JPH0786591B2 - Optical fiber type Fabry-Perot resonator - Google Patents

Optical fiber type Fabry-Perot resonator

Info

Publication number
JPH0786591B2
JPH0786591B2 JP63166228A JP16622888A JPH0786591B2 JP H0786591 B2 JPH0786591 B2 JP H0786591B2 JP 63166228 A JP63166228 A JP 63166228A JP 16622888 A JP16622888 A JP 16622888A JP H0786591 B2 JPH0786591 B2 JP H0786591B2
Authority
JP
Japan
Prior art keywords
optical fiber
perot resonator
piezoelectric element
fabry
fiber type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63166228A
Other languages
Japanese (ja)
Other versions
JPH0215228A (en
Inventor
壽一 野田
▲廣▼明 花房
善明 竹内
純二 渡辺
忠男 斎藤
伸介 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63166228A priority Critical patent/JPH0786591B2/en
Publication of JPH0215228A publication Critical patent/JPH0215228A/en
Publication of JPH0786591B2 publication Critical patent/JPH0786591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2252Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Filters (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、印加電圧によって共振器長が変化し、透過光
の波長を可変とする掃引型の光ファイバ型ファブリペロ
ー共振器の構造に関するものである。
TECHNICAL FIELD The present invention relates to a structure of a swept optical fiber type Fabry-Perot resonator in which the resonator length is changed by an applied voltage and the wavelength of transmitted light is variable. Is.

(従来の技術) 従来の光ファイバ型ファブリペロー共振器の設計は、以
下のように行なわれている。まず、ファブリペロー共振
器の性能を示すフィネスfは、反射鏡の反射率をRとす
ると、次式で表される。
(Prior Art) A conventional optical fiber type Fabry-Perot resonator is designed as follows. First, the finesse f indicating the performance of the Fabry-Perot resonator is expressed by the following equation, where R is the reflectance of the reflecting mirror.

f=πF/2 …(1) F=4R/(1−R) …(2) ファブリペロー共振器の周波数間隔Δfは、 Δf=v/2L (3) で表される。ここで、vは光ファイバ中の光の速度、L
は光ファイバ長である。
f = πF / 2 (1) F = 4R / (1-R) 2 (2) The frequency interval Δf of the Fabry-Perot resonator is represented by Δf = v / 2L (3). Where v is the speed of light in the optical fiber, L
Is the optical fiber length.

上記において、例えばフィネスfを100とするには反射
率Rを96.7%としなければならない。また、波長1.30μ
mにおける光ファイバ中の光速vは2.0078×1011mm/sec
であるから、周波数間隔Δfが10GHzの場合、光ファイ
バ長Lは10.039mmとなる。従って、周波数間隔Δfを10
GHzオーダーで制御するためには、ファブリペロー共振
器の長さをミクロン精度で構成する必要がある。
In the above, for example, in order to set the finesse f to 100, the reflectance R must be set to 96.7%. Also, wavelength 1.30μ
The speed of light v in the optical fiber at m is 2.0078 × 10 11 mm / sec
Therefore, when the frequency interval Δf is 10 GHz, the optical fiber length L is 10.039 mm. Therefore, the frequency interval Δf is 10
In order to control on the GHz order, it is necessary to configure the length of the Fabry-Perot resonator with micron accuracy.

しかし、光ファイバ型ファブリペロー共振器の長さをミ
クロン精度で構成することは極めて困難である。
However, it is extremely difficult to configure the length of the optical fiber type Fabry-Perot resonator with micron accuracy.

従来、この問題点を解決するため、第2図に示すよう
に、光ファイバ1の両端に、多層膜反射鏡2a,2bを蒸着
したガラス板3a,3bを接着剤EAで接着、固定し、かつ板
状圧電素子4を接着剤EAで光ファイバ1に固定した構成
として、信号発生器5により、板状圧電素子4に電圧を
印加して曲げ変位を付与し、光ファイバ1の長さを変化
させて、所望の周波数間隔Δfを得ていた。
Conventionally, in order to solve this problem, as shown in FIG. 2, glass plates 3a, 3b having multilayer film reflecting mirrors 2a, 2b deposited on both ends of an optical fiber 1 are bonded and fixed by an adhesive EA, In addition, the plate-shaped piezoelectric element 4 is fixed to the optical fiber 1 with the adhesive EA, and a voltage is applied to the plate-shaped piezoelectric element 4 by the signal generator 5 to impart a bending displacement, so that the length of the optical fiber 1 is increased. It was changed to obtain the desired frequency interval Δf.

(発明が解決しようとする課題) しかしながら、上記構成による光ファイバ型ファブリペ
ロー共振器によれば、変位量が小さいため、掃引周波数
を大きくすることができず、また、接着位置が2箇所で
あるので、長期的安定性に欠け、長期間の動作を保証で
きないという問題点があった。
(Problems to be Solved by the Invention) However, according to the optical fiber type Fabry-Perot resonator having the above-described configuration, since the displacement amount is small, the sweep frequency cannot be increased, and the bonding positions are two. Therefore, there is a problem that it lacks long-term stability and cannot guarantee long-term operation.

