JPH0785624B2 - Voltage / reactive power control device - Google Patents

Voltage / reactive power control device

Info

Publication number
JPH0785624B2
JPH0785624B2 JP62290529A JP29052987A JPH0785624B2 JP H0785624 B2 JPH0785624 B2 JP H0785624B2 JP 62290529 A JP62290529 A JP 62290529A JP 29052987 A JP29052987 A JP 29052987A JP H0785624 B2 JPH0785624 B2 JP H0785624B2
Authority
JP
Japan
Prior art keywords
voltage
power
power supply
feeder
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62290529A
Other languages
Japanese (ja)
Other versions
JPH01133523A (en
Inventor
眞 寺田
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62290529A priority Critical patent/JPH0785624B2/en
Publication of JPH01133523A publication Critical patent/JPH01133523A/en
Publication of JPH0785624B2 publication Critical patent/JPH0785624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電力系統の電源側と負荷側とを連系する主要
点に監視制御装置を設け、高圧側及び低圧側の電源状況
及び負荷の電圧安定状況等を検出して演算処理し系統の
電圧及び流入出無効電力潮流の適切なる調整と維持制御
をする電圧・無効電力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is provided with a monitoring control device at a main point that interconnects a power supply side and a load side of a power system, and monitors the power supply status and load of the high voltage side and the low voltage side. The present invention relates to a voltage / reactive power control device that detects a voltage stable state and performs arithmetic processing to appropriately adjust and maintain a voltage of a system and an inflow / outflow reactive power flow.

〔従来の技術〕[Conventional technology]

最近の電力系統は電力需要の増大や環境問題などによる
電力設備の立地難などにより、発生側について言えば設
備立地点の遠隔偏在化や大容量ユニットによる大規模電
源基地が出現し、また流通側についていえば、送電設備
の長距離化,高電圧化,大容量化を招来し運用の重潮流
化などの様相を呈するに到っている。
In recent power systems, due to the increase in power demand and difficulty in location of power facilities due to environmental problems, etc., on the generation side, remote distribution of facility locations and large-scale power supply bases with large-capacity units have emerged. In terms of power transmission equipment, it has come to become long-distance, high-voltage, and large-capacity, and has come to take on the aspect of heavy flow of operation.

このように年々拡大複雑化を続ける高密度大容量の電力
系統を安全、かつ経済的に運用するための課題は幾つか
掲げられるが、中でも電圧問題は、その効果を直接経済
評価しにくいとは云え、電力品質問題として解決すべき
課題が多い。例えば、 (a) 重負荷時の電圧降下 (b) 軽負荷時の電圧異常上昇 (c) 系統故障時の電圧低下 (d) 系統通常時の電圧・無効電力制御の機能向上
等。
Although there are some problems to safely and economically operate the high-density and large-capacity power system that continues to expand and complex year by year, it is difficult to directly evaluate the effect of the voltage problem. However, there are many problems to be solved as power quality problems. For example, (a) voltage drop during heavy load (b) abnormal voltage rise during light load (c) voltage drop during system failure (d) improved voltage / reactive power control function during normal system operation, etc.

である。Is.

この内前記(1),(2)については電気学会技術報告
(II部),第233号,ページ60に記述の如く略述すると
以下のようになる。すなわち、一般に電力系統の電圧は
発電機,変圧器,調相設備の電圧,無効電力制御により
予め設定された基準値に維持調整されている。
The above (1) and (2) are summarized as follows, as described in Technical Report of the Institute of Electrical Engineers of Japan (Part II), No. 233, page 60. That is, generally, the voltage of the power system is maintained and adjusted to a preset reference value by the voltage of the generator, the transformer, the phase adjusting equipment, and the reactive power control.

