JPH0786785A - Cooling method for microwave amplifier - Google Patents

Cooling method for microwave amplifier

Info

Publication number
JPH0786785A
JPH0786785A JP22592593A JP22592593A JPH0786785A JP H0786785 A JPH0786785 A JP H0786785A JP 22592593 A JP22592593 A JP 22592593A JP 22592593 A JP22592593 A JP 22592593A JP H0786785 A JPH0786785 A JP H0786785A
Authority
JP
Japan
Prior art keywords
microwave amplifier
housing
waveguide
cooling
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22592593A
Other languages
Japanese (ja)
Inventor
Hironobu Hongo
廣信 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22592593A priority Critical patent/JPH0786785A/en
Publication of JPH0786785A publication Critical patent/JPH0786785A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To enable effective cooling in a small-sized and lightweight equipment by installing at least a pipe type ventilation path between the outside and the inside of a housing. CONSTITUTION:A housing 12 is manufactured by shaving out from a metal block like aluminum, so as to have no joints. An amplifier element 11 is contained in a package and fixed to the housing 12 by using screws or the like, so as to obtain excellent heat radiation effect. A rectangular waveguide 13 forming a ventilation hole penetrates the housing 12 and is fixed in the manner in which gaps are not generated between the housing 12 and the waveguide 13. Thereby a microwave amplifier can be effectively cooled, so that a small-sized lightweight microwave amplifier is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロ波をシールドす
るためのきょう体を有するマイクロ波増幅器の冷却方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a microwave amplifier having a housing for shielding microwaves.

【0002】[0002]

【従来の技術】マイクロ波帯の高周波回路の増幅部を収
納するきょう体構造としては、他の回路との干渉を防止
するため、きょう体外部への電磁波の漏えいまたは他の
装置からきょう体内部への電磁波の混入を低減する構造
が必要である。そのため、高周波回路全体をシールドす
るのが一般的である。
2. Description of the Related Art As a housing structure for accommodating an amplifying part of a microwave band high frequency circuit, in order to prevent interference with other circuits, leakage of electromagnetic waves to the outside of the housing or inside of the housing from other devices There is a need for a structure that reduces the mixing of electromagnetic waves into the. Therefore, it is common to shield the entire high frequency circuit.

【0003】図9に従来型のマイクロ波増幅器20の構
成が示される。従来型のマイクロ波増幅器20の冷却を
考えた場合、高周波回路全体がシールド(金属材料で密
閉)されているので、きょう体22外部に放熱器25を
取り付け、増幅器における増幅素子11を冷却してい
る。
FIG. 9 shows the structure of a conventional microwave amplifier 20. When considering cooling of the conventional microwave amplifier 20, since the entire high frequency circuit is shielded (sealed with a metal material), a radiator 25 is attached outside the casing 22 to cool the amplification element 11 in the amplifier. There is.

【0004】[0004]

【発明が解決しようとする課題】従来例のマイクロ波増
幅器20においては、きょう体22の外部に放熱器25
を取り付ける構造のため、熱源(増幅素子11)から外
気までの熱抵抗が大きいという問題がある。一般的なマ
イクロ波増幅器の場合、熱の経路としては、増幅素子に
おけるチップで発生した熱は、パッケージへ伝導された
後、きょう体へ伝導され、さらに放熱器に伝導され空気
中に発散される。
In the conventional microwave amplifier 20, a radiator 25 is provided outside the housing 22.
However, there is a problem that the heat resistance from the heat source (amplifying element 11) to the outside air is large due to the structure of attaching the. In the case of a general microwave amplifier, as a heat path, the heat generated in the chip of the amplification element is conducted to the package, then to the casing, and then to the radiator to be radiated into the air. .