さらに、光ファイバ型ファブリペロー共振器の両端に光
ファイバを接続する場合、その両端面が反射面であるた
め、ファブリペロー共振器の光ファイバのコアの位置を
見い出すことが困難で、光ファイバ間の位置合わせと、
両者の光ファイバの固定が極めて困難であるという問題
点を有していた。
Furthermore, when connecting an optical fiber to both ends of an optical fiber type Fabry-Perot resonator, it is difficult to find the position of the core of the optical fiber of the Fabry-Perot resonator because both end faces are reflective surfaces. Alignment of
There is a problem that it is extremely difficult to fix both optical fibers.

本発明は、上記問題点に鑑み、掃引周波数を大きくで
き、低い電力により効率良く長時間安定して動作するこ
とができるとともに、光ファイバ間の接続処理を必要と
せず、低損失な掃引型の光ファイバ型ファブリペロー共
振器を提供することを目的とする。
In view of the above problems, the present invention can increase the sweep frequency, can efficiently and stably operate for a long time with low power, does not require connection processing between optical fibers, and has a low-loss sweep type. An object is to provide an optical fiber type Fabry-Perot resonator.

(課題を解決するための手段) 上記目的を達成するため、圧電素子と、該圧電素子の電
界印加方向とファイバ軸方向とが平行となる如く前記圧
電素子に固定された光ファイバと、該光ファイバととも
に前記圧電素子もしくはこれに接着された補強部材に所
定間隔をおいてファイバ軸と直角に形成された二つの溝
と、各々の溝に挿入、固定された2個の多層膜反射鏡と
を備えた。
(Means for Solving the Problems) In order to achieve the above object, a piezoelectric element, an optical fiber fixed to the piezoelectric element such that an electric field applying direction of the piezoelectric element and a fiber axis direction are parallel to each other, and the optical fiber. Two grooves formed at a right angle to the fiber axis at a predetermined interval in the piezoelectric element or the reinforcing member bonded to the fiber together with the fiber, and two multilayer film reflecting mirrors inserted and fixed in each groove are provided. Prepared

(作用) 本発明によれば、圧電素子に対して所定の電圧が印加さ
れると光ファイバのファイバ軸方向と平行に電界が印加
されてひずみが生じ、光ファイバ長が長く、即ち、光フ
ァイバ型ファブリペロー共振器が長くなる。従って、印
加電圧の大きさが種々選定されて、光ファイバ型ファブ
リペロー共振器長が変化し、所望の周波数間隔が得られ
ることになる。また、ファブリペロー共振器を構成する
2個の多層膜反射鏡は、光ファイバとともに圧電素子も
しくはこれに接着された補強部材に形成された二つの溝
にそれぞれ挿入、固定される、つまり元々連続している
光ファイバの途中に挿入、固定されるのみであるから、
改めて光ファイバ間の接続を行う必要がない。
(Operation) According to the present invention, when a predetermined voltage is applied to the piezoelectric element, an electric field is applied in parallel with the fiber axis direction of the optical fiber to cause distortion, and the optical fiber length is long, that is, the optical fiber is long. The type Fabry-Perot resonator becomes longer. Therefore, the magnitude of the applied voltage is variously selected, the length of the optical fiber type Fabry-Perot resonator is changed, and a desired frequency interval is obtained. Further, the two multilayer film reflecting mirrors that form the Fabry-Perot resonator are inserted and fixed in the two grooves formed in the piezoelectric element or the reinforcing member adhered to the optical fiber together with the optical fiber, that is, they are originally continuous. Since it is only inserted and fixed in the middle of the optical fiber,
There is no need to connect the optical fibers again.

(実施例) 第1図は本発明による掃引型の光ファイバ型ファブリペ
ロー共振器の第1の実施例を示すもので、第1図(a)
はその縦断側面図、第1図(b)は光ファイバの軸と直
角方向における断面図である。図中、10は圧電素子10a
が10個積層された積層型圧電素子で、各圧電素子10a間
には後述する光ファイバ13の軸方向に電界が印加される
ように電極Tが配設してある。11a,11bは無電極のダミ
イの圧電磁器で、積層型圧電素子10の両端にそれぞれ接
着されている。12は積層型圧電素子10と圧電磁器11a及
び11bに亘って直線状に形成された溝で、後述する光フ
ァイバ13の直径とほぼ同程度の幅を有する。13はカット
オフ波長1.12μmの単一モード光ファイバ(以下、単に
光ファイバと称す)、13aは光ファイバ13のコア、13bは
光ファイバ13のクラッドで、光ファイバ13は前記溝12に
挿入され、この溝12にエポキシ系接着剤EAにより固定さ
れている。14a,14bは波長1.30μmにおける透過率0.5%
の多層膜反射鏡で、光ファイバ13の両端面から圧電磁器
11a,11bのそれぞれの両端面に亘って、蒸着により形成
されている。15は電極Tに電圧を印加する信号発生器で
ある。
(Embodiment) FIG. 1 shows a first embodiment of a swept optical fiber type Fabry-Perot resonator according to the present invention.
Is a vertical sectional side view, and FIG. 1 (b) is a sectional view in a direction perpendicular to the axis of the optical fiber. In the figure, 10 is a piezoelectric element 10a.
10 are laminated, and electrodes T are arranged between the piezoelectric elements 10a so that an electric field is applied in the axial direction of the optical fiber 13 described later. Electrodes 11a and 11b are electrodeless damai piezoelectric ceramics, and are bonded to both ends of the laminated piezoelectric element 10, respectively. Reference numeral 12 denotes a groove formed in a linear shape across the laminated piezoelectric element 10 and the piezoelectric ceramics 11a and 11b, and has a width approximately the same as the diameter of the optical fiber 13 described later. Reference numeral 13 denotes a single-mode optical fiber having a cutoff wavelength of 1.12 μm (hereinafter, simply referred to as an optical fiber), 13a denotes a core of the optical fiber 13, 13b denotes a clad of the optical fiber 13, and the optical fiber 13 is inserted into the groove 12. , Is fixed to the groove 12 with an epoxy adhesive EA. 14a and 14b have a transmittance of 0.5% at a wavelength of 1.30 μm.
The multi-layered mirror of
It is formed by vapor deposition over both end faces of 11a and 11b. Reference numeral 15 is a signal generator for applying a voltage to the electrode T.