然るに上記の如き系統規模の巨大化に伴い大電源の脱落
時や負荷の急速な増加時、無効電力についての需給がア
ンバランスであると、基幹系統の電圧が異常に低下、又
は上昇し電圧異常現象が稀ではあるが発生する。
However, due to the enormous size of the grid as described above, when the large power supply is dropped or the load is rapidly increasing, and when the supply and demand for reactive power is unbalanced, the voltage of the main grid abnormally drops or rises, causing abnormal voltage. The phenomenon occurs although it is rare.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の電圧・無効電力制御装置は以上のように行われて
いるので電圧異常もしくは不安定現象が発生すると、電
源と負荷のアンバランスが生じ条件が揃うと局部で発生
した現象が抑圧不能となって系統全体に波及し、電力異
常となる可能性があり、早急な予知と系統全体に及び安
定化対策が必要である等の問題点があった。
Since the conventional voltage / reactive power control device is operated as described above, if a voltage abnormality or an unstable phenomenon occurs, an imbalance between the power supply and the load occurs and if the conditions are met, the phenomenon that occurs locally cannot be suppressed. However, there is a problem in that it may spread to the entire system and cause an electric power abnormality, and that it requires prompt prediction and stabilization measures for the entire system.

この発明は上記のような問題点を解消するためになされ
たもので、この種異常の予知と対策が主として系統全体
を運用制御する給電所側に委ねられていたのに対し、こ
の発明では異常の発生を極力未端側で捉えるようにし、
前記異常に対する措置を全体の調整制御と協調しつつ行
うようにして電圧の安定性の維持確保し電圧・無効電力
の制御を適切に行う電圧・無効電力制御装置を得ること
を目的とする。
The present invention has been made to solve the above problems, and while the prediction and countermeasures for this kind of abnormality were mainly entrusted to the side of the power supply station that controls the operation of the entire system, the present invention The occurrence of
It is an object of the present invention to obtain a voltage / reactive power control device that appropriately maintains the stability of voltage and appropriately controls voltage / reactive power by taking measures against the above-mentioned abnormality in coordination with the overall adjustment control.

〔問題点を解決するための手段〕 本発明に係る電圧・無効電力制御装置は電力系統の電源
側と負荷側回線とを連系する主要点の電気所に設置さ
れ、高圧系統側母線と低圧系統側母線とを変圧器バンク
で結合し、前記高圧系統側母線の電圧及び潮流、前記低
圧系統側母線の電圧及び潮流、更に前記変圧器バンクの
3次側の電圧及び潮流とを夫々検出して監視制御装置に
入力し、前記監視制御装置で演算処理した出力信号を第
1及び第2の配電盤と情報伝送装置に取り込み、前記変
圧器バンクに結合された調相設備を制御するようにした
ものである。
[Means for Solving Problems] A voltage / reactive power control device according to the present invention is installed at an electric station at a main point that interconnects a power supply side of a power system and a load side line, and a high voltage system side busbar and a low voltage system. A transformer bank is connected to the system side bus to detect the voltage and power flow of the high voltage system side bus, the voltage and power flow of the low voltage system side bus, and the voltage and power flow of the tertiary side of the transformer bank, respectively. Input to the supervisory control device, and the output signal processed by the supervisory control device is fetched into the first and second switchboards and the information transmission device to control the phase adjusting equipment coupled to the transformer bank. It is a thing.

〔作用〕[Action]

この発明における監視制御装置はマイクロコントローラ
を有し、高圧系統側母線、低圧系統側母線、及び変圧器
バンクの3次側の電圧及び潮流とを夫々検出して取り込
み、マルチプレクサ、A/Dコンバートを介して前記マイ
クロコントローラに入力し、系統電圧の安定化と調整と
を行うための演算を実行して調相設備に制御指令を出力
する。
The supervisory control device according to the present invention has a microcontroller, and detects and takes in the voltage and power flow of the high-voltage system side bus, the low-voltage system side bus, and the tertiary side of the transformer bank, respectively, and performs the multiplexer and A / D conversion. It is input to the above-mentioned microcontroller via the above to execute the operation for stabilizing and adjusting the system voltage and output the control command to the phase adjusting equipment.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例の動作原理について説明す
る。まず第1図において、1は高圧の電源系統、2は低
圧の電源系統、3は高,低圧両系統を連系する変圧器バ
ンク、4は変圧器バンク3の3次側にある調相設備、5
は負荷フィーダである。
Hereinafter, the operation principle of one embodiment of the present invention will be described. First, in FIG. 1, 1 is a high-voltage power supply system, 2 is a low-voltage power supply system, 3 is a transformer bank that connects both high and low-voltage systems, and 4 is a phase-modulating facility on the tertiary side of the transformer bank 3. 5,
Is the load feeder.

