の整流を受けているコイル(太
Diュ、線表示)にリアクタンス電圧
Er(=ーL7ftたノーし、Lはコイルのインダクタ
ンス)が発生する。
When this current 1 changes, leakage magnetic flux is generated and the coil (thickness) receiving the rectification of the armature winding 1
A reactance voltage Er (=-L7ft, where L is the inductance of the coil) is generated at the line.

通常、このリアクタンス電圧を打消すために、補極ある
いは補極および補償巻線を設けて(図示なし)、整流磁
束を発生し、電機子巻線1の整流コイル(太線表示)に
整流電圧E。を与える。この整流電圧E。とリアクタン
ス電圧Erの関係クがEc>E,の時は、第2図の整流
曲線が曲線aのように変化し(過整流)、この時のブラ
シとこのブラシ下の整流子片間のブラシ接触電圧降下■
Bの変化は第3図の曲線aのようになる。次にEO=E
rの時は、整流曲線が第2図の曲線bのように(直流整
流)、ブラシ接触電圧降下が第3図の曲線bのようにな
る。さらにEOくErの時は、整流曲線およびブラシ接
触電圧降下とも曲線cのようになる(不足整流)。この
ため、過整流(曲線a)および不足整流(曲線c)にお
いて、ブラシ出口側のブラシ接触電圧降下が火花発生限
界電圧、例えば約±3Vの範囲を越えて+3V以上ある
いは−3V以下(例えノば−4V)になると、ブラシ摺
動面から火花が発生する。
Normally, in order to cancel this reactance voltage, a commutating pole or a commutating pole and a compensation winding (not shown) are provided to generate a rectified magnetic flux, and a rectified voltage E . give. This rectified voltage E. When the relationship between Ec and reactance voltage Er is Ec>E, the rectification curve in Figure 2 changes as shown by curve a (over-rectification), and the brush between the brush and the commutator piece under this brush at this time changes as shown in curve a (over-rectification). Contact voltage drop■
The change in B is as shown by curve a in FIG. Then EO=E
When r, the rectification curve becomes like curve b in FIG. 2 (DC rectification), and the brush contact voltage drop becomes like curve b in FIG. 3. Further, when EO is less than Er, both the rectification curve and the brush contact voltage drop become curve c (under-rectification). Therefore, in over-rectification (curve a) and under-rectification (curve c), the brush contact voltage drop on the brush outlet side exceeds the spark generation limit voltage, for example, about ±3V, and exceeds +3V or -3V (for example, When the voltage reaches -4V), sparks are generated from the brush sliding surface.

したがつて、ブラシ接触電圧降下■8を火花発生限界電
圧、例えば±3■以内となるように整流磁束を調整する
ことにより、整流性能を良好にすることができる。第4
図はブラシ3の出口側に検出ブラシ4を設けた場合の概
略図である。
Therefore, the rectifying performance can be improved by adjusting the rectifying magnetic flux so that the brush contact voltage drop 8 is within the spark generation limit voltage, for example, ±3 . Fourth
The figure is a schematic diagram in which a detection brush 4 is provided on the outlet side of the brush 3.