次に、上記構成を有する光ファイバ型ファブリペロー共
振器の作製方法及びその動作を説明する。
Next, a method of manufacturing the optical fiber type Fabry-Perot resonator having the above structure and its operation will be described.

まず、ダミイの圧電磁器11a,(11b)の端部から積層型
圧電素子10を介してダミイの圧電磁器11b(11a)の端部
に至る、光ファイバ13の直径とほぼ同程度の直径の溝12
にダイシングにより形成し、この溝12に光ファイバ13を
挿入し、エポキシ系接着剤EAで固定する。続いて、光フ
ァイバ13の長さが10.03mmとなるように光ファイバ13の
両端をダミイの圧電磁器11a,11bと共に研磨後、波長1.3
0μmにおける透過率0.5%の多層膜反射鏡14a,14bを、
蒸着により形成して、作製が完了する。
First, a groove having a diameter approximately the same as the diameter of the optical fiber 13 from the end of the Damii piezoelectric ceramics 11a, (11b) to the end of the Damii piezoelectric ceramics 11b (11a) via the laminated piezoelectric element 10. 12
Is formed by dicing, and the optical fiber 13 is inserted into this groove 12 and fixed with an epoxy adhesive EA. Then, after polishing both ends of the optical fiber 13 together with Damii's piezoelectric ceramics 11a and 11b so that the length of the optical fiber 13 becomes 10.03 mm, a wavelength of 1.3
The multilayer film reflecting mirrors 14a and 14b having a transmittance of 0.5% at 0 μm are
The formation is completed by vapor deposition.

このようにして作製された光ファイバ型ファブリペロー
共振器の各電極Tに信号発生器15により電圧を印加する
と、光ファイバ13の軸方向と平行に電界が印加されて圧
電効果によってひずみが生じ、これにより、光ファイバ
13の長さが長く、即ち、ファブリペロー共振器長が長く
なる。
When a voltage is applied to each electrode T of the optical fiber type Fabry-Perot resonator produced in this way by the signal generator 15, an electric field is applied in parallel to the axial direction of the optical fiber 13 and distortion is caused by the piezoelectric effect, This allows the optical fiber
The length of 13 is long, that is, the Fabry-Perot resonator length is long.

従って、本第1の実施例によれば、信号発生器15による
印加電圧の大きさを変化させることにより、光ファイバ
型ファブリペロー共振器長を種々選定でき、所望の周波
数間隔を容易かつ安定して、しかも低電力で得ることが
できる。また、光ファイバ13は積層型圧電素子10及び圧
電磁器11a,11bに亘って形成された溝12内に固定されて
いるので、長期的に安定した動作が可能である。
Therefore, according to the first embodiment, the length of the optical fiber type Fabry-Perot resonator can be variously selected by changing the magnitude of the voltage applied by the signal generator 15, and the desired frequency interval can be easily and stabilized. Moreover, it can be obtained with low power. Further, since the optical fiber 13 is fixed in the groove 12 formed across the laminated piezoelectric element 10 and the piezoelectric ceramics 11a and 11b, stable operation can be performed for a long period of time.

実際、本第1の実施例によるファブリペロー共振器の両
端に、光ファイバ13と同一構造パラメータを有する光フ
ァイバを、He−Neレーザで軸合わせを行なって接続し、
波長1.30μmのDFB半導体レーザで測定した結果、信号
発生器15による電極Tへの印加電圧が零の場合には、周
波数間隔Δfが10GHzでフィネスfは300を得ることがで
き、損入損失は0.2dBであった。また、信号発生器15に
より電極Tに±100Vの電圧を印加した結果、±2MHzの周
波数変位を得ることができた。
Actually, an optical fiber having the same structural parameters as the optical fiber 13 is connected to both ends of the Fabry-Perot resonator according to the first embodiment by performing axis alignment with a He-Ne laser,
As a result of measurement with a DFB semiconductor laser having a wavelength of 1.30 μm, when the voltage applied to the electrode T by the signal generator 15 is zero, the frequency interval Δf is 10 GHz and the finesse f is 300, and the loss loss is It was 0.2 dB. Further, as a result of applying a voltage of ± 100 V to the electrode T by the signal generator 15, it was possible to obtain a frequency displacement of ± 2 MHz.