【0005】そのため、増幅素子の温度を下げる場合に
は、巨大な放熱器が必要になり、従って、マイクロ波増
幅器が大型となり、重量も増加するという問題が生ず
る。従って、本発明の目的は、マイクロ波増幅器におい
て、小型、軽量で効率よく冷却する方法を実現すること
にある。
Therefore, in order to lower the temperature of the amplifying element, a huge radiator is required, so that the microwave amplifier becomes large and the weight thereof increases. Therefore, an object of the present invention is to realize a method of efficiently cooling a microwave amplifier that is small, lightweight.

【0006】[0006]

【課題を解決するための手段】本発明においては、きょ
う体の上面板を除いた平面図図1に例示されるように、
マイクロ波のシールドを行う密閉型のきょう体12を有
するマイクロ波増幅器10において、きょう体12の外
部と内部との間に少なくとも1つの管状の通風孔13を
設けるように構成する。
In the present invention, as shown in FIG. 1 which is a plan view of the casing without the top plate,
In a microwave amplifier 10 having a closed casing 12 for shielding microwaves, at least one tubular ventilation hole 13 is provided between the outside and the inside of the casing 12.

【0007】また、本発明においては、図8に示される
ように、マイクロ波のシールドを行う密閉型のきょう体
12を有するマイクロ波増幅器18であって、きょう体
12の外部と内部との間に少なくとも1つの管状の通風
孔13を設け、かつ、マイクロ波増幅器18を構成する
増幅素子11に放熱器14を実装するように構成する。
Further, in the present invention, as shown in FIG. 8, there is provided a microwave amplifier 18 having a hermetically sealed casing 12 for shielding microwaves, which is provided between the outside and inside of the casing 12. Is provided with at least one tubular ventilation hole 13, and the radiator 14 is mounted on the amplification element 11 forming the microwave amplifier 18.

【0008】[0008]

【作用】本発明を用いれば、管状の通風孔によりきょう
体の内外を連絡することによって、きょう体内の熱気を
排出することができ、効率よい冷却が可能となる。本発
明の冷却方法による熱の経路は次のようになる。すなわ
ち、増幅素子で発生した熱はパッケージへ伝導した後、
きょう体内の空気中に発散され、この空気がさらに通風
孔によってきょう体外部の空気中へと熱を発散する。こ
のようにして熱源から外気までの熱抵抗は低くなる。ま
た、きょう体のシールド効果は、管状の通風孔の形状を
所定の形状にすることにより保持できる。
According to the present invention, the hot air inside the casing can be discharged by connecting the inside and outside of the casing through the tubular ventilation holes, which enables efficient cooling. The path of heat by the cooling method of the present invention is as follows. That is, after the heat generated in the amplification element is conducted to the package,
It is radiated into the air inside the body, and this air further radiates heat into the air outside the body through the ventilation holes. In this way, the thermal resistance from the heat source to the outside air becomes low. Further, the shield effect of the casing can be maintained by making the shape of the tubular ventilation hole a predetermined shape.

【0009】[0009]

【実施例】本発明の第1実施例を行うマイクロ波増幅器
の斜視図が図2に示され、第1実施例の通風孔として用
いられる方形導波管の断面を示す斜視図が図3に示さ
れ、前記方形導波管の断面における長い方の一辺の長さ
aと、この方形導波管の遮断周波数fc との関係が図4
に示される。
1 is a perspective view of a microwave amplifier according to a first embodiment of the present invention, and FIG. 3 is a perspective view showing a cross section of a rectangular waveguide used as a ventilation hole of the first embodiment. 4 shows the relationship between the length a of one longer side in the cross section of the rectangular waveguide and the cutoff frequency f c of this rectangular waveguide.
Shown in.

【0010】図2に示されるように、この実施例を行う
マイクロ波増幅器10は、増幅素子(モジュール)1
1、増幅素子11を収容するきょう体12、きょう体1
2を貫通する管状の通風孔13(本例では4個の方形導
波管)、増幅素子11の入力および出力を中継するコネ
クタ16(図1参照、図2においては記載を省略)を具
備する。
As shown in FIG. 2, the microwave amplifier 10 according to this embodiment includes an amplifying element (module) 1
1, a housing 12 for accommodating the amplifying element 11, a housing 1
2 is provided with a tubular ventilation hole 13 (four rectangular waveguides in this example), and a connector 16 (see FIG. 1, not shown in FIG. 2) that relays the input and output of the amplification element 11. .