ここで、検出ブラシ4はブラシ3と若干の間隔δをあけ
て配置されかつその厚さは望ましくは整流子片の幅程度
になされている。この結果、ブラシ3と接触している整
流子片が回転方向に移動して、検出ブラシ4の下に入る
と検出ブラシ4が触針としてその整流子片に接触するの
で、ブラシ3とその整流子片との間の電圧を検出するこ
とができる。さらにその整流子片が回転方向に移動して
、ブラシ3から離脱する瞬時(整流終了時)はその整流
子片のみが検出ブラシ4と接触していることになるので
、ブラシ3と検出ブラシ4との間の電圧を検出すれば、
その整流子片がブラシ3から離脱する整流終了時のパイ
ク状の電圧を検出することができる。すなわち、第3図
に示したブラシ出口のスパイク状(A,c)電圧を各整
流子片について検出することができる。第5図は本発明
の一実施例に係る整流補償装置の電気回路図を示す。
Here, the detection brush 4 is arranged with a slight distance δ from the brush 3, and its thickness is desirably about the width of the commutator piece. As a result, when the commutator piece that is in contact with the brush 3 moves in the rotation direction and comes under the detection brush 4, the detection brush 4 contacts the commutator piece as a stylus, so that the brush 3 and its commutator The voltage between the child piece and the child piece can be detected. Furthermore, at the moment when the commutator piece moves in the rotation direction and separates from the brush 3 (at the end of commutation), only that commutator piece is in contact with the detection brush 4, so the brush 3 and the detection brush 4 If we detect the voltage between
A pike-like voltage at the end of commutation when the commutator pieces separate from the brush 3 can be detected. That is, the spike-like (A, c) voltage at the brush outlet shown in FIG. 3 can be detected for each commutator piece. FIG. 5 shows an electrical circuit diagram of a rectification compensator according to an embodiment of the present invention.

第5図において、3はブラシ、4は検出ブラシ、5は電
機子、6は他励界磁巻線、7は補償巻線、8は補極巻線
、9は補助補極巻線、10は比較器、11は補極増磁指
令回路、12は補極減磁指令回路、13は補助補極巻線
励減磁装置てある。
In FIG. 5, 3 is a brush, 4 is a detection brush, 5 is an armature, 6 is a separately excited field winding, 7 is a compensation winding, 8 is a commutator winding, 9 is an auxiliary commutator winding, 10 11 is a comparator, 11 is a commutator magnetization command circuit, 12 is a commutator demagnetization command circuit, and 13 is an auxiliary commutator winding excitation/demagnetization device.

なお、補極巻線8と補助補極巻線9は同一鉄心、すなわ
ち補極鉄心上に巻回されている。いま、他励界磁巻線6
の端子Y,Y間に他磁電圧を印加した後、直流機主回路
の端子X,X間に主回路電圧を印加すると、ブラシ3か
ら整流子2(図示なし)、電機子5、整流子2、ブラシ
3の順序で主回路電流が電機子5に供給され、さらに補
償巻線7および補極巻線8を通じて主回路電流が流れて
、矢印の方向に電機子5が回転する。この際、ブラシ3
と整流子2との間の接触電圧降下は、ブラシ3と検出ブ
ラシ4との間の電圧として検出され、この検出電圧は比
較器10に入力する。比較器10では検出電圧が正の火
花発生限界電圧、例えば+3V以上の場合には補極増磁
指令回路11に出力し、検出電圧が負の火花発生限界電
圧、例えば−3V以下では補極減磁指令回路12に出力
する。この補極増磁および減磁指令回路11,12の出
力信号は補助補極巻線励減磁装置13に入力する。この
ため、補助補極巻線励減磁装置13は増磁指令が入ると
、補極巻線8と同一方向の起磁力となるように補助補極
巻線9に電流を流し、減磁指令の場合には、補極巻線8
と逆方向の起磁力となるように補助補極巻線9に電流を
流す。したがつて、補極起磁力によつて発生する整流磁
束が過もしくは不足整流の場合、これを直線整流にすべ
く調整することができ、リアクタンス電圧Erと整流電
圧E。
Note that the commutating pole winding 8 and the auxiliary commutating pole winding 9 are wound on the same core, that is, the commuting pole core. Now, separately excited field winding 6
After applying another magnetic voltage between terminals Y and Y of the DC machine main circuit, when applying main circuit voltage between terminals X and 2. The main circuit current is supplied to the armature 5 in the order of the brushes 3, and further flows through the compensation winding 7 and the commutator winding 8, causing the armature 5 to rotate in the direction of the arrow. At this time, brush 3
The contact voltage drop between the brush 3 and the commutator 2 is detected as the voltage between the brush 3 and the detection brush 4, and this detected voltage is input to the comparator 10. In the comparator 10, when the detected voltage is above a positive spark generation limit voltage, for example +3V, it is output to the commutator magnetization command circuit 11, and when the detection voltage is below a negative spark generation limit voltage, for example -3V, the commutator is demagnetized. Output to the magnetic command circuit 12. The output signals of the commutator magnetization and demagnetization command circuits 11 and 12 are input to the auxiliary commutator winding excitation/demagnetization device 13. For this reason, when the auxiliary commutator winding excitation/demagnetizer 13 receives the magnetization command, it passes current through the auxiliary commutator winding 9 so that the magnetomotive force is in the same direction as the commutator winding 8, and the demagnetization command is issued. In the case of , the commutator winding 8
A current is passed through the auxiliary commutator winding 9 so that the magnetomotive force is in the opposite direction. Therefore, if the rectified magnetic flux generated by the interpolation magnetomotive force is over- or under-rectified, it can be adjusted to linear rectification, and the reactance voltage Er and rectified voltage E.

の関係を常に最適なEr=ニEOにすることができる。
なお、検出ブラシは、周方向の各位置に配置されたブラ
シ毎に設けることが望ましいが、ブラシ火花の最も発生
しやすい位置のブラシ保持アームに1個たけ設けてもよ
い。また、第6図は本発明の他の実施例を示す。
The relationship can always be set to the optimal relationship Er=NEO.
Although it is desirable to provide one detection brush for each brush arranged at each position in the circumferential direction, one detection brush may be provided on the brush holding arm at a position where brush sparks are most likely to occur. Further, FIG. 6 shows another embodiment of the present invention.

第6図において、第5図と同一符号は同一物又は均等物
を示し、さらに14は補極および補償巻線励減磁装置て
ある。すなわち、第5図の補助補極巻線9が省略され、
補償巻線7と補極巻線8の直列回路の両端に補極および
補償巻線励減磁装置14の出力が直接印加するように構
成されている。
In FIG. 6, the same reference numerals as in FIG. 5 indicate the same or equivalent components, and 14 represents a commutating pole and a compensation winding excitation/demagnetization device. That is, the auxiliary commutator winding 9 in FIG. 5 is omitted,
The output of the commutator and compensation winding excitation/demagnetizer 14 is directly applied to both ends of the series circuit of the compensation winding 7 and the commutator winding 8.

したがつて、ブラシ3と整流子片間の電圧をブラシ3と
検出ブラシ4との間の電圧として検出し、その検出電圧
を比較器10に入力し、その検出電圧が例えば+3V以
上の場合には補極増磁指令回路11に入力信号が入り、
補極増磁指令回路11からは補極および補償巻線励磁装
置14に、補極巻線および補償巻線7を励磁するための
信号を出力し、補極および補償巻線励磁装置14から補
極および補償巻線を励磁する電流を流す。
Therefore, the voltage between the brush 3 and the commutator piece is detected as the voltage between the brush 3 and the detection brush 4, and the detected voltage is input to the comparator 10, and when the detected voltage is, for example, +3V or more, An input signal enters the commutator magnetization command circuit 11,
The commutator magnetization command circuit 11 outputs a signal for exciting the commutator winding and the compensation winding 7 to the commutator and compensation winding excitation device 14, and the commutator and compensation winding excitation device A current is applied to excite the pole and compensation winding.

この励磁電流により、補極磁束と補償巻線による磁束が
増加して整流起電力が大きくなり、ブラシ出口における
整流終了時のブラシ3と整流子片間の電圧(検出電圧)
を3■以下に減少することがてきる。逆に、ブラシ3と
検出ブラシ4との間の検出電圧が−3■以下(例えば、
−4■とか−5Vというように)になると比較器10か
らの出力信号が補極減磁指令回路12に入力され、その
出力が補極および補償巻線励減磁装置14に入力されて
、補極および補償巻線の電流を減少させる方向に電流を
流す。
This excitation current increases the magnetic flux of the interpole and the compensation winding, increasing the rectifying electromotive force, and the voltage between the brush 3 and the commutator piece (detected voltage) at the brush outlet when commutation is completed.
can be reduced to 3■ or less. Conversely, if the detection voltage between the brush 3 and the detection brush 4 is -3■ or less (for example,
-4■ or -5V), the output signal from the comparator 10 is input to the commutator demagnetization command circuit 12, and its output is input to the commutator and compensation winding excitation/demagnetizer 14. Flow current in a direction that reduces the current in the commutating pole and compensation winding.

このため、補極磁束と補償巻線による磁束が減少して整
流起電力が小さくなり、ブラシ出口における整流終了時
のブラシ3と整流子片間の電圧(検出電圧)を−3■以
上(例えば−2■、−1Vのように)に増加できる。こ
のように、ブラシ3と検出ブラシ4との間の検出電圧に
基づいて、補極および補償巻線の起磁力を調整すること
ができ、整流を良好な状態に保持することがてきる。
Therefore, the commutating magnetic flux and the magnetic flux due to the compensation winding decrease, and the rectifying electromotive force becomes smaller, so that the voltage (detected voltage) between the brush 3 and the commutator piece at the end of commutation at the brush outlet is -3■ or more (e.g. -2■, -1V). In this manner, the magnetomotive force of the commutating pole and the compensation winding can be adjusted based on the detected voltage between the brush 3 and the detection brush 4, and rectification can be maintained in a good state.

なお、この実施例では、検出電圧に基づいて補極および
補償巻線の起磁力を調整するようにしているが、励減磁
装置の出力を補極巻線8のみ、あるいは補償巻線7のみ
に印加して、これらのいずれか一方のみの起磁力を調整
するようにすることもできる。以上説明したように、本
発明によれば、ブラシから火花が発生する限界電圧、例
えば約±3Vのノ範囲を越えて+3V以上あるいは−3
V以下(例えば−4V)になると、整流磁束を増加ある
いは減少させて、ブラシ出口側のブラシと整流子間の電
圧を火花発生限界電圧以内に調整てきるのて、負荷状態
の大小および回転速度の相違による無火花7帯移動現象
を補償することができ、常に整流状態を良好に維持する
ことがてきる。
In this embodiment, the magnetomotive force of the commutator and the compensation winding is adjusted based on the detected voltage, but the output of the excitation/demagnetization device is adjusted only to the commutator winding 8 or only to the compensation winding 7. It is also possible to adjust the magnetomotive force of only one of these by applying it to the magnetomotive force. As explained above, according to the present invention, the limit voltage at which sparks are generated from the brush, for example, exceeds the range of approximately ±3 V and exceeds +3 V or -3 V.
When the voltage is below V (for example -4V), the rectifying magnetic flux is increased or decreased to adjust the voltage between the brush and commutator on the brush outlet side to within the spark generation limit voltage, thereby adjusting the load condition and rotation speed. It is possible to compensate for the non-spark seven-band movement phenomenon caused by the difference in the number of sparks, and it is possible to always maintain a good rectification state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ〜ハは整流の原理説明図、第2図は整流曲線図
、第3図は整流曲線に対応したブラシ接フ触電圧降下を
示す特性図、第4図は本発明に係るブラシ出口における
ブラシと整流子間のスパイク電圧の検出手段を示す概略
図、第5図は本発明の一実施例を示す整流補償装置の電
気回路図、第6図は本発明の他の実施例を示す整流補償
装置の電気回路図である。 2・・・整流子、3・・・ブラシ、4・・・検出ブラシ
、7・・補償巻線、8・・・補極巻線、9・・・補助補
極巻線、10・・・比較器、11・・・補極増磁指令回
路、12・・補極減磁指令回路、13・・・補助補極巻
線励減磁装置、14・・・補極および補償巻線励減磁装
置。
Fig. 1 A to C are diagrams explaining the principle of rectification, Fig. 2 is a rectification curve diagram, Fig. 3 is a characteristic diagram showing brush contact voltage drop corresponding to the rectification curve, and Fig. 4 is a brush according to the present invention. A schematic diagram showing means for detecting a spike voltage between a brush and a commutator at the outlet, FIG. 5 is an electrical circuit diagram of a rectification compensator showing one embodiment of the present invention, and FIG. 6 is a diagram showing another embodiment of the present invention. FIG. 2 is an electrical circuit diagram of the rectification compensator shown in FIG. 2...Commutator, 3...Brush, 4...Detection brush, 7...Compensation winding, 8...Commuting pole winding, 9...Auxiliary commuting winding, 10... Comparator, 11...Commuting pole magnetization command circuit, 12...Commuting pole demagnetizing command circuit, 13...Auxiliary commutating pole winding excitation/demagnetization device, 14...Commuting pole and compensation winding excitation/demagnetization device Magnetic device.

Claims (1)

【特許請求の範囲】 1 電機子ならびに整流子を有する回転子と、主極、補
極巻線および補償巻線の少なくともいずれか一方からな
る整流磁束を発生する巻線、なびにブラシを有する固定
子とを備え、前記電機子への電力の授受を前記ブラシな
らびに整流子を介して行なうものにおいて、前記ブラシ
の近傍に前記整流子と摺接する検出ブラシを設けて、前
記ブラシから整流子片が離れるときの、前記ブラシと当
該整流子片間の電圧を、前記ブラシと前記検出ブラシと
の間の電圧として検出するように構成し、前記検出電圧
が正の所定値より大になつたときには、前記整流磁束を
発生する巻線にその整流磁束が増大するように電流を流
し、前記検出電圧が負の所定値より小になつたときには
、前記整流磁束を発生する巻線にその整流磁束が減少す
る如く電流を流すように構成したことを特徴とする直流
機の整流補償装置。 2 電機子ならびに整流子を有する回転子と、主極、補
極巻線および補償巻線のうち少なくとも補極巻線からな
る整流磁束を発生する巻線、ならびにブラシを有する固
定子とを備え、前記電機子への電力の授受を前記ブラシ
ならびに整流子を介して行なうものにおいて、前記ブラ
シの近傍に前記整流子と摺接する検出ブラシを設けて、
前記ブラシから整流子片が離れるときの、前記ブラシと
当該整流子片間の電圧を、前記ブラシと前記検出ブラシ
との間の電圧として検出するように構成するとともに、
前記補極巻線が巻回された鉄心上に補助補極巻線を巻回
し、前記検出電圧が正の所定値より大になつたときには
、前記補助補極巻線に、前記補極巻線で発生する整流磁
束と同一方向の磁束を発生するように電流を流し、前記
検出電圧が負の所定値より小になつたときには、前記補
助補極巻線に、前記補極巻線で発生する整流磁束と逆方
向の磁束を発生するように電流を流すように構成したこ
とを特徴とする直流機の整流補償装置。
[Scope of Claims] 1. A rotor having an armature and a commutator, a winding that generates rectified magnetic flux consisting of at least one of a main pole, a commutator winding, and a compensation winding, and a stationary member having brushes. A detection brush is provided in the vicinity of the brush and makes sliding contact with the commutator, and a detection brush is provided in the vicinity of the brush, and the commutator pieces are detected from the brush. The voltage between the brush and the commutator piece when they are separated is configured to be detected as the voltage between the brush and the detection brush, and when the detected voltage becomes larger than a positive predetermined value, A current is passed through the winding that generates the rectified magnetic flux so that the rectified magnetic flux increases, and when the detected voltage becomes smaller than a negative predetermined value, the rectified magnetic flux decreases in the winding that generates the rectified magnetic flux. 1. A rectification compensator for a DC machine, characterized in that the device is configured to allow current to flow as if the current is caused to flow. 2. A rotor having an armature and a commutator, a winding that generates a rectified magnetic flux consisting of at least a commutator winding among a main pole, a commutator winding, and a compensation winding, and a stator having brushes, In the device in which power is transferred to and from the armature via the brush and the commutator, a detection brush that is in sliding contact with the commutator is provided near the brush,
The voltage between the brush and the commutator piece when the commutator piece separates from the brush is detected as the voltage between the brush and the detection brush, and
An auxiliary commutator winding is wound on the core around which the commutator winding is wound, and when the detected voltage becomes larger than a positive predetermined value, the auxiliary commutator winding is A current is passed to generate a magnetic flux in the same direction as the rectified magnetic flux generated in the auxiliary commutator winding, and when the detected voltage becomes smaller than a predetermined negative value, the rectified magnetic flux generated in the auxiliary commutator winding is A rectification compensator for a DC machine, characterized in that it is configured to flow a current so as to generate a magnetic flux in the opposite direction to the rectified magnetic flux.
JP12651477A 1977-10-21 1977-10-21 DC machine rectification compensation device Expired JPS6051346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12651477A JPS6051346B2 (en) 1977-10-21 1977-10-21 DC machine rectification compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12651477A JPS6051346B2 (en) 1977-10-21 1977-10-21 DC machine rectification compensation device

Publications (2)

Publication Number Publication Date
JPS5460406A JPS5460406A (en) 1979-05-15
JPS6051346B2 true JPS6051346B2 (en) 1985-11-13

Family

ID=14937083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12651477A Expired JPS6051346B2 (en) 1977-10-21 1977-10-21 DC machine rectification compensation device

Country Status (1)

Country Link
JP (1) JPS6051346B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941144A (en) * 1982-08-30 1984-03-07 Mitsubishi Electric Corp Rotor for rotary electric machine
JPS5941143A (en) * 1982-08-30 1984-03-07 Mitsubishi Electric Corp Rotor for rotary electric machine
JPS6087648A (en) * 1983-10-19 1985-05-17 Hitachi Ltd Commutation compensator of dc electric machine
JPH0268665U (en) * 1988-11-08 1990-05-24

Also Published As

Publication number Publication date
JPS5460406A (en) 1979-05-15

Similar Documents

Publication Publication Date Title
US5444355A (en) Charging generator for a vehicle
JP3881301B2 (en) Control method of rotating electrical machine for vehicles
JPH09289799A (en) Controller for permanent magnet motor
JPS6051346B2 (en) DC machine rectification compensation device
JPS6051347B2 (en) DC machine rectification compensation device
JPH0345622B2 (en)
JPH08140214A (en) Hybrid drive system
JP2622371B2 (en) Rectifier compensator for DC machines
JPS6329506B2 (en)
JPH1032962A (en) Method and device for detecting abnormality in field coil winding of rotary field type rotary electric machine
JP2922049B2 (en) DC machine rectifier
JPS60167697A (en) Commutation compensator of dc machine
JPS62268345A (en) Rectifying compensator for dc machine
JP2529187B2 (en) Rectifier compensator for DC machines
JPS60144152A (en) Rectification compensating device of dc machine
JP2714094B2 (en) DC machine
SU1125709A1 (en) Device for improving commutation of commutator d.c. electric machine
JPH03207290A (en) Driver for brushless motor
JPS60226739A (en) Rectifying spark monitor
JPH06201731A (en) Magnetic balance type current measuring device
JPS6237436Y2 (en)
JPH0510904B2 (en)
JP2009130951A (en) Magnetic field adjusting device of permanent magnet type synchronous motor, and measuring method of mechanical loss
JPH0519386B2 (en)
JPH0520988B2 (en)