第3図は、本発明による光ファイバ型ファブリペロー共
振器の第2の実施例を示す縦断側面図である。本第2の
実施例と前記第1の実施例の異なる点は、光ファイバ13
の両端面及び圧電磁器11a,11bの端面に多層膜反射鏡を
蒸着して形成する代わりに、波長1.30μmにおける透過
率0.5%、厚さ100μmの薄片ガラス多層膜反射鏡16a,16
bをエポキシ系接着剤EAにより、接着、固定したことに
ある。
FIG. 3 is a vertical sectional side view showing a second embodiment of the optical fiber type Fabry-Perot resonator according to the present invention. The difference between the second embodiment and the first embodiment is that the optical fiber 13
Instead of forming a multilayer film reflecting mirror by vapor deposition on both end faces of the piezoelectric ceramics 11a, 11b and the end faces of the piezoelectric ceramics 11a, 11b, a thin glass multilayer reflecting mirror 16a, 16 with a transmittance of 0.5% at a wavelength of 1.30 μm and a thickness of 100 μm
This is because b was adhered and fixed by the epoxy adhesive EA.

このような構成を有する本第2の実施例の光ファイバ型
ファブリペロー共振器の両端に、光ファイバ13と同一構
造パラメータを有する光ファイバを軸合わせを行なって
接続し、波長1.30μmのDFB半導体レーザで測定した結
果、信号発生器15による電極Tへの印加電圧が零の場合
には、周波数間隔Δfが10GHzでフィネスfは100を得る
ことができ、挿入損失は1.1dBであった。また、信号発
生器15により電極Tに±100Vの電圧を印加した結果、前
記第1の実施例と同様に、±2MHzの周波数変位を得るこ
とができた。
An optical fiber having the same structural parameters as the optical fiber 13 is axially aligned and connected to both ends of the optical fiber type Fabry-Perot resonator of the second embodiment having such a configuration, and a DFB semiconductor having a wavelength of 1.30 μm is connected. As a result of measurement with a laser, when the voltage applied to the electrode T by the signal generator 15 was zero, the frequency interval Δf was 10 GHz, the finesse f was 100, and the insertion loss was 1.1 dB. Moreover, as a result of applying a voltage of ± 100 V to the electrode T by the signal generator 15, a frequency displacement of ± 2 MHz could be obtained as in the first embodiment.

なお、以上の第1及び第2の実施例は本発明を説明する
ために述べたものであって、本発明の権利範囲に含まれ
るものではない。
The first and second embodiments described above are provided for explaining the present invention and are not included in the scope of rights of the present invention.

第4図は、本発明による光ファイバ型ファブリペロー共
振器の第3の実施例を示す縦断側面図である。図中、20
は圧電素子20aが6個積層された積層型圧電素子で、各
圧電素子20a間には、後述する光ファイバ23の軸方向に
平行に電界が印加されるように電極Tを配設している。
21a,21bは無電極のダミイの圧電磁器で、積層型圧電素
子20の両端に接着されている。22は積層型圧電素子20と
圧電磁器21a及び21bに亘って直線状に形成された溝で、
後述する光ファイバ23の直径とほぼ同程度の幅を有す
る。23はカットオフ波長1.12μmの単一モード光ファイ
バ(以下、単に光ファイバと称す)、23aは光ファイバ2
3のコア、23bは光ファイバ23のクラッド、23cは光ファ
イバ23の被覆である。光ファイバ23の被覆23cを除去し
た部分が前記溝22に挿入され、この溝22にエポキシ系接
着剤EAにより固定されている。24a,24bは圧電磁器21a,2
1bに光ファイバ23の軸方向と直角に所定間隔、例えば10
mmをおいて形成された溝で、幅は43μm、深さは1mmに
設定されている。25a,25bは波長1.30μmにおける透過
率0.5%、厚さ40μmの薄片ガラスからなる多層膜反射
鏡で、前記溝24a,24bの各々に反射面が対向するように
挿入され、エポキシ系接着剤EAにより溝24a,24bに固定
されている。26は電極Tに電圧を印加する信号発生器で
ある。
FIG. 4 is a vertical sectional side view showing a third embodiment of the optical fiber type Fabry-Perot resonator according to the present invention. 20 in the figure
Is a laminated piezoelectric element in which six piezoelectric elements 20a are laminated, and an electrode T is arranged between the piezoelectric elements 20a so that an electric field is applied parallel to the axial direction of the optical fiber 23 described later. .
Reference numerals 21a and 21b denote electrodeless damai piezoelectric ceramics, which are bonded to both ends of the laminated piezoelectric element 20. Reference numeral 22 denotes a groove formed in a linear shape across the laminated piezoelectric element 20 and the piezoelectric ceramics 21a and 21b,
It has a width approximately the same as the diameter of the optical fiber 23 described later. 23 is a single mode optical fiber with a cutoff wavelength of 1.12 μm (hereinafter simply referred to as optical fiber), and 23a is an optical fiber 2
3, the core 23b, the cladding 23b of the optical fiber 23, and the coating 23c of the optical fiber 23. The portion of the optical fiber 23 from which the coating 23c has been removed is inserted into the groove 22 and is fixed to the groove 22 with an epoxy adhesive EA. 24a and 24b are piezoelectric ceramics 21a and 2
1b at a predetermined interval perpendicular to the axial direction of the optical fiber 23, for example 10
The groove has a width of 43 μm and a depth of 1 mm. Reference numerals 25a and 25b are multilayer reflecting mirrors made of thin glass having a transmittance of 0.5% at a wavelength of 1.30 μm and a thickness of 40 μm, and are inserted so that their reflecting surfaces face each of the grooves 24a and 24b. Are fixed in the grooves 24a and 24b. A signal generator 26 applies a voltage to the electrode T.

次に、上記構成を有する光ファイバ型ファブリペロー共
振器の作製方法について説明する。
Next, a method of manufacturing the optical fiber type Fabry-Perot resonator having the above structure will be described.

まず、ダミイの圧電磁器21a(21b)の端部から積層型圧
電素子20を介してダミイの圧電磁器21b(21a)の端部に
至る、光ファイバ23の直径とほぼ同程度の幅の溝22を形
成し、光ファイバ23の被覆23cを除去した部分(溝22の
長さとほぼ同一)を、溝22に挿入してエポキシ系接着剤
EAで固定する。この時、ダミイの圧電磁器21a,21bの両
端には被覆23cの付いた光ファイバ23が固定されるよう
に段部を形成しておく。
First, a groove 22 having a width approximately the same as the diameter of the optical fiber 23 extending from the end of the Damii piezoelectric ceramic 21a (21b) to the end of the Damii piezoelectric ceramic 21b (21a) through the laminated piezoelectric element 20. And the portion of the optical fiber 23 from which the coating 23c is removed (substantially the same as the length of the groove 22) is inserted into the groove 22 to form an epoxy adhesive.
Fix with EA. At this time, step portions are formed so that the optical fibers 23 with the coatings 23c are fixed to both ends of the Damii piezoelectric ceramics 21a and 21b.

次に、第5図に示すような特殊なダイシング装置(斉藤
忠夫、渡辺純二:“マイクロ形状加工”、59年精密工学
学会、前刷り集、208(59年10月)参照)を用い、薄い
サファイアブレード30をエアスピンドル31により風速13
00m/minの高速で回転し、粒径0.24μmのSiO2砥粒32を
圧電磁器21a,21bに吹き付けながら、前述した数値並び
に位置関係の溝24a,24bを形成する。これにより、溝24
a,24bの側面は鏡面に近いものになる。次いで、多層膜
反射鏡25a,25bを互いの反射面が対向するように、溝24
a,24bにそれぞれ挿入し、エポキシ系接着剤EAで固定す
ることにより作製が完了する。これと同時に、外部の光
ファイバと当該光ファイバ型ファブリペロー共振器の光
ファイバとの光学的接続が高精度に行なわれたことにな
る。
Next, using a special dicing device as shown in Fig. 5 (see Tadao Saito, Junji Watanabe: "Micro-shape processing", Japan Society for Precision Engineering, 1984, Preprint Collection, 208 (October 959)) Wind speed of sapphire blade 30 by air spindle 31 13
While rotating at a high speed of 00 m / min and spraying SiO 2 abrasive grains 32 having a particle diameter of 0.24 μm onto the piezoelectric ceramics 21a and 21b, the grooves 24a and 24b having the above-mentioned numerical values and positional relationships are formed. This allows the groove 24
The sides of a and 24b are close to a mirror surface. Next, the multilayer film reflecting mirrors 25a and 25b are placed in the groove 24 so that their reflecting surfaces face each other.
The production is completed by inserting them into a and 24b and fixing them with an epoxy adhesive EA. At the same time, the optical connection between the external optical fiber and the optical fiber of the optical fiber type Fabry-Perot resonator was made with high accuracy.

このように作製された光ファイバ型ファブリペロー共振
器の各電極Tに、信号発生器26により電圧を印加する
と、前記第1及び第2の実施例と同様に光ファイバ23の
軸方向と平行に電界が印加されて圧電効果によってひず
みが生じ、これにより光ファイバ23の長さが長く、即
ち、ファブリペロー共振器長が長くなる。
When a voltage is applied by the signal generator 26 to each electrode T of the optical fiber type Fabry-Perot resonator produced in this way, it becomes parallel to the axial direction of the optical fiber 23 as in the first and second embodiments. An electric field is applied and distortion is generated by the piezoelectric effect, which increases the length of the optical fiber 23, that is, the Fabry-Perot resonator length.

従って、本第3の実施例によれば、信号発生器26による
印加電圧の大きさを変化させることにより、ファブリペ
ロー共振器長を種々選定でき、所望の周波数間隔を容易
かつ安定して、しかも低電力で得ることが可能であると
共に、ファブリペロー共振器の両端に他の光ファイバと
の接続作業を行なう必要がなくなり、煩雑な手間を要す
ることはない。
Therefore, according to the third embodiment, various Fabry-Perot resonator lengths can be selected by changing the magnitude of the voltage applied by the signal generator 26, and the desired frequency interval can be easily and stably set. It is possible to obtain it with low power, and it is not necessary to connect both ends of the Fabry-Perot resonator to another optical fiber, so that no troublesome work is required.

実際、第3の実施例による光ファイバ型ファブリペロー
共振器を、前記第1及び第2の実施例と同様に1.30μm
のDFBの半導体レーザで測定した結果、信号発生器26に
よる電極Tへの印加電圧が零の場合には、周波数間隔Δ
fが10GHzでフィネスfは85を得ることができた。ま
た、挿入損失は0.6dBであった。また、信号発生器26に
より電極Tに±100Vの電圧を印加した結果、±2MHzの周
波数変位を得ることができた。
Actually, the optical fiber type Fabry-Perot resonator according to the third embodiment is 1.30 μm as in the first and second embodiments.
As a result of measurement with the DFB semiconductor laser of, when the voltage applied to the electrode T by the signal generator 26 is zero, the frequency interval Δ
When f was 10 GHz, finesse f could be 85. The insertion loss was 0.6 dB. Further, as a result of applying a voltage of ± 100 V to the electrode T by the signal generator 26, a frequency displacement of ± 2 MHz could be obtained.

第6図は、本発明による光ファイバ型ファブリペロー共
振器の第4の実施例を示す斜視図である。本第4の実施
例では、4本の光ファイバを用いて前記第3の実施例に
よる光ファイバ型ファブリペロー共振器のアレイ化を図
ったものである。図中、40は積層型圧電素子、41a,41b
はダミイの圧電磁器、42a〜42dは光ファイバ固定用溝、
43a〜43dは光ファイバ、44a,44bは溝、45a,45bは波長1.
30μmにおいて透過率0.5%、厚さ40μmの薄片ガラス
からなる多層膜反射鏡、46は信号発生器、Tは電極で、
各溝42a〜42d,44a〜44b、光ファイバ43a〜43dの構造パ
ラメータは、前記第3の実施例と同一である。また、作
製方法についても、溝42a〜42d、光ファイバ43a〜43dの
数が異なるのみで前記第3の実施例と同様の方法によっ
て行なわれるため、ここでは省略する。
FIG. 6 is a perspective view showing a fourth embodiment of the optical fiber type Fabry-Perot resonator according to the present invention. In the fourth embodiment, an optical fiber type Fabry-Perot resonator according to the third embodiment is arrayed by using four optical fibers. In the figure, 40 is a laminated piezoelectric element, 41a, 41b
Is Damii's piezoelectric ceramic, 42a-42d are optical fiber fixing grooves,
43a to 43d are optical fibers, 44a and 44b are grooves, and 45a and 45b are wavelengths 1.
Multilayer film mirror made of thin glass with a transmittance of 0.5% at 30 μm and a thickness of 40 μm, 46 is a signal generator, T is an electrode,
The structural parameters of the grooves 42a to 42d, 44a to 44b and the optical fibers 43a to 43d are the same as those in the third embodiment. The manufacturing method is also the same as that of the third embodiment except that the numbers of the grooves 42a to 42d and the optical fibers 43a to 43d are different, and therefore the description thereof is omitted here.

本第4の実施例による各光ファイバ43a〜43dを用いた各
光ファイバ型ファブリペロー共振器を1.30μmのDFB半
導体レーザで測定した結果、信号発生器46による電極T
への印加電圧が零の場合には、それぞれ周波数間隔Δf
が10GHz±5MHzにあり、フィネスfはそれぞれ75,48,12
7,95、挿入損失はそれぞれ0.5dB,0.8dB,0.3dB,0.6dBで
あった。
The optical fiber type Fabry-Perot resonator using the optical fibers 43a to 43d according to the fourth embodiment was measured by a DFB semiconductor laser of 1.30 μm, and as a result, the electrode T by the signal generator 46 was measured.
If the voltage applied to the
Is 10GHz ± 5MHz, finesse f is 75,48,12 respectively
The insertion loss was 7,95 and the insertion loss was 0.5 dB, 0.8 dB, 0.3 dB, and 0.6 dB, respectively.

なお、本第4の実施例においては、4本の光ファイバを
用いたアレイ構成について説明したが、これに限定され
るものではなく、さらに多い本数、例えば10本以上でも
可能であり、8心のテープ型光ファイバでも同時に掃引
型の光ファイバ型ファブリペロー共振器を構成できるこ
とは勿論である。
In the fourth embodiment, the array configuration using four optical fibers has been described, but the present invention is not limited to this, and a larger number, for example, 10 or more is also possible, and 8 fibers are possible. Needless to say, a swept optical fiber type Fabry-Perot resonator can be constructed simultaneously with the tape type optical fiber.

また、前記第1〜第4の実施例において、波長1.30μm
における動作結果について説明したが、波長1.55μmの
場合でも、あるいは他の波長においても同様の結果を得
ることができる。
Further, in the first to fourth embodiments, the wavelength is 1.30 μm.
Although the operation result in the above has been described, the same result can be obtained in the case of the wavelength of 1.55 μm or in other wavelengths.

さらに、前記第1〜第4の実施例においては、積層型圧
電素子10,20,40の両端にダミイの圧電磁器11a,11b,21a,
21b,41a,41bを接着した構成としたが、これは補強部材
としての役目をはたすものであり、圧電磁器に限定され
るものではなく、例えばガラス基板を用いても勿論よ
い。また、これら補強部材を用いることなく、各実施例
における効果と同等の効果が得られることはいうまでも
ない。
Furthermore, in the first to the fourth embodiments, the Damie piezoelectric ceramics 11a, 11b, 21a,
21b, 41a, and 41b are bonded together, but this serves as a reinforcing member, and is not limited to a piezoelectric ceramic, and of course a glass substrate may be used, for example. Needless to say, the same effects as those of the respective examples can be obtained without using these reinforcing members.

また、前記第1〜第4の実施例において、光ファイバ1
3,23a〜23d,43a〜43dを積層型圧電素子10,20,40に接
着、固定する際、側圧の影響により複屈折を生じ、透過
光にメインピークの他にサイドピークが現われる場合が
ある。これを解決するために、光ファイバ内部に予め大
きな複屈折を有する偏波保持光ファイバを用いた。これ
により、入射光に直線偏光を用い、この直線偏光を偏波
保持光ファイバの偏波の主軸に平行に入射した結果、光
ファイバ型ファブリペロー共振器からの出力光にはメイ
ンピークのみでサイドピークは見られなかった。
In addition, in the first to fourth embodiments, the optical fiber 1
When bonding and fixing 3,23a to 23d, 43a to 43d to the laminated piezoelectric element 10, 20, 40, birefringence may occur due to the influence of lateral pressure, and side peaks may appear in transmitted light in addition to the main peak. . In order to solve this, a polarization-maintaining optical fiber having a large birefringence is used inside the optical fiber. As a result, linearly polarized light is used for the incident light, and this linearly polarized light is incident parallel to the main axis of the polarization of the polarization-maintaining optical fiber.As a result, the output light from the optical fiber Fabry-Perot resonator has only the main peak and the side peak. No peak was seen.

(発明の効果) 以上説明したように、本発明によれば、圧電素子と、該
圧電素子の電界印加方向とファイバ軸方向とが平行とな
る如く前記圧電素子に固定された光ファイバと、該光フ
ァイバとともに前記圧電素子もしくはこれに接着された
補強部材に所定間隔をおいてファイバ軸と直角に形成さ
れた二つの溝と、各々の溝に挿入、固定された2個の多
層膜反射鏡とを備えたので、高いフィネスを容易に得る
ことができ、また、圧電素子に光ファイバが固定されて
いるので、周波数掃引も低い電力で長期安定に動作させ
ることができ、さらにまた、両端に外部の光ファイバを
接続する必要がなく、極めて低損失を実現できると共
に、アレイ化も極めて容易で、超小型に構成可能な掃引
型の光ファイバ型ファブリペロー共振器を提供できる利
点がある。
(Effects of the Invention) As described above, according to the present invention, a piezoelectric element, an optical fiber fixed to the piezoelectric element such that the electric field application direction of the piezoelectric element and the fiber axis direction are parallel, Two grooves formed at a right angle to the fiber axis at a predetermined interval in the piezoelectric element or the reinforcing member adhered thereto together with the optical fiber, and two multilayer film reflecting mirrors inserted and fixed in each groove. Since it has a high finesse, the optical fiber is fixed to the piezoelectric element, so that the frequency sweep can be operated stably for a long time with low power. It is possible to provide an extremely low loss without the need to connect the optical fiber of, and it is possible to provide a swept optical fiber type Fabry-Perot resonator that can be configured in an extremely small size, which is extremely easy to form an array. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による光ファイバ型ファブリペロー共振
器の第1の実施例を示すもので、第1図(a)は縦断側
面図、第1図(b)は光ファイバ軸と直角方向の断面
図、第2図は従来の光ファイバ型ファブリペロー共振器
の構成図、第3図は本発明による光ファイバ型ファブリ
ペロー共振器の第2の実施例を示す縦断側面図、第4図
は本発明による光ファイバ型ファブリペロー共振器の第
3の実施例を示す縦断側面図、第5図はダイシング装置
の説明図、第6図は本発明による光ファイバ型ファブリ
ペロー共振器の第4の実施例を示す斜視図である。 図中、10,20,40……積層型圧電素子、11a,11b,21a,21b,
41a,41b……ダミイの圧電磁器、12,22,42a〜42d……
溝、13,23,43a〜43d……単一モード光ファイバ、14a,14
b,16a,16b,25a,25b,45a,45b……多層膜反射鏡、24a,24
b,44a,44b……溝、EA……エポキシ系接着剤。
FIG. 1 shows a first embodiment of an optical fiber type Fabry-Perot resonator according to the present invention. FIG. 1 (a) is a longitudinal side view and FIG. 1 (b) is a direction perpendicular to the optical fiber axis. A sectional view, FIG. 2 is a configuration diagram of a conventional optical fiber type Fabry-Perot resonator, FIG. 3 is a longitudinal side view showing a second embodiment of the optical fiber type Fabry-Perot resonator according to the present invention, and FIG. A longitudinal side view showing a third embodiment of an optical fiber type Fabry-Perot resonator according to the present invention, FIG. 5 is an explanatory view of a dicing device, and FIG. 6 is a fourth side view of an optical fiber type Fabry-Perot resonator according to the present invention. It is a perspective view showing an example. In the figure, 10, 20, 40 ... Multilayer piezoelectric element, 11a, 11b, 21a, 21b,
41a, 41b …… Damii's piezoelectric ceramics, 12,22,42a to 42d ……
Grooves, 13,23,43a to 43d ... Single-mode optical fiber, 14a, 14
b, 16a, 16b, 25a, 25b, 45a, 45b …… Multilayer film mirror, 24a, 24
b, 44a, 44b ... Groove, EA ... Epoxy adhesive.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/08 (72)発明者 渡辺 純二 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 斎藤 忠男 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 松井 伸介 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (56)参考文献 特開 昭58−55911(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01S 3/08 (72) Inventor Junji Watanabe 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph Telephone Co., Ltd. (72) Inventor Tadao Saito 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Shinsuke Matsui 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph Telephone Co., Ltd. (56) Reference JP-A-58-55911 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧電素子と、 該圧電素子の電界印加方向とファイバ軸方向とが平行と
なる如く前記圧電素子に固定された光ファイバと、 該光ファイバとともに前記圧電素子もしくはこれに接着
された補強部材に所定間隔をおいてファイバ軸と直角に
形成された二つの溝と、 各々の溝に挿入、固定された2個の多層膜反対鏡とを備
えた ことを特徴とする光ファイバ型ファブリペロー共振器。
1. A piezoelectric element, an optical fiber fixed to the piezoelectric element such that an electric field applying direction of the piezoelectric element and a fiber axis direction are parallel to each other, and the piezoelectric element or the piezoelectric element bonded to the optical fiber. An optical fiber type fabric, characterized in that the reinforcing member is provided with two grooves formed at right angles to the fiber axis at predetermined intervals, and two multilayer film opposite mirrors inserted and fixed in each groove. Perot resonator.
JP63166228A 1988-07-04 1988-07-04 Optical fiber type Fabry-Perot resonator Expired - Lifetime JPH0786591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166228A JPH0786591B2 (en) 1988-07-04 1988-07-04 Optical fiber type Fabry-Perot resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166228A JPH0786591B2 (en) 1988-07-04 1988-07-04 Optical fiber type Fabry-Perot resonator

Publications (2)

Publication Number Publication Date
JPH0215228A JPH0215228A (en) 1990-01-18
JPH0786591B2 true JPH0786591B2 (en) 1995-09-20

Family

ID=15827487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166228A Expired - Lifetime JPH0786591B2 (en) 1988-07-04 1988-07-04 Optical fiber type Fabry-Perot resonator

Country Status (1)

Country Link
JP (1) JPH0786591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914864A (en) * 2012-10-22 2013-02-06 中国科学院上海技术物理研究所 Fabry-Perot interferometer with closed-loop control structure and control method of Fabry-Perot interferometer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445838B1 (en) * 2000-09-29 2002-09-03 Corning Incorporated Tunable optical component
CN113281579B (en) * 2021-04-28 2023-01-24 西安理工大学 Chip packaging electrostatic measurement sensor based on F-P interference principle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855911A (en) * 1981-09-30 1983-04-02 Toshihiko Yoshino Optical modulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914864A (en) * 2012-10-22 2013-02-06 中国科学院上海技术物理研究所 Fabry-Perot interferometer with closed-loop control structure and control method of Fabry-Perot interferometer

Also Published As

Publication number Publication date
JPH0215228A (en) 1990-01-18

Similar Documents

Publication Publication Date Title
JP2824336B2 (en) Optical fiber filter and manufacturing method thereof
US4871226A (en) Mounting of optical fibers to integrated optical chips
US4976506A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
US7801186B2 (en) Light source
JPH0215203A (en) Optical fiber type optical demultiplexer
JP3548283B2 (en) Faraday rotating mirror
JPH0786591B2 (en) Optical fiber type Fabry-Perot resonator
JPH06230237A (en) Optical circuit
JP2002202439A (en) Optical waveguide body, optical waveguide device having it and optical module
JPH0572035A (en) Optical-fiber type fabry-perot resonator
JPS60257413A (en) Photoelectric composite apparatus
JPH03189607A (en) Production of fiber type optical coupler
JP3602891B2 (en) Faraday rotating mirror
JP4137737B2 (en) Fabrication method of core expansion fiber array
JPH0827411B2 (en) Optical fiber type Fabry-Perot resonator
JP2001044553A (en) Fiber stub optical device and optical module using the same
JP2730955B2 (en) Rare earth element-doped long glass waveguide and method of manufacturing the same
JPH10221014A (en) Optical wave guide path displacement sensor
JP2002236226A (en) Method for manufacturing photonic crystal and optical device which uses photonic crystal
JP2003227931A (en) Polarizer incorporating optical component, method of manufacturing the same and method of combining linearly polarized wave using the same
JP3758762B2 (en) Optical connection parts
KR0123723B1 (en) Optic filter with variable light source
JPH09258044A (en) Optical filter-containing waveguide type optical device
JPH0215232A (en) Optical fiber type polarized wave separator
JP2000028843A (en) Four-fiber ferrule for constant polarization optical fiber