【0011】きょう体12は例えば、アルミニウム等の
金属ブロックから削り出して製造され、継ぎ目がないよ
うに作られている。増幅素子11はパッケージに収納さ
れ、きょう体12にねじ等で放熱の効果のよいように取
り付けられる。通風孔を形成する方形導波管はきょう体
12を管通して取り付けられ、きょう体12と導波管の
間に隙間が生じないように固着される。取り付けられる
導波管の数は4個に限られることなく任意の個数の取り
付けが可能である。
The casing 12 is manufactured, for example, by cutting it out of a metal block such as aluminum, and is made seamless. The amplifying element 11 is housed in a package, and is attached to the housing 12 with a screw or the like so as to have a good heat radiation effect. The rectangular waveguide forming the ventilation hole is attached through the casing 12 and fixed so that no gap is formed between the casing 12 and the waveguide. The number of waveguides attached is not limited to four, and any number of waveguides can be attached.

【0012】方形導波管の遮断周波数を、増幅されるマ
イクロ波の周波数に対して十分高くし、かつ方形導波管
の奥行方向の長さを適切に選択すれば、通風孔(方形導
波管の開孔部)から漏えいする電磁波またはきょう体1
2外からきょう体内へ混入する電磁波を少なく抑えるこ
とができる。遮断周波数と導波管の寸法には以下の関係
が成立つ。すなわち、fc =c/2a、ここにcは空気
中の電磁波の伝播速度、aは方形導波管の内面広辺の寸
法である。
If the cutoff frequency of the rectangular waveguide is set sufficiently higher than the frequency of the microwave to be amplified and the length of the rectangular waveguide in the depth direction is appropriately selected, the ventilation hole (rectangular waveguide Electromagnetic waves or enclosure 1 leaking from the tube opening)
2 It is possible to suppress electromagnetic waves that enter the body from the outside. The following relationship holds between the cutoff frequency and the size of the waveguide. That is, f c = c / 2a, where c is the propagation velocity of the electromagnetic wave in the air, and a is the dimension of the inner wide side of the rectangular waveguide.

【0013】一例として、増幅されるマイクロ波を4GH
z とし、通風孔としてWRJ−10相当(内径22.9
0×10.20mm)の方形導波管を使用した場合、単位
長さあたりの減衰量は0.944dB/mmであるから、導
波管長を40mmとすれば、きょう体内部ときょう体外部
間で38dBのアイソレーションが得られる。
As an example, the microwave to be amplified is set to 4 GHz.
z, and WRJ-10 equivalent (inner diameter 22.9)
(0 × 10.20 mm) When a rectangular waveguide is used, the attenuation per unit length is 0.944 dB / mm, so if the waveguide length is 40 mm, it will be between the inside and outside of the body. Gives 38 dB of isolation.

【0014】また他の一例として、増幅されるマイクロ
波を4GHz とし、通風孔としてWRJ−120相当(内
径19.05×9.525mm)の方形導波管を使用した
場合、単位長さあたりの減衰量は1.237dB/mmであ
るから、導波管長を40mmとすれば、きょう体内部とき
ょう体外部間で49dBのアイソレーションが得られる。
As another example, when the microwave to be amplified is 4 GHz and a rectangular waveguide equivalent to WRJ-120 (inner diameter: 19.05 × 9.525 mm) is used as a ventilation hole, Since the amount of attenuation is 1.237 dB / mm, if the waveguide length is 40 mm, 49 dB isolation can be obtained between the inside and outside of the housing.

【0015】本発明の第2実施例を行うマイクロ波増幅
器の斜視図が図5に示され、第2実施例の通風孔として
用いられる円形導波管の断面を示す斜視図が図6に示さ
れ、前記円形導波管の断面における直径(内径)の長さ
Dと、この円形導波管の遮断周波数fc との関係が図7
に示される。
FIG. 5 is a perspective view of a microwave amplifier according to the second embodiment of the present invention, and FIG. 6 is a perspective view showing a cross section of a circular waveguide used as a ventilation hole of the second embodiment. FIG. 7 shows the relationship between the length D of the diameter (inner diameter) in the cross section of the circular waveguide and the cutoff frequency f c of the circular waveguide.
Shown in.

【0016】図5に示されるように、この実施例を行う
マイクロ波増幅器10は、増幅素子11、増幅素子11
を収容するきょう体12、きょう体12を貫通する管状
の通風孔13(本例では4個の円形導波管)、増幅素子
11の入力および出力を中継するコネクタ16(図1参
照、図5においては記載を省略)を具備する。上述のよ
うに、第2実施例は、第1実施例の方形導波管の代りに
円形導波管を用いる点が異なるのみであるので第1実施
例と同様な記載は省略する。
As shown in FIG. 5, the microwave amplifier 10 according to this embodiment includes an amplifying element 11 and an amplifying element 11.
A housing 12 that accommodates the housing 12, a tubular ventilation hole 13 (four circular waveguides in this example) that penetrates the housing 12, and a connector 16 that relays the input and output of the amplification element 11 (see FIG. 1 and FIG. Is omitted). As described above, the second embodiment is different only in that a circular waveguide is used instead of the rectangular waveguide of the first embodiment, and therefore the same description as in the first embodiment is omitted.

【0017】円形導波管においても、通風孔(円形導波
管の開孔部)から漏えいする電磁波またはきょう体12
外からきょう体内へ混入する電磁波を、遮断周波数と奥
行方向の長さを適切に与えることにより、少なく抑える
ことができる。円形導波管における電磁波の遮断周波数
c は次式で求められる。すなわち、fc =1.841
2c/πD、ここにDは円形導波管の内径の寸法であ
る。円形導波管における電磁波の減衰については、方形
導波管の場合と同様に算出できるので、ここでは省略す
る。
Also in the circular waveguide, the electromagnetic wave or the casing 12 leaking from the ventilation hole (opening portion of the circular waveguide).
Electromagnetic waves mixed into the body from the outside can be suppressed to a low level by appropriately providing the cutoff frequency and the length in the depth direction. The cutoff frequency f c of the electromagnetic wave in the circular waveguide is calculated by the following equation. That is, f c = 1.841
2c / πD, where D is the inner diameter of the circular waveguide. The attenuation of the electromagnetic wave in the circular waveguide can be calculated in the same manner as in the case of the rectangular waveguide, and will be omitted here.

【0018】第1および第2実施例においては、放射ま
たは伝導によって、増幅素子からの放熱をきょう体12
内、およびきょう体外へ逃がし、さらに、きょう体12
内に蓄積する熱を導波管等の通風孔を通して、冷却ファ
ン等による強制空冷によって、効率よく冷却を行うこと
ができる。
In the first and second embodiments, the radiation of heat from the amplifying element is performed by radiation or conduction.
It escapes inside and outside the body, and further, the body 12
The heat accumulated inside can be efficiently cooled by forced air cooling by a cooling fan or the like through a ventilation hole such as a waveguide.

【0019】本発明の第3実施例を行うマイクロ波増幅
器18の斜視図が図8に示される。図8においては、通
風孔を構成するため方形導波管が例示されているが円形
導波管でも差支えない。従って、第3実施例は第1実施
例または第2実施例と同様であるが、きょう体12の内
部において、増幅素子11に密着して放熱器14を用い
る点が第1または第2実施例と異なる。このようにすれ
ば、増幅素子の発熱を一旦、きょう体内へ放熱器をもっ
て放出し、その後きょう体内の熱せられた空気を通風孔
を介してファン等を用いて排出し、冷気と入れ替えて、
効率よいマイクロ波増幅器の冷却を行うことができる。
A perspective view of the microwave amplifier 18 implementing the third embodiment of the present invention is shown in FIG. In FIG. 8, a rectangular waveguide is illustrated to form the ventilation hole, but a circular waveguide may be used. Therefore, the third embodiment is similar to the first or second embodiment, but the first or second embodiment is that the radiator 14 is used in close contact with the amplifying element 11 inside the casing 12. Different from In this way, the heat generated by the amplifying element is once released into the housing with a radiator, and then the heated air in the housing is discharged through a ventilation hole using a fan or the like, and replaced with cold air.
The microwave amplifier can be cooled efficiently.

【0020】[0020]

【発明の効果】本発明によれば、マイクロ波増幅器を効
率よく冷却することが可能となり、さらにマイクロ波増
幅器の軽量化、小型化を実現できる。
According to the present invention, the microwave amplifier can be cooled efficiently, and the weight and size of the microwave amplifier can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明する平面図である。FIG. 1 is a plan view illustrating the present invention.

【図2】本発明の第1実施例を示す斜視図である。FIG. 2 is a perspective view showing a first embodiment of the present invention.

【図3】第1実施例の通風孔断面を示す斜視図である。FIG. 3 is a perspective view showing a cross section of a ventilation hole of the first embodiment.

【図4】方形導波管の長さaと遮断周波数fc との関係
を示す図である。
FIG. 4 is a diagram showing a relationship between a length a of a rectangular waveguide and a cutoff frequency f c .

【図5】本発明の第2実施例を示す斜視図である。FIG. 5 is a perspective view showing a second embodiment of the present invention.

【図6】第2実施例の通風孔断面を示す斜視図である。FIG. 6 is a perspective view showing a cross section of a ventilation hole of a second embodiment.

【図7】円形導波管の内径Dと遮断周波数fc との関係
を示す図である。
FIG. 7 is a diagram showing a relationship between an inner diameter D of a circular waveguide and a cutoff frequency f c .

【図8】本発明の第3実施例を示す斜視図である。FIG. 8 is a perspective view showing a third embodiment of the present invention.

【図9】従来型のマイクロ波増幅器の構成を示す図であ
る。
FIG. 9 is a diagram showing a configuration of a conventional microwave amplifier.

【符号の説明】[Explanation of symbols]

10…マイクロ波増幅器 11…増幅素子 12…きょう体 13…通風孔 14…放熱器 16…同軸コネクタ 18…マイクロ波増幅器 20…マイクロ波増幅器 22…きょう体 25…放熱器 DESCRIPTION OF SYMBOLS 10 ... Microwave amplifier 11 ... Amplification element 12 ... Housing 13 ... Ventilation hole 14 ... Radiator 16 ... Coaxial connector 18 ... Microwave amplifier 20 ... Microwave amplifier 22 ... Housing 25 ... Radiator

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波のシールドを行う密閉型のき
ょう体(12)を有するマイクロ波増幅器(10)の冷
却方法であって、 前記きょう体(12)の外部と内部との間に少なくとも
1つの管状の通風孔(13)を設けたことを特徴とする
マイクロ波増幅器の冷却方法。
1. A method of cooling a microwave amplifier (10) having a hermetically sealed casing (12) for shielding microwaves, comprising at least 1 between the outside and the inside of the casing (12). A cooling method for a microwave amplifier, characterized in that two tubular ventilation holes (13) are provided.
【請求項2】 前記管状の通風孔(13)は、前記きょ
う体(12)を、前記マイクロ波増幅器(10)の使用
周波数帯よりも十分高い遮断周波数を有する導波管で貫
通することを特徴とする請求項1のマイクロ波増幅器の
冷却方法。
2. The tubular ventilation hole (13) penetrates the casing (12) by a waveguide having a cutoff frequency sufficiently higher than a frequency band used by the microwave amplifier (10). The method for cooling a microwave amplifier according to claim 1, wherein the method is for cooling a microwave amplifier.
【請求項3】 前記導波管は方形導波管であることを特
徴とする請求項2のマイクロ波増幅器の冷却方法。
3. The method for cooling a microwave amplifier according to claim 2, wherein the waveguide is a rectangular waveguide.
【請求項4】 前記導波管は円形導波管であることを特
徴とする請求項2のマイクロ波増幅器の冷却方法。
4. The method for cooling a microwave amplifier according to claim 2, wherein the waveguide is a circular waveguide.
【請求項5】 マイクロ波のシールドを行う密閉型のき
ょう体(12)を有するマイクロ波増幅器(18)の冷
却方法であって、 前記きょう体(12)の外部と内部との間に少なくとも
1つの管状の通風孔(13)を設け、前記マイクロ波増
幅器(18)を構成する増幅器素子(11)に放熱器
(14)を実装することを特徴とするマイクロ波増幅器
の冷却方法。
5. A method of cooling a microwave amplifier (18) having a closed casing (12) for shielding microwaves, wherein at least one is provided between the outside and the inside of the casing (12). A cooling method for a microwave amplifier, comprising providing two tubular ventilation holes (13) and mounting a radiator (14) on an amplifier element (11) constituting the microwave amplifier (18).
JP22592593A 1993-09-10 1993-09-10 Cooling method for microwave amplifier Withdrawn JPH0786785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22592593A JPH0786785A (en) 1993-09-10 1993-09-10 Cooling method for microwave amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22592593A JPH0786785A (en) 1993-09-10 1993-09-10 Cooling method for microwave amplifier

Publications (1)

Publication Number Publication Date
JPH0786785A true JPH0786785A (en) 1995-03-31

Family

ID=16837045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22592593A Withdrawn JPH0786785A (en) 1993-09-10 1993-09-10 Cooling method for microwave amplifier

Country Status (1)

Country Link
JP (1) JPH0786785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043598A1 (en) * 2005-10-13 2007-04-19 Sony Computer Entertainment Inc. Electronic device and heat sink

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043598A1 (en) * 2005-10-13 2007-04-19 Sony Computer Entertainment Inc. Electronic device and heat sink

Similar Documents

Publication Publication Date Title
US6459578B1 (en) Chassis having reduced acoustic noise and electromagnetic emissions and method of cooling components within a chassis
US6038129A (en) Cooling electronic apparatus
EP0906009B1 (en) EMI-attenuating air ventilation panel
US4146112A (en) Sound reducing baffle for electrical apparatus
EP0946085A1 (en) Electronic apparatus having an environmentally sealed external enclosure
KR950003246B1 (en) Integrated emi filter and thermal heat sink
JPH10256777A (en) High-frequency emi shield accompanied with air flow for enclosure of electronic apparatus
KR100371623B1 (en) Electronic apparatus
CN114557148A (en) Combined heat exchanger and RF shield
JPH1041678A (en) Optical receiver
US4270106A (en) Broadband mode suppressor for microwave integrated circuits
US4249033A (en) Vented radio frequency shielded enclosure
JPH0786785A (en) Cooling method for microwave amplifier
WO2007043598A1 (en) Electronic device and heat sink
CN112806109A (en) Flexible heat pipe cooling assembly
US5358774A (en) Electromagnetic shielding assembly and fabrication method
US6401805B1 (en) Integrated venting EMI shield and heatsink component for electronic equipment enclosures
JPS6267936A (en) Radio communication equipment
CN219514529U (en) Shielding cover and electromagnetic shielding device
JP2638756B2 (en) High frequency heating equipment
JPH11298265A (en) High gain amplifier
KR100749066B1 (en) Radiating structure of travelling-wave tube for travelling-wave amplifier
JP2000188493A (en) Cooler with electromagnetic shield function
JP3013845B1 (en) High frequency integrated circuit package
JPS61208296A (en) Electronic equipment box body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128