また、実用上は2つの電源がある系統について考える
が、ここでは簡単のため両者を縮約して1電源系統とし
て考える。
In addition, although a system having two power supplies is considered in practice, both are contracted here as one power system for simplicity.

そして、上位(高圧)側母線の電圧をVt1、同じく上位
側母線の背後系統のリアクタンスをxg1、下位(低圧)
側母線の電圧をVt2、同じく下位側背後系統のリアクタ
ンスをxg2とする。変圧器バンク3の1次側の漏洩リア
クタンスをxt1、2次側の漏洩リアクタンスをxt2とし、
変圧器バンク3内部の理想的(仮想)変圧器の誘起電圧
をVとする。
Then, the voltage of the upper (high voltage) side bus bar is V t1 , the reactance of the system behind the upper side bus bar is x g1 , and the lower side (low voltage)
Let V t2 be the voltage of the side bus and x g2 be the reactance of the lower back system. Let the leakage reactance of the primary side of the transformer bank 3 be x t1 , and let the leakage reactance of the secondary side be x t2 ,
Let V be the induced voltage of an ideal (virtual) transformer inside the transformer bank 3.

また、変圧器1次側にある負荷タップ切替器(タップチ
ェンジャ)による巻数比を1次対2次の巻数をn:1と
し、Δnだけ巻数変化が可能なものとする。
In addition, the number of turns of the load tap changer (tap changer) on the primary side of the transformer is set to n: 1, and the number of turns can be changed by Δn.

1次系統から2次系統へ流れる無効電力潮流をQとす
る。
Let Q be the reactive power flow that flows from the primary system to the secondary system.

次に動作について説明する。まず、よく知られた理想的
変圧器の電圧変化ΔV、及び無効電力潮流の変化ΔQの
関係式として(1.1)及び(1.2)式がある。
Next, the operation will be described. First, there are equations (1.1) and (1.2) as well-known relational expressions of the voltage change ΔV of the ideal transformer and the change ΔQ of the reactive power flow.

但し、xo=xg1+xt1+xg2+xt2 ……(1.3) また、1次系統母線及び2次系統母線の電圧ΔVt1及び
ΔVt2は(1.4)及び(1.5)で与えられる。
However, x o = x g1 + x t1 + x g2 + x t2 (1.3) Further, the voltages ΔV t1 and ΔV t2 of the primary system bus and the secondary system bus are given by (1.4) and (1.5).

以上により、変圧器1次側無効潮流変化ΔQと1次,2次
系統母線の電圧変化ΔVt1,ΔVt2とは、系統背後電圧の
電圧,低圧での電圧変化分ΔVg1,ΔVg2と変圧器巻数比
変化Δn:無効電力供給の変化Δqで定められる。
As described above, the transformer primary side reactive power flow change ΔQ and the primary and secondary system bus voltage changes ΔV t1 and ΔV t2 are the voltage of the system back voltage and the voltage changes ΔV g1 and ΔV g2 at low voltage and the transformer. Change Δn in winding ratio: Determined by change Δq in reactive power supply.

次に低圧(下位)系統側母線20に於ける負荷系統につい
て考える。
Next, consider the load system in the low-voltage (lower) system side bus 20.

まず、低圧系統側母線20は下位側母線の電圧Vt2(≡
VL)を出力しており、フィーダ51からフィーダ5nまで合
計Wの全フィーダ負荷の電力を供給している。低圧系統
側母線20から電源側を見るとそのインピーダンスZは
(1.6)式で示される。
First, the low-voltage system side bus 20 has a voltage V t2 (≡
V L ) is being output, and the total W of all feeder loads from the feeder 51 to the feeder 5n is being supplied. When looking at the power supply side from the low voltage system side bus 20, its impedance Z is expressed by equation (1.6).

この系統に上記の全フィーダ負荷Wが接続されていたと
すると系統の基準電圧をVS、短絡容量をSとして、 により基準化した値を用いると、文献電気学会技術報告
(II部)、第73号、、ページ52に示されたように vL 2=vL 4+2w cos(−θ)・vL 2+w2 ……(1.8) なる関係がある。
If all the feeder loads W mentioned above are connected to this system, the reference voltage of the system is V S , the short-circuit capacity is S, and Using the values standardized by v L 2 = v L 4 + 2w cos (−θ) · v L 2 + w as shown in Technical Report of the Institute of Electrical Engineers of Japan (Part II), No. 73, page 52. 2 …… (1.8) There is a relationship.

ここにはインピーダンスZの力率角、θは全フィーダ
負荷Wの力率角である。
Here, the power factor angle of impedance Z and θ are the power factor angles of all feeder loads W.

又、この値を用いて表現して低圧系統側母線20における
各フィーダの潮流、及び電圧WL,VLの最大値は となる。(文献、電気学会技術報告(II部)、第73号、
ページ52、参照) 更に、相手端の負荷変電所母線61…6nにおいては、その
母線から電源側を見たインピーダンスZS1…ZSnとその力
率各n,相手側の負荷変電所母線61…6nより負荷
側をみた負荷力率各θ…θ等の諸量の間には、 vLi 2=vLi 4+2wLicos(−θ)+wLi 2 ……(1.1
1) (i=1・・・・n) なる関係がある。
Also, by using this value, the power flow of each feeder in the low voltage system side bus 20 and the maximum value of the voltage W L , V L are Becomes (Literature, Technical Report of The Institute of Electrical Engineers of Japan (Part II), No. 73,
(Refer to page 52) Furthermore, in the load substation busbars 61 ... 6n at the other end, the impedance Z S1 ... Z Sn and its power factor of 1 ... n when looking at the power source side from the busbars ... 61… 6n When the load power factor when viewed from the load side is θ 1 … θ n and other quantities, v Li 2 = v Li 4 + 2w Li cos ( i −θ i ) + w Li 2 …… (1.1
1) (i = 1 ... n) There is a relationship.

次にこの発明の適用対象系統について説明する。Next, a system to which the present invention is applied will be described.

図中、第1図の同一の部分は同一の符号をもって図示し
た第2図において、高圧の電源系統1から、潮流が低圧
の電源系統2へ向って流れているものとする。又調相設
備4から無効潮流9が供給されており、この寄与分が低
圧の電源系統2側へ流れているものとする。
In the figure, the same parts in FIG. 1 are shown with the same reference numerals, and in FIG. 2, it is assumed that the tidal current flows from the high-voltage power supply system 1 toward the low-voltage power supply system 2. Further, it is assumed that the reactive power flow 9 is supplied from the phase adjusting equipment 4, and the contribution is flowing to the low-voltage power supply system 2 side.

又、前記低圧の電源系統2側の低圧系統側母線20から、
フィーダ51…5nが引出されて居りフィーダの潮流w1…wn
が相手端負荷変電所61…6nが向って流れているものとす
る。
Also, from the low voltage system side bus bar 20 on the low voltage power supply system 2 side,
Feeder 51… 5n is pulled out and the current of the feeder is w 1 … w n
It is assumed that the other end load substation 61 ... 6n is flowing toward.

フィーダ51…5nへ電力を供給する系統は、上位(高圧)
側から11…1t、下位(低圧)側から21…2mがあり、有効
分は相手側の負荷変電所母線61…6nからフィーダ51…5n
の向きには流れないものとする。
The system that supplies power to the feeders 51 ... 5n is the upper level (high voltage)
There is 11… 1t from the side and 21… 2m from the lower side (low voltage) side, and the effective component is the load substation busbars 61… 6n from the other side to the feeder 51… 5n.
Shall not flow in the direction of.

このような系統の電圧・電流を第2図に示すように変成
器101,201及び変流器CT32,511…5n1を介して監視制御装
置7へ導入し、後述するような演算判定処理を行った上
配電盤81,82を経由して負荷時タップ切替器30、静止形
コンデンサ42、分路リアク41を制御するものである。
As shown in FIG. 2, the voltage / current of such a system is introduced into the monitoring control device 7 through the transformers 101, 201 and the current transformers CT32, 511 ... 5n1 and subjected to the calculation determination processing described later. The load tap changer 30, the static capacitor 42, and the shunt reactor 41 are controlled via the switchboards 81 and 82.

以上のように2つの電源系統と1群の負荷、1変圧器バ
ンクを単位とする電力系統で、変圧器バンク3の1,2次
を通過する潮流と1,2次の電圧とを計測し、1次側のタ
ップと3次側の調相設備とを操作して系統電圧の安定化
と調整とを行うものである。
As described above, in the power system with two power supply systems, one group of loads, and one transformer bank as a unit, the power flow passing through the primary and secondary of the transformer bank 3 and the voltage of the primary and secondary are measured. The primary side tap and the tertiary side phase adjusting equipment are operated to stabilize and adjust the system voltage.

次に本発明の具体的な実施例について説明する。Next, specific examples of the present invention will be described.

第3図はこの発明の詳細な構成図である。FIG. 3 is a detailed block diagram of the present invention.

高圧の電源系統1を構成する送電線として11…1m,1n…1
zがあり送電線11…1mが潮流の流入側、送電線1n…1zが
潮流の流出側であるとする。
11 ... 1m, 1n ... 1 as a power transmission line that constitutes the high-voltage power supply system 1
It is assumed that there is z and the transmission lines 11 ... 1m are the inflow side of the tidal current and the transmission lines 1n ... 1z are the outflow side of the tidal current.

10はこの送電線群を連系する高圧系統側母線であり、母
線電圧を変成器PT101で計測する。
10 is a high-voltage system side busbar that interconnects this transmission line group, and the busbar voltage is measured by the transformer PT101.

低圧の電源系統2を構成する送電線として21…2mがあ
り、負荷系統として低圧系統側母線20を介してフィーダ
51…5nが接続されている。負荷系統の電圧は(負荷側)
変成器PT201により、また各フィーダ51…5nの電流は
(負荷側)変流器511,521,…5n1の各CTを配し計測す
る。
There are 21 ... 2m as a power transmission line that constitutes the low voltage power supply system 2, and a feeder is provided as a load system via the low voltage system side bus 20.
51 ... 5n are connected. The voltage of the load system is (load side)
By the transformer PT201, the current of each feeder 51 ... 5n is measured by arranging each CT of the (load side) current transformers 511,521, ... 5n1.

高圧の電源系統1と低圧の電源系統2とを連系する変圧
器バンク3があり負荷時タップ切替器30が付属して電圧
調整を行う。
There is a transformer bank 3 that connects a high-voltage power supply system 1 and a low-voltage power supply system 2, and a load tap changer 30 is attached to adjust the voltage.

その1次側潮流は変流器CT31を介し、また2次側潮流は
変流器CT32により計測する。
The primary power flow is measured by the current transformer CT31, and the secondary power flow is measured by the current transformer CT32.

変圧器バンク3の3次側には調相設備群40…44があり、
調相設備母線40には分路リアクトル41と静止形コンデン
サ42がしゃ断器43,44を介して接続される。
On the tertiary side of the transformer bank 3, there is a phase adjusting equipment group 40 ... 44,
A shunt reactor 41 and a static capacitor 42 are connected to the phase adjusting facility bus 40 via breakers 43 and 44.

この変圧器バンク3の3次側の電圧,電流は変成器PT4
5、変流器CT46により計測できる。
The voltage and current on the tertiary side of this transformer bank 3 are transformer PT4
5, can be measured by current transformer CT46.

以上のような主回路機器計測用器具の配置において各計
測用変成器PTと変流器CTとを介して計測された電圧,電
流は監視制御装置7に導入される。
The voltage and current measured through each measