JPH0786385A - Substrate holding method and device therefor - Google Patents

Substrate holding method and device therefor

Info

Publication number
JPH0786385A
JPH0786385A JP23279793A JP23279793A JPH0786385A JP H0786385 A JPH0786385 A JP H0786385A JP 23279793 A JP23279793 A JP 23279793A JP 23279793 A JP23279793 A JP 23279793A JP H0786385 A JPH0786385 A JP H0786385A
Authority
JP
Japan
Prior art keywords
substrate
gas
cooling
holding device
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23279793A
Other languages
Japanese (ja)
Other versions
JP3264746B2 (en
Inventor
Nushito Takahashi
主人 高橋
Naoyuki Tamura
直行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16944911&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0786385(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23279793A priority Critical patent/JP3264746B2/en
Publication of JPH0786385A publication Critical patent/JPH0786385A/en
Application granted granted Critical
Publication of JP3264746B2 publication Critical patent/JP3264746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a substrate holding method and a device, wherein foreign objects are less attached to the rear of a substrate, and the substrate can be effectively cooled down and hardly damaged in treatment. CONSTITUTION:A slightly recessed part 8 is provided to a substrate cooling plane so as not to bring the rear of a substrate into direct contact with the cooling plane even if cooling gas 7 is introduced or not. A residual region of the cooling plane other than the recessed part 8 is made to come into contact with the rear of the substrate and reduced to an irreducible minimum in area. A protuberant part 3 whose surface is even is provided onto the cooling plane corresponding to the periphery of the substrate, and the substrate is fastened to the cooling plane by electrostatic attraction bringing its rear into contact with the cooling plane, whereby cooling gas is restrained from leaking out. An electric circuit of electrostatic attraction is connected to the ground of a vacuum chamber or the like from the substrate through the intermediary of plasma so as to protect the substrate against damage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板を冷却する必要の
ある基板処理プロセスを確実にするための基板保持,冷
却,温度計測,及び基板裏面の異物低減に関する。ま
た、前記発明を適用した基板処理方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to substrate holding, cooling, temperature measurement, and reduction of foreign matter on the back surface of a substrate for ensuring a substrate processing process that requires cooling the substrate. The present invention also relates to a substrate processing method and apparatus to which the invention is applied.

【0002】[0002]

【従来の技術】基板処理装置において、基板を冷却する
必要がある装置には、プラズマ処理装置として、スパッ
タ装置、ドライエッチング装置、CVD(Chemic
alVapor Deposition)装置などがあ
り、また、高エネルギイオン打ち込みを行う装置等、多
くの装置がある。これらの装置では、処理雰囲気が真空
であることが多く、熱の伝わり方が低下するため,大気
中のように冷却面に基板を接触させて冷却することが困
難となっている。真空(希薄気体)中での熱伝導の問題
は、種々の文献で論じられているが、通常の接触面同士
が接触しても真の接触面積が小さいことなどから、接触
による熱伝導量は小さい。特に、基板と冷却面との熱伝
導では、基板を強く冷却面に押し付けることは基板の破
損の面から困難である。そのため、基板が接触する面に
柔らかなエラストマーを用いるなどの工夫が行われてい
た。しかし、基板の熱負荷が増加したり、さらに低温に
基板を冷却する必要がでてきたため、最近では、基板と
冷却面の間にガスを導入し、ガスを媒体として基板の冷
却を行うことが主流となっている。
2. Description of the Related Art In a substrate processing apparatus, a plasma processing apparatus includes a sputtering apparatus, a dry etching apparatus, a CVD (Chemical) apparatus for cooling the substrate.
There are many devices such as an al Vapor Deposition device, and a device for performing high energy ion implantation. In these devices, the processing atmosphere is often a vacuum, and the heat transfer is reduced, so that it is difficult to cool the substrate by bringing it into contact with the cooling surface as in the atmosphere. The problem of heat conduction in vacuum (diluted gas) has been discussed in various literatures, but even if normal contact surfaces contact each other, the true contact area is small. small. Particularly, in heat conduction between the substrate and the cooling surface, it is difficult to strongly press the substrate against the cooling surface in terms of damage to the substrate. For this reason, various measures have been taken, such as using a soft elastomer on the surface that contacts the substrate. However, since the heat load on the substrate has increased and it has become necessary to cool the substrate to a lower temperature, it has recently been possible to introduce a gas between the substrate and the cooling surface and cool the substrate using the gas as a medium. It is the mainstream.

【0003】ガス冷却の基板保持装置にも、種々の方式
がある。大きく分けて、(1)基板の裏面と冷却面が接
触しており、両者の表面粗さに起因して生じている隙間
を通じて冷却ガスを導入し、ガス冷却する方式、(2)
基板裏面と冷却面の間に冷却ガスを導入することは同じ
であるが、両者が接触していない方式、に分類できる。
There are various types of gas-cooled substrate holding devices. Broadly speaking, (1) a method in which the back surface of the substrate and the cooling surface are in contact with each other, and the cooling gas is introduced through a gap generated due to the surface roughness of the both to cool the gas, (2)
Introducing the cooling gas between the back surface of the substrate and the cooling surface is the same, but it can be classified into a method in which both are not in contact with each other.

【0004】前者に該当する従来例としては、例えば特
公平2−27778号公報,特開昭62−274625
号公報,特開平1−251375号公報,特開平3−1
54334号公報,実開平4−8439号公報がある。
また、(2)の例としては、例えば特開昭63−102
319号公報,特開平2−312223号公報,特開平
3−174719号公報等がある。また、冷却ガスを導
入する前は、基板裏面と冷却面が接触しているが、冷却
ガスを導入したことによるガス圧で基板が浮き上がり、
冷却中は基板と冷却面が接していない特開平2ー301
28号公報の様な例もある。
As a conventional example corresponding to the former, for example, Japanese Examined Patent Publication No. 27778/1990, Japanese Unexamined Patent Publication No. 62-274625.
Japanese Patent Laid-Open No. 1-251375, Japanese Patent Laid-Open No. 3-1
There are Japanese Patent No. 54334 and Japanese Utility Model Laid-Open No. 4-8439.
Further, as an example of (2), for example, JP-A-63-102
319, JP-A-2-3122223, JP-A-3-174719, and the like. Before the cooling gas is introduced, the back surface of the substrate and the cooling surface are in contact with each other, but the gas pressure caused by the introduction of the cooling gas lifts the substrate,
The substrate and the cooling surface are not in contact with each other during cooling.
There is also an example like Japanese Patent No. 28.

【0005】これらの冷却において、ある特定の冷却ガ
スを使用するとして、冷却ガスによる冷却能力(熱通加
量の大小)は、冷却ガス圧力及び基板裏面と冷却面の距
離(基板裏面のギャップ)に依存する。冷却ガスの圧力
が低い場合は熱通加量が冷却ガス圧力に比例し、両面の
間隙の大小(ギャップ)には依存しない。真空中におけ
る熱伝導特性を模式的に図1に示す。冷却ガスの平均自
由行程とギャップがほぼ一致する程度の圧力P0以上に
冷却ガス圧力が高い場合は、熱通加量はほぼ一定とな
り、ガス圧力に依存しなくなる。上記の例では、冷却ガ
ス圧力は(1)の例では熱通加量が圧力に比例する領
域、(2)の例は熱通加量が圧力に依存しない領域、で
あることが多い。
When a certain cooling gas is used in these cooling operations, the cooling capacity (the amount of heat transfer) by the cooling gas depends on the cooling gas pressure and the distance between the back surface of the substrate and the cooling surface (gap on the back surface of the substrate). Depends on. When the pressure of the cooling gas is low, the amount of heat conduction is proportional to the pressure of the cooling gas and does not depend on the size of the gap on both sides (gap). The heat conduction characteristics in vacuum are shown schematically in FIG. When the cooling gas pressure is higher than the pressure P0 at which the mean free path of the cooling gas and the gap substantially match, the amount of heat exchange becomes almost constant and does not depend on the gas pressure. In the above example, the cooling gas pressure is often in a region where the heat conduction amount is proportional to the pressure in the example (1), and in a region where the heat conduction amount does not depend on the pressure in the example (2).

【0006】以下、各種の基板の冷却方法の特徴と問題
点について述べる。はじめに基板と冷却面が接触したま
まで冷却する場合について述べる。この例に属するもの
は、特公平2−27778号公報,特開昭62−274
625号公報,特開平1−251375号公報,特開平
3−154334号公報,実開平4−8439号公報で
ある。この種の冷却方法では、基板と冷却面は接触して
いるが、詳細に見ると冷却面表面の最も凸の部分で基板
と接する。冷却面及び基板の凹部は、互いに接しておら
ず、その間隙は各々の表面粗さにもよるが、およそ10
μmから50μm程度である。冷却ガスをその間隙に導
入する場合、その圧力は数トール(Torr)程度であ
ることが多く、平均自由行程とほぼ等しい領域である。
したがって、図1に示したように、圧力を適切に設定す
ることで、十分な冷却効率が得られる。ただし、特公平
2−27778号公報の図に示してあるように、冷却ガ
スの供給を特定の一箇所から行うと、冷却ガスは供給部
で最も圧力が高く、基板の外周部に行くにつれ圧力が低
下する。図1に示したように冷却効率に圧力依存性があ
るため、基板面内で圧力分布が生ずると、冷却効率に不
均一さが生じ温度の均一性が損なわれるという問題があ
る。冷却ガスが漏れなければ、すなわちガスの流れがな
ければ、圧力分布は生ぜず、温度分布も均一になる。し
かし、このようにするには、基板外周部をシールする必
要がある。その例が、特開昭62−274625号公報
や実開平2−135140号公報である。また、冷却ガ
スの供給部を複数箇所から行い、基板裏面の圧力分布を
均一化するようにしたのが特開平1−251735号公
報,特開平4−61325号公報である。いずれにして
も、これらの冷却方法においては、基板裏面と冷却面は
広い面積で接触しており、基板裏面に冷却面に接触した
ことで付着する異物の数が多いという問題がある。ま
た、基板外周部をシール材を用いて冷却ガスの漏れを防
止するためには、シールに必要な荷重を負荷する必要が
あり、基板を何等かの方法で強く係止する手段が必要で
ある。
The features and problems of various substrate cooling methods will be described below. First, the case of cooling with the substrate and the cooling surface in contact with each other will be described. Those belonging to this example are disclosed in Japanese Examined Patent Publication No. 2-27778 and Japanese Patent Laid-Open No. 62-274.
No. 625, JP-A-1-251375, JP-A-3-154334, and JP-A-4-8439. In this type of cooling method, the substrate and the cooling surface are in contact with each other, but in detail, the most convex portion of the surface of the cooling surface is in contact with the substrate. The cooling surface and the concave portion of the substrate are not in contact with each other, and the gap is about 10 depending on the surface roughness of each.
It is about 50 to 50 μm. When the cooling gas is introduced into the gap, the pressure is often about several Torr, which is a region approximately equal to the mean free path.
Therefore, as shown in FIG. 1, by adequately setting the pressure, sufficient cooling efficiency can be obtained. However, as shown in the diagram of Japanese Patent Publication No. 27778/1990, when the cooling gas is supplied from a specific location, the cooling gas has the highest pressure in the supply part, and the pressure increases as it goes to the outer peripheral part of the substrate. Is reduced. Since the cooling efficiency has a pressure dependency as shown in FIG. 1, when the pressure distribution occurs in the substrate surface, there is a problem that the cooling efficiency becomes nonuniform and the temperature uniformity is impaired. If the cooling gas does not leak, that is, if there is no gas flow, the pressure distribution does not occur and the temperature distribution becomes uniform. However, in order to do so, it is necessary to seal the outer peripheral portion of the substrate. Examples thereof are Japanese Patent Laid-Open No. 62-274625 and Japanese Utility Model Laid-Open No. 2-135140. Further, JP-A-1-251735 and JP-A-4-61325 disclose that the supply of cooling gas is carried out from a plurality of locations to make the pressure distribution on the back surface of the substrate uniform. In any case, in these cooling methods, there is a problem in that the back surface of the substrate and the cooling surface are in contact with each other over a wide area, and the contact of the back surface of the substrate with the cooling surface causes a large number of foreign matters to adhere. Further, in order to prevent the leakage of the cooling gas by using the sealing material on the outer peripheral portion of the substrate, it is necessary to apply a load necessary for the sealing, and a means for strongly locking the substrate by some method is required. .

【0007】次に、基板と冷却面を初めから接触しない
ようにし、その間隙に冷却ガスを供給して冷却する方法
について述べる。この方法の従来例としては、基板表面
あるいは側面から基板を冷却面に機械的に係止した特開
平3−174719号公報や特開平4−6270号公報
がある。これらの例は、機械的に基板を係止しているた
め、係止部から異物が発生し易いという問題がある。ま
た、特開平63−102319号公報や特開平2−30
128号公報は、特に基板の係止を行っておらず、基板
の自重に頼っている。このような場合に、冷却ガスの漏
れ量をあまり大きくしないようにしたり、基板が浮き上
がらないようにするためには、冷却ガスの圧力を低く抑
えなければならない。そのため、冷却効率が低下すると
いう問題がある。
Next, a method for cooling the substrate by keeping the substrate and the cooling surface from contacting each other from the beginning and supplying a cooling gas to the gap will be described. As a conventional example of this method, there are JP-A-3-174719 and JP-A-4-6270 in which the substrate is mechanically locked to the cooling surface from the front surface or the side surface. In these examples, since the substrate is mechanically locked, there is a problem that foreign matter is likely to be generated from the locking portion. In addition, Japanese Patent Laid-Open No. 63-102319 and Japanese Patent Laid-Open No. 2-30
Japanese Patent No. 128 does not particularly lock the substrate but relies on the weight of the substrate. In such a case, the pressure of the cooling gas must be kept low in order to prevent the leakage amount of the cooling gas from becoming too large and to prevent the substrate from floating. Therefore, there is a problem that the cooling efficiency is reduced.

【0008】電気的に基板を係止する方法として、静電
吸着が知られている。この方法で基板を冷却面に係止
し、基板の内周部に突起を設けた例が特開昭62−20
8647号公報である。特開昭62−20864号公報
の明細書の従来例として、基板外周部および内周部の複
数個の分散して配された突起部でのみ基板と冷却面が接
している電極が紹介されている。この従来例は、吸着ガ
スが漏れ易く吸着力が不安定になることがあるとしてい
る。その改良版として、外周部を突き出さず内周部にの
み突起部を設け、さらに、内周部の突起部を分散させず
中央部に設けることが有効としている。この場合は、基
板と冷却面の間隙が基板面内で不均一となり、基板裏面
の圧力に差が生ずる。また、圧力分布がそれほど大きく
ないとしても、基板裏面と冷却面の間隙が異なると、冷
却ガスの平均自由行程とその間隙の比が基板面内で分布
を持つことになり、図1から分かるように冷却効率の違
いが生ずるため、基板の温度分布が大きくなり易いとい
う問題がある。また、この例で示されている静電吸着方
式は、冷却部に正負の電極を設け、直流高電圧を引火し
て静電吸着するようになっている。このような静電吸着
方式では、基板をプラズマ中で処理する際に基板に照射
されるイオンや電子による基板表面の電荷量に不均一性
が発生し易く、基板表面に電流が流れ、基板に損傷を与
えるという問題が発生することもある。
Electrostatic attraction is known as a method for electrically locking a substrate. An example in which the substrate is locked to the cooling surface by this method and a protrusion is provided on the inner peripheral portion of the substrate is disclosed in Japanese Patent Laid-Open No. 62-20.
Japanese Patent No. 8647. As a conventional example in the specification of JP-A-62-20864, an electrode in which a substrate and a cooling surface are in contact with each other only at a plurality of dispersed protrusions on an outer peripheral portion and an inner peripheral portion of the substrate is introduced. There is. In this conventional example, the adsorbed gas is likely to leak and the adsorbing force may become unstable. As an improved version, it is effective to provide the protrusions only on the inner peripheral portion without protruding the outer peripheral portion, and further to provide the protrusions on the inner peripheral portion in the central portion without being dispersed. In this case, the gap between the substrate and the cooling surface becomes non-uniform within the substrate surface, resulting in a difference in pressure on the back surface of the substrate. Further, even if the pressure distribution is not so large, if the gap between the back surface of the substrate and the cooling surface is different, the ratio of the mean free path of the cooling gas and the gap has a distribution within the substrate surface, as can be seen from FIG. Since there is a difference in cooling efficiency, the temperature distribution of the substrate tends to be large. Further, in the electrostatic adsorption method shown in this example, positive and negative electrodes are provided in the cooling unit, and a DC high voltage is ignited for electrostatic adsorption. In such an electrostatic adsorption method, when the substrate is processed in plasma, non-uniformity is likely to occur in the amount of charges on the substrate surface due to the ions and electrons irradiated on the substrate, and a current flows on the substrate surface, The problem of damaging can also occur.

【0009】[0009]

【発明が解決しようとする課題】上記従来の技術は、基
板を効率良く冷却することを重点に考えたものである。
しかし、近年の半導体デバイスの集積度の増加により、
従来以上に小さい異物や重金属汚染の低減を図ることが
必要になっている。これは、基板裏面の異物付着につい
ても同様である。基板裏面の異物付着量が多いと次の工
程などで、裏面異物が隣接する基板の表側に付着した
り、一旦基板から離れて別の基板に付着するなどの問題
がある。このため、裏面異物の低減は、プロセスの安定
化や歩留りの向上にとって、重要な課題である。基板の
裏面に異物が付着するのは、他の部材と基板裏面が接触
したときであり、基板冷却面との接触で多数の異物が付
着する。
The above-mentioned conventional techniques are focused on efficiently cooling the substrate.
However, due to the recent increase in the degree of integration of semiconductor devices,
It is necessary to reduce foreign substances and heavy metal contamination that are smaller than before. The same applies to the adhesion of foreign matter on the back surface of the substrate. If the amount of foreign matter adhered to the back surface of the substrate is large, there is a problem that the foreign matter on the back surface adheres to the front side of the adjacent substrate or is separated from the substrate and adheres to another substrate in the next step. Therefore, the reduction of foreign matter on the back surface is an important issue for stabilizing the process and improving the yield. The foreign matter adheres to the back surface of the substrate only when the other surface of the substrate comes into contact with the back surface of the substrate, and a large number of foreign matter adheres to the substrate cooling surface.

【0010】本発明の目的は、この裏面異物を低減し、
かつ基板の冷却効率も十分高く維持することにある。ま
た、基板の処理中に発生する基板損傷の防止を図ること
にある。
The object of the present invention is to reduce this backside foreign matter,
At the same time, the cooling efficiency of the substrate should be kept sufficiently high. It is also intended to prevent substrate damage that occurs during processing of the substrate.

【0011】[0011]

【課題を解決するための手段】基板の裏面異物を低減す
るには、冷却面と基板との接触面積を減少させることが
有効である。ただし、冷却面と基板裏面との距離は、冷
却ガスによる冷却効率があまり低下しない程度に維持す
る必要がある。これを実現するには、冷却面にわずかな
段差を設けて冷却ガスの導入の有無に拘らず基板裏面と
冷却面が接触しないようにする。また、冷却面に設けた
段差の凸部で、冷却面と基板裏面が接触するが、この面
積は必要最少限とする。それは、冷却面に静電吸着機能
を持たせ、冷却面凸部で基板を係止することにより達成
される。また、冷却ガスの漏洩防止も考慮しなければな
らないが、これは基板外周部に対応する冷却面に表面が
滑らかな凸部を設け、静電吸着により冷却面と基板裏面
を接触させて係止し、冷却ガスの漏洩防止を図ることに
より達成される。また、基板の損傷防止は、静電吸着の
電気回路を基板側からプラズマを介して真空容器などの
アース部に接続することにより、基板面内の電位差を最
少にすることで達成される。
In order to reduce foreign matter on the back surface of the substrate, it is effective to reduce the contact area between the cooling surface and the substrate. However, it is necessary to maintain the distance between the cooling surface and the back surface of the substrate to such an extent that the cooling efficiency by the cooling gas does not decrease so much. In order to realize this, a slight step is provided on the cooling surface so that the back surface of the substrate and the cooling surface do not come into contact with each other regardless of the introduction of the cooling gas. Further, the convex portion of the step provided on the cooling surface makes contact with the cooling surface and the back surface of the substrate, but this area is the minimum necessary. This is achieved by providing the cooling surface with an electrostatic adsorption function and locking the substrate with the cooling surface convex portion. Also, it is necessary to consider the prevention of cooling gas leakage, but this is because the cooling surface corresponding to the outer periphery of the substrate is provided with a convex part with a smooth surface, and the cooling surface and the back surface of the substrate are brought into contact by electrostatic attraction and locked. However, it is achieved by preventing the leakage of the cooling gas. Further, the prevention of damage to the substrate is achieved by connecting an electric circuit for electrostatic adsorption from the substrate side to a grounding part such as a vacuum container via plasma to minimize the potential difference in the surface of the substrate.

【0012】[0012]

【作用】本発明によれば、基板の大部分の領域におい
て、基板裏面と冷却面が接触していないので、接触に起
因する異物付着が防止できる。また、基板の冷却は、基
板と冷却面が接触しているときに比較すると、同じ冷却
ガス圧力では若干冷却効率が低下するが、冷却面の段差
を冷却ガスの平均自由行程の100倍程度以下にするこ
とで十分な冷却効率が得られる。さらに、基板と冷却面
を全面的に接触させている従来の冷却方法に比較する
と、基板裏面と冷却面間のギャップが大きい。このた
め、両面間のコンダクタンスが大きくなり、冷却ガスの
供給および排気が容易に行われる、すなわち冷却ガスの
給排気時間が短くなり、基板処理時間を短縮することも
できる。さらに、基板外周部と冷却面の接触部のコンダ
クタンスは、基板内周部の非接触部に比較すると非常に
小さく(分子流領域では間隙の二乗に比例する)、非接
触部での圧力差が小さくなる、すなわち冷却効率が一様
になるという作用もある。
According to the present invention, since the back surface of the substrate and the cooling surface are not in contact with each other in most of the area of the substrate, it is possible to prevent foreign substances from being attached due to the contact. Further, in cooling the substrate, the cooling efficiency is slightly reduced at the same cooling gas pressure as compared with the case where the substrate and the cooling surface are in contact, but the step of the cooling surface is about 100 times or less than the mean free path of the cooling gas. With this, sufficient cooling efficiency can be obtained. Further, the gap between the back surface of the substrate and the cooling surface is large as compared with the conventional cooling method in which the substrate and the cooling surface are entirely in contact with each other. For this reason, the conductance between both surfaces is increased, and the supply and exhaust of the cooling gas are easily performed, that is, the supply / exhaust time of the cooling gas is shortened, and the substrate processing time can also be shortened. Further, the conductance of the contact portion between the outer peripheral portion of the substrate and the cooling surface is much smaller than the non-contact portion of the inner peripheral portion of the substrate (in the molecular flow region, it is proportional to the square of the gap), and the pressure difference in the non-contact portion is small. There is also an effect that it becomes smaller, that is, the cooling efficiency becomes uniform.

【0013】[0013]

【実施例】本発明の一実施例を図面を用いて説明する。
図2は、本発明の基板保持方法により基板を保持するた
めの基板保持装置の断面を示したものである。図2にお
いて、基板1が基板の支持部材2の凸部3に載せられ、
かつ支持部材2の凸部3は図には示していない静電吸着
回路(後述)に接続されており、凸部3で基板1は支持
部材2に係止される。支持部材2には、基板1を冷却す
るための冷媒4を流す流路が設けられている。模式的に
示した供給部5から冷媒が供給され、排出部6から取り
出され、支持部材2の温度をコントロールする。また、
支持部材2の中央には冷却ガス7の流路が設けられてお
り、冷却ガス7の供給及び排気を行う。基板1の温度コ
ントロールは、支持部材2の凹部8に充填された冷却ガ
ス7が温度コントロールされた支持部材2と基板1の熱
伝導を担うことにより達成される。基板1を支持部材2
に係止するための静電吸着回路を図3に示す。基板1の
処理として、μ波プラズマエッチィング装置を例にとり
説明する。図3において、基板1が載置された基板保持
装置9が、エッチィング室10に設置されている。エッ
チィング室10は、真空ポンプ11により排気され、図
には示していないが、ガス供給部からエッチィングに必
要なガスが供給される。基板保持装置9には、高周波電
源12、直流電源13が接続されている。μ波は、導波
管14を通って石英窓15からエッチィング室10に導
入される。高周波電源12が動作あるいはμ波が導入さ
れると、エッチィング室10にプラズマ17が発生す
る。このとき、直流電源13の電位により、基板保持装
置9、基板1、プラズマ16を介して静電吸着回路17
が形成される。この状態で基板1は基板保持装置9、す
なわち図2の基板支持部材2に静電気力により係止され
る。静電吸着力は、支持部材2の表面に貼付あるいは形
成された誘電体18によって発生される。誘電体18と
しては、例えば、酸化アルミニウム、酸化アルミニウム
にチタン酸化物を混合したものなどを使用することがで
きる。また、静電気力を発生させるための直流電圧とし
ては、数100ボルトを印加する。このようにして、図
2の支持部材2の凸部3に基板が静電吸着された。静電
吸着のための電位は、直流電源13により印加された
が、支持部材2において一様な電位であり、凸部3にお
いても同様で、基板1の外周部は一様な電位となってい
る。そのため、基板1の面内にて発生する電位差は、基
板1に照射された電子やイオンの分布に起因するもので
あり、基板1に損傷を与えるほどの高電位差は発生しな
い。それに対し、支持部材2の中に、正負の電極を形成
し、その電極で静電吸着する場合は、基板1に高電位差
が発生する可能性があり、基板の損傷となる恐れがあ
る。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 2 shows a cross section of a substrate holding device for holding a substrate by the substrate holding method of the present invention. In FIG. 2, the substrate 1 is placed on the convex portion 3 of the supporting member 2 of the substrate,
Moreover, the convex portion 3 of the supporting member 2 is connected to an electrostatic attraction circuit (not shown) not shown in the figure, and the substrate 1 is locked to the supporting member 2 by the convex portion 3. The support member 2 is provided with a flow path through which the coolant 4 for cooling the substrate 1 flows. The coolant is supplied from the supply unit 5 schematically shown, taken out from the discharge unit 6, and the temperature of the support member 2 is controlled. Also,
A channel for the cooling gas 7 is provided in the center of the support member 2 to supply and exhaust the cooling gas 7. The temperature control of the substrate 1 is achieved by the heat conduction between the temperature-controlled support member 2 and the substrate 1 by the cooling gas 7 filled in the recess 8 of the support member 2. Substrate 1 supporting member 2
FIG. 3 shows an electrostatic attraction circuit for locking to. The processing of the substrate 1 will be described by taking a μ wave plasma etching apparatus as an example. In FIG. 3, the substrate holding device 9 on which the substrate 1 is placed is installed in the etching chamber 10. The etching chamber 10 is evacuated by a vacuum pump 11, and a gas required for etching is supplied from a gas supply unit (not shown). A high frequency power source 12 and a direct current power source 13 are connected to the substrate holding device 9. The μ wave is introduced into the etching chamber 10 through the quartz window 15 through the waveguide 14. When the high frequency power source 12 is operated or the μ wave is introduced, plasma 17 is generated in the etching chamber 10. At this time, the electrostatic attraction circuit 17 is passed through the substrate holding device 9, the substrate 1, and the plasma 16 by the potential of the DC power supply 13.
Is formed. In this state, the substrate 1 is locked to the substrate holding device 9, that is, the substrate supporting member 2 in FIG. 2 by electrostatic force. The electrostatic attraction force is generated by the dielectric 18 attached or formed on the surface of the support member 2. As the dielectric 18, for example, aluminum oxide or a mixture of aluminum oxide and titanium oxide can be used. Also, several hundreds of volts are applied as the DC voltage for generating the electrostatic force. In this way, the substrate was electrostatically attracted to the convex portion 3 of the supporting member 2 in FIG. The electric potential for electrostatic attraction was applied by the DC power supply 13, but the electric potential is uniform in the support member 2 and the same in the convex portion 3, and the outer peripheral portion of the substrate 1 has a uniform electric potential. There is. Therefore, the potential difference generated in the plane of the substrate 1 is due to the distribution of electrons and ions with which the substrate 1 is irradiated, and a high potential difference that damages the substrate 1 does not occur. On the other hand, when positive and negative electrodes are formed in the support member 2 and electrostatic adsorption is performed by the electrodes, a high potential difference may occur in the substrate 1 and the substrate may be damaged.

【0014】さて、このようにして係止された基板1の
裏面に、冷却ガス7が供給される。冷却ガス7は、支持
部材2の凹部8に充填されるが、その圧力は、数トール
から数10トールの範囲とする。また、凹部8のギャッ
プは、数10μmから0.1ないし0.2mmとすれ
ば、冷却効率の低下も無視できるほどとなる。なお、静
電吸着力は、ギャップが設けられた凹部8の間では、ほ
とんどゼロであり、凸部3においてのみ静電吸着力が発
生しているとみなせる。しかし、直流電源13に電圧を
適切に設定して、冷却ガス7の圧力に十分耐えることの
できる吸着力を設定することができるので、冷却ガス7
により基板1が動いたり飛ばされたりすることはない。
The cooling gas 7 is supplied to the back surface of the substrate 1 thus locked. The cooling gas 7 is filled in the concave portion 8 of the supporting member 2, and the pressure thereof is in the range of several torr to several tens of torr. Further, if the gap of the recess 8 is from several tens of μm to 0.1 to 0.2 mm, the reduction in cooling efficiency can be neglected. The electrostatic attraction force is almost zero between the concave portions 8 provided with the gap, and it can be considered that the electrostatic attraction force is generated only in the convex portions 3. However, the voltage can be appropriately set in the DC power supply 13 to set the adsorption force that can sufficiently withstand the pressure of the cooling gas 7, so that the cooling gas 7
Therefore, the substrate 1 will not move or be skipped.

【0015】支持部材2は、冷媒4で冷却され温度コン
トロールされている。したがって、凹部3の支持部材面
で冷却された冷却ガス7は、直接あるいは何回か他の冷
却ガスに衝突しながら基板1に達する。基板1に達した
冷却ガスは、基板1からエネルギーを得、すなわち基板
1を冷却し、再び支持部材側に戻り、というサイクルを
繰り返しながら基板1を冷却する。冷却ガス7の圧力
が、凹部3のギャップに対応する平均自由行程を有する
圧力より十分高い場合は、上記のガス分子の挙動の他
に、ガス分子同士が衝突してエネルギーの授受を行いな
がら、基板1の熱エネルギーを支持部材2の冷却面に運
ぶ現象も多くなる。しかし、本発明の範囲おける熱エネ
ルギーの輸送は、冷却ガス7を媒体とした熱伝導であ
る。たとえば、別に設けられた冷却部で冷却ガス7を予
め冷却して基板1の裏面に対流させ、そのガスの熱容量
によって基板を冷却するものではない。このような条件
が満たされる凹部3のギャップ、冷却ガス7の圧力とす
る。
The support member 2 is cooled by a coolant 4 and its temperature is controlled. Therefore, the cooling gas 7 cooled on the support member surface of the recess 3 reaches the substrate 1 directly or while colliding with other cooling gas several times. The cooling gas reaching the substrate 1 obtains energy from the substrate 1, that is, cools the substrate 1 and returns to the support member side again, and repeats the cycle of cooling the substrate 1. When the pressure of the cooling gas 7 is sufficiently higher than the pressure having the mean free path corresponding to the gap of the recess 3, in addition to the behavior of the gas molecules described above, the gas molecules collide with each other to transfer energy, The phenomenon that the thermal energy of the substrate 1 is transferred to the cooling surface of the support member 2 also increases. However, the transport of heat energy within the scope of the present invention is heat conduction using the cooling gas 7 as a medium. For example, the cooling gas 7 is not preliminarily cooled by a separately provided cooling unit to be convected to the back surface of the substrate 1, and the substrate is not cooled by the heat capacity of the gas. The gap of the recess 3 and the pressure of the cooling gas 7 satisfying such conditions are set.

【0016】なお、冷却ガス7と支持部材3の間のエネ
ルギーの授受の割合は、熱適応係数と呼ばれる値で表さ
れる。この熱適応係数は、冷却ガスの種類、部材の表面
状態(汚染の状況など)に依存する。基板1と冷却ガス
7との間も同様である。冷却ガス7としては、漏れても
あまりエッチィング特性に影響を及ぼさないことや、冷
却ガス7の給排気時間が他のガスより短くできることな
どから、ヘリウムが用いられる。しかし、そのほかに、
窒素、アルゴン、あるいはエッチィングガスなど、冷却
効率は変わるが、特に限定されるべきものではない。
The rate of energy transfer between the cooling gas 7 and the support member 3 is represented by a value called a heat adaptation coefficient. This thermal adaptation coefficient depends on the type of cooling gas and the surface condition of the member (condition of contamination, etc.). The same is true between the substrate 1 and the cooling gas 7. As the cooling gas 7, helium is used because it has little effect on the etching characteristics even if it leaks and the supply / exhaust time of the cooling gas 7 can be made shorter than other gases. But besides that,
The cooling efficiency of nitrogen, argon, etching gas, or the like varies, but is not particularly limited.

【0017】さて、冷却ガス7の仲介により、基板1は
十分に冷却されることとなった。さらに、基板1は、凸
部3のみで支持部材2と接している。基板裏面に他の部
材との接触により発生する異物がつく可能性があるの
は、この凸部3に対応する基板裏面のみとなる。また、
もしも、支持部材2が基板1より大きい面積を有し、図
2に示した基板1の外側にも面がある場合は、その外側
の面にプラズマが照射されてエッチィングが起こること
や、基板1のエッチィング反応生成物が付着することな
どのために、その面を介して異物が基板1の表側に付着
することになる。
Now, the substrate 1 is sufficiently cooled by the intermediation of the cooling gas 7. Further, the substrate 1 is in contact with the support member 2 only by the convex portion 3. It is only on the back surface of the substrate corresponding to the convex portion 3 that foreign matter may be generated on the back surface of the substrate due to contact with other members. Also,
If the supporting member 2 has a larger area than the substrate 1 and there is a surface on the outside of the substrate 1 shown in FIG. 2, plasma may be applied to the outside surface of the substrate 1 to cause etching. Due to the adhesion of the etching reaction product No. 1 and the like, the foreign matter adheres to the front side of the substrate 1 through the surface.

【0018】その意味において、図2は、基板1より支
持部材2を小さくしたものである。しかし、本発明にお
ける裏面異物を低減するという効果は、基板1より支持
部材2が大きくても損なわれるものではない。
In that sense, FIG. 2 shows the support member 2 smaller than the substrate 1. However, the effect of reducing foreign matter on the back surface in the present invention is not impaired even if the support member 2 is larger than the substrate 1.

【0019】次に本発明の他の実施例を図4に示す。図
4の実施例も基本的には図2の例と同じであるが、基板
1の受渡しのためのプッシャー19を設けたものであ
る。プッシャー19の上下により、基板1は支持部材2
から受け渡される。プッシャー19は、基板1の処理の
たび毎に上下しなければならない。すなわち、支持部材
2とは独立に動く必要がある。そのため、支持部材2と
プッシャー19との間には隙間を設ける必要がある。こ
の隙間を通して冷却ガス7が漏れることになる。冷却ガ
ス7の漏れ量は、最少に抑える必要がある。それを可能
とするため、プッシャー19の周囲に凸部3とほぼ同じ
か全く同じ高さの面の内周側凸部20を設けた。この面
は、平坦で基板1と接触しているため、冷却ガス7の漏
れ量も許容量以内に抑えることができる。図4を基板1
を取り外した状態で上から見たのが、図5の例である。
支持部材2の中央に冷却ガス7の給排気口21が設けら
れ、その周囲にプッシャー19と内周側凸部20が配置
されている。この内周側凸部20は、基板1のたわみを
受ける役割も果たすことができる。
Next, another embodiment of the present invention is shown in FIG. The embodiment shown in FIG. 4 is basically the same as the example shown in FIG. 2, except that a pusher 19 for delivering the substrate 1 is provided. By pushing the pusher 19 up and down, the substrate 1 is moved to the supporting member 2
Handed over from. The pusher 19 has to be moved up and down each time the substrate 1 is processed. That is, it is necessary to move independently of the support member 2. Therefore, it is necessary to provide a gap between the support member 2 and the pusher 19. The cooling gas 7 leaks through this gap. The leakage amount of the cooling gas 7 needs to be suppressed to the minimum. In order to make this possible, an inner peripheral side convex portion 20 having a surface substantially the same as or at the same height as the convex portion 3 is provided around the pusher 19. Since this surface is flat and is in contact with the substrate 1, the leakage amount of the cooling gas 7 can be suppressed within the allowable amount. Figure 1 substrate 1
The example of FIG. 5 is seen from above with the removed.
A supply / exhaust port 21 for the cooling gas 7 is provided in the center of the support member 2, and a pusher 19 and an inner peripheral side convex portion 20 are arranged around the supply / exhaust port 21. The inner peripheral side convex portion 20 can also serve to receive the bending of the substrate 1.

【0020】図5では、内周側凸部20を円形とした
が、この形状は特に限定するものではない。リング状と
したのが図6に示した実施例である。リング状凸部22
内には、プッシャー19の他に、基板1の温度センサー
23、基板の有無を検出する基板検出センサー24、さ
らに基板1の電位をアース電位にするためのアース端子
25が設けられている。なお、凹部8への冷却ガス7の
給排気を速やかに行うため、リング状凸部22の一部を
切りかき、冷却ガス7が通り易くなるようにしてある。
In FIG. 5, the inner peripheral convex portion 20 has a circular shape, but this shape is not particularly limited. The ring-like shape is the embodiment shown in FIG. Ring-shaped protrusion 22
In addition to the pusher 19, there are provided a temperature sensor 23 for the substrate 1, a substrate detection sensor 24 for detecting the presence or absence of the substrate, and a ground terminal 25 for setting the potential of the substrate 1 to the ground potential. In order to quickly supply and exhaust the cooling gas 7 to and from the concave portion 8, a part of the ring-shaped convex portion 22 is cut out so that the cooling gas 7 can easily pass through.

【0021】温度センサー23は、プラズマ中で使用す
るような装置では、蛍光温度計とすれば、雑音などの心
配が無い。また、基板検出センサー24は、例えば、光
ファイバーを通してレーザー光を導入し、基板1の裏面
に照射する。その反射光の有無により基板1の有無を検
出する。また、温度センサー23の出力は、基板1の有
無で変動するため、その変化を基板1の有無の検出に用
いることも可能である。
If the temperature sensor 23 is a fluorescence thermometer in a device used in plasma, there is no fear of noise. Further, the substrate detection sensor 24 introduces laser light through, for example, an optical fiber and irradiates the back surface of the substrate 1 with the laser light. The presence / absence of the substrate 1 is detected based on the presence / absence of the reflected light. Moreover, since the output of the temperature sensor 23 varies depending on the presence or absence of the substrate 1, the change can be used for detecting the presence or absence of the substrate 1.

【0022】アース端子25は、静電吸着した基板1
を、プッシャー19で持ち上げ受け渡す前に使用するも
のある。静電吸着で帯電した基板1に残留吸着力が存在
する間は、プッシャー19を使用することはできない。
そこで、その待ち時間を短縮するために、基板1をアー
スに落としたい場合がある。アース端子25を上下して
基板1に接触させることにより、基板1の電位をアース
とする。アース端子25は、導電性の材料とするが、プ
ラズマ処理中の異常放電を避けるため、抵抗率が通常の
金属などより大幅に大きい炭化シリコンなどを使用する
ことも有効である。また、この機能を、プッシャー19
に兼用させることも可能である。図6は、各種センサー
を同じ支持部材上に配置したが、各々を単独に用いても
本発明の主旨を損なうものではない。
The ground terminal 25 is the substrate 1 that is electrostatically adsorbed.
Is used before being lifted by the pusher 19 and handed over. The pusher 19 cannot be used while the residual attraction force is present on the substrate 1 charged by electrostatic attraction.
Therefore, in order to reduce the waiting time, it is sometimes desired to drop the substrate 1 to the ground. The potential of the substrate 1 is grounded by moving the ground terminal 25 up and down to contact the substrate 1. Although the ground terminal 25 is made of a conductive material, it is also effective to use silicon carbide or the like having a resistivity significantly higher than that of a normal metal or the like in order to avoid abnormal discharge during plasma processing. In addition, this function, pusher 19
It is also possible to combine the two. Although various sensors are arranged on the same supporting member in FIG. 6, the use of each of them does not impair the gist of the present invention.

【0023】図2、図3から図6に示した基板保持装置
9を備えた基板処理装置が、図3の装置である。本発明
の基板保持装置9を使用することにより、基板1の裏面
に付着する異物が少なくなる。また、この基板処理装置
により処理された基板1を使用することにより、裏面異
物が隣接する他の基板の表面に付着したり、裏面から異
物が溶けたり脱離したりすることにより、基板に汚染を
生じさせたりすることが防止される。
The substrate processing apparatus equipped with the substrate holding device 9 shown in FIGS. 2 and 3 to 6 is the apparatus of FIG. By using the substrate holding device 9 of the present invention, foreign matters attached to the back surface of the substrate 1 are reduced. Further, by using the substrate 1 processed by this substrate processing apparatus, the back surface foreign matter is attached to the surface of another adjacent substrate, or the foreign material is melted or detached from the back surface, thereby contaminating the substrate. It is prevented from causing.

【0024】以上、本発明の実施例について述べた。な
お、本発明は、基板の冷却を念頭において説明したが、
基板を加熱する場合も支持部材を基板より高温に維持す
ることになるのみで、本質的に違いが無いのは言うまで
もない。
The embodiments of the present invention have been described above. Although the present invention has been described with the substrate cooling in mind,
Even when the substrate is heated, it is needless to say that there is essentially no difference because the support member is maintained at a temperature higher than that of the substrate.

【0025】[0025]

【発明の効果】本発明によれば、基板の冷却を確実に実
施したうえで、基板裏面に付着する異物の量を低減する
ことができる。また、基板の係止を静電吸着で行ってい
るため、基板の表側で基板と接触するような基板係止治
具を使用する必要がなく、基板表側の異物低減も達成で
きる。また、基板表側における基板の処理が、基板係止
治具のために阻害されることがなく、基板全面で実施さ
れるという効果もある。これにより、裏面異物の低減に
よる基板処理の歩留り向上が図れる。また、基板表側の
異物も低減でき、さらなる歩留り向上と、基板一枚から
取れるデバイスチップ数の増加も図れるという効果があ
る。
According to the present invention, the amount of foreign matter attached to the back surface of the substrate can be reduced while surely cooling the substrate. Further, since the substrate is locked by electrostatic attraction, it is not necessary to use a substrate locking jig that comes into contact with the substrate on the front side of the substrate, and foreign substances on the front side of the substrate can be reduced. Further, there is also an effect that the processing of the substrate on the front side of the substrate is carried out on the entire surface of the substrate without being hindered by the substrate locking jig. As a result, the yield of substrate processing can be improved by reducing foreign matter on the back surface. In addition, foreign substances on the front side of the substrate can be reduced, yields can be further improved, and the number of device chips obtained from one substrate can be increased.

【0026】さらに、従来の静電吸着電極に起因する基
板損傷も発生せず、この面からの歩留り向上が図れとい
う効果がある。
Further, the substrate is not damaged due to the conventional electrostatic attraction electrode, and the yield can be improved from this aspect.

【図面の簡単な説明】[Brief description of drawings]

【図1】真空中の熱伝導を説明した説明図である。FIG. 1 is an explanatory diagram illustrating heat conduction in a vacuum.

【図2】本発明の基板保持方法の装置断面図である。FIG. 2 is a device sectional view of a substrate holding method of the present invention.

【図3】本発明の基板保持方法を実施した基板処理装置
の説明図である。
FIG. 3 is an explanatory diagram of a substrate processing apparatus that carries out the substrate holding method of the present invention.

【図4】本発明の他の実施例の装置断面図である。FIG. 4 is a sectional view of a device according to another embodiment of the present invention.

【図5】本発明の基板保持部の上面図である。FIG. 5 is a top view of the substrate holding portion of the present invention.

【図6】本発明の基板保持部の上面図である。FIG. 6 is a top view of the substrate holding portion of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…支持部材、3…凸部、4…冷媒、5…供
給口、6…排出口、7…冷却ガス、8…凹部、9…基板
保持装置、10…エッチィング室、11…真空ポンプ、
12…高周波電源、13…直流電源、14…導波管、1
5…石英窓、16…プラズマ、17…静電吸着回路、1
8…誘電体、19…プッシャー、20…内周側凸部、2
1…冷却ガス給排気口、22…リング状凸部、23…温
度センサー、24…基板検出センサー、25…アース端
子。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Support member, 3 ... Convex part, 4 ... Refrigerant, 5 ... Supply port, 6 ... Discharge port, 7 ... Cooling gas, 8 ... Recessed part, 9 ... Substrate holding device, 10 ... Etching chamber, 11 …Vacuum pump,
12 ... High frequency power source, 13 ... DC power source, 14 ... Waveguide, 1
5 ... Quartz window, 16 ... Plasma, 17 ... Electrostatic adsorption circuit, 1
8 ... Dielectric material, 19 ... Pusher, 20 ... Inner peripheral side convex portion, 2
DESCRIPTION OF SYMBOLS 1 ... Cooling gas supply / exhaust port, 22 ... Ring-shaped convex part, 23 ... Temperature sensor, 24 ... Substrate detection sensor, 25 ... Ground terminal.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/3065 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/3065

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】基板を処理するために該基板を保持する基
板保持方法において、前記基板の温度制御機能を有する
支持部材に該基板を載せた状態で該基板を係止した後、
該支持部材に設けたガス供給部から該支持部材と該基板
の裏面にガスを供給し、ガスを媒体として該基板を冷却
し、該基板の外周部を該支持部材と接触させて該基板裏
面に供給されたガスの漏洩を防ぐことを特徴とする基板
保持方法。
1. A substrate holding method for holding a substrate for processing the substrate, wherein the substrate is locked on a supporting member having a temperature control function for the substrate,
Gas is supplied from the gas supply unit provided on the support member to the support member and the back surface of the substrate, the substrate is cooled by using the gas as a medium, and the outer peripheral portion of the substrate is brought into contact with the support member to provide the back surface of the substrate. A method of holding a substrate, characterized in that leakage of gas supplied to the substrate is prevented.
【請求項2】請求項1に記載の基板保持方法において、
該基板の処理にプラズマを用い、該基板保持方法から基
板、プラズマを介して電気回路を形成し、該電気回路に
よって発生した静電気力により、該基板を係止すること
を特徴とする基板保持方法。
2. The substrate holding method according to claim 1,
Plasma is used for processing the substrate, an electric circuit is formed from the substrate holding method through the substrate and plasma, and the substrate is locked by an electrostatic force generated by the electric circuit. .
【請求項3】請求項1及び2の基板保持方法において、
静電気力による該基板の係止を該基板の外周部に対向す
る該支持部材のガス漏洩防止面で行うようにすることを
特徴とする基板保持方法。
3. The substrate holding method according to claim 1 or 2,
A method of holding a substrate, characterized in that the substrate is locked by an electrostatic force on a gas leakage prevention surface of the supporting member facing an outer peripheral portion of the substrate.
【請求項4】基板を処理するために該基板を保持する基
板保持装置において、前記基板の温度制御機能を有する
支持部材に該基板を載せた状態で該基板を係止した後、
該支持部材に設けたガス供給部から該支持部材と該基板
の裏面にガスを供給し、ガスを媒体として該基板を冷却
し、該基板の外周部を該支持部材と接触させて該基板裏
面に供給されたガスの漏洩を防ぐように構成したことを
特徴とする基板保持装置。
4. A substrate holding device for holding the substrate for processing the substrate, wherein the substrate is locked on a supporting member having a temperature control function for the substrate,
Gas is supplied from the gas supply unit provided on the support member to the support member and the back surface of the substrate, the substrate is cooled by using the gas as a medium, and the outer peripheral portion of the substrate is brought into contact with the support member to provide the back surface of the substrate. A substrate holding device, which is configured to prevent leakage of gas supplied to the substrate holding device.
【請求項5】請求項4に記載の基板保持装置において、
該基板外周部のガス漏洩防止面の内側に、基板の変形防
止のための基板支持部を該支持部材に設けたことを特徴
とする基板保持装置。
5. The substrate holding device according to claim 4,
A substrate holding device, wherein a substrate supporting portion for preventing deformation of the substrate is provided on the supporting member inside the gas leakage prevention surface of the outer peripheral portion of the substrate.
【請求項6】請求項4,5に記載の基板保持装置におい
て、該支持部材のガス漏洩防止面の内周側に該基板の受
渡し部材を設け、該受渡し部材の周囲に該支持部材と該
基板裏面が接触する領域を設け、冷却媒体のガスが該受
渡し部材の設置部を通じて漏洩するのを防止したことを
特徴とする基板保持装置。
6. The substrate holding device according to claim 4, wherein a delivery member for the substrate is provided on an inner peripheral side of a gas leakage prevention surface of the support member, and the support member and the support member are provided around the delivery member. A substrate holding device, characterized in that an area where the back surface of the substrate comes into contact is provided to prevent the gas of the cooling medium from leaking through the installation portion of the delivery member.
【請求項7】請求項6に記載の基板保持装置において、
該受渡し部の周囲に設けられたガス漏洩防止面を静電気
力を用いた吸着面としたことを特徴とする基板保持装
置。
7. The substrate holding device according to claim 6,
A substrate holding device, wherein a gas leakage prevention surface provided around the transfer section is an adsorption surface using electrostatic force.
【請求項8】請求項4から7に記載の基板保持装置にお
いて、該基板の受渡し部と該基板の支持部を兼用とした
ことを特徴とする基板保持装置。
8. The substrate holding device according to claim 4, wherein the substrate transfer part and the substrate support part are combined.
【請求項9】請求項4から8に記載の基板保持装置にお
いて、該支持部材に該基板の温度計測のための部材を設
置したことを特徴とする基板保持装置。
9. The substrate holding device according to claim 4, wherein a member for measuring the temperature of the substrate is installed on the supporting member.
【請求項10】請求項9に記載の基板保持装置におい
て、該温度計測部材の周囲に該支持部材と該基板裏面が
接触する領域を設け、冷却媒体のガスが該温度計測部材
の設置部を通じて漏洩するのを防止したことを特徴とす
る基板保持装置。
10. The substrate holding device according to claim 9, wherein a region where the supporting member and the back surface of the substrate are in contact with each other is provided around the temperature measuring member, and a gas of a cooling medium passes through an installation portion of the temperature measuring member. A substrate holding device, characterized in that leakage is prevented.
【請求項11】請求項10に記載の基板保持装置におい
て、該温度計測部材の周囲に設けた該ガス漏洩防止面を
静電気力を用いた吸着面としたことを特徴とする基板保
持装置。
11. The substrate holding device according to claim 10, wherein the gas leakage prevention surface provided around the temperature measuring member is an adsorption surface using an electrostatic force.
JP23279793A 1993-09-20 1993-09-20 Substrate holding device Expired - Lifetime JP3264746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23279793A JP3264746B2 (en) 1993-09-20 1993-09-20 Substrate holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23279793A JP3264746B2 (en) 1993-09-20 1993-09-20 Substrate holding device

Publications (2)

Publication Number Publication Date
JPH0786385A true JPH0786385A (en) 1995-03-31
JP3264746B2 JP3264746B2 (en) 2002-03-11

Family

ID=16944911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23279793A Expired - Lifetime JP3264746B2 (en) 1993-09-20 1993-09-20 Substrate holding device

Country Status (1)

Country Link
JP (1) JP3264746B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102227A2 (en) * 1999-11-22 2001-05-23 Mannesmann VDO Aktiengesellschaft Method for dynamic guidance of a vehicle
JP2002367964A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Plasma processing equipment
US7068489B2 (en) 2002-01-28 2006-06-27 Kyocera Corporation Electrostatic chuck for holding wafer
JP2018505304A (en) * 2014-12-17 2018-02-22 ツーシックス、インコーポレイテッドIi−Vi Incorporated Apparatus and method for producing free-standing CVD polycrystalline diamond film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102227A2 (en) * 1999-11-22 2001-05-23 Mannesmann VDO Aktiengesellschaft Method for dynamic guidance of a vehicle
EP1102227A3 (en) * 1999-11-22 2002-01-02 Mannesmann VDO Aktiengesellschaft Method for dynamic guidance of a vehicle
JP2002367964A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Plasma processing equipment
US7068489B2 (en) 2002-01-28 2006-06-27 Kyocera Corporation Electrostatic chuck for holding wafer
JP2018505304A (en) * 2014-12-17 2018-02-22 ツーシックス、インコーポレイテッドIi−Vi Incorporated Apparatus and method for producing free-standing CVD polycrystalline diamond film

Also Published As

Publication number Publication date
JP3264746B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
KR100406692B1 (en) Substrate holding system and substrate holding method
US6524428B2 (en) Method of holding substrate and substrate holding system
US5530616A (en) Electrostastic chuck
US20020005252A1 (en) Plasma etching apparatus and plasma etching method
JPH0622213B2 (en) Sample temperature control method and apparatus
JP3265743B2 (en) Substrate holding method and substrate holding device
JP3264746B2 (en) Substrate holding device
JP3264441B2 (en) Substrate holding device for vacuum processing equipment
JP3264438B2 (en) Vacuum processing device and vacuum processing method
JP3264440B2 (en) Substrate holding device for vacuum processing equipment
JP2002217180A (en) Method of vacuum treatment of substrsate
JP2006245563A (en) Vacuum processing device
JP2953688B2 (en) Sample temperature control method
JPH07273176A (en) Sample holding method for vacuum processing system
JPH0670985B2 (en) Sample temperature control method and apparatus
JPH07273099A (en) Vacuum treatment method
JPH07273178A (en) Sample holding method for vacuum processing system
JP2679667C (en)
JPH07273177A (en) Vacuum processing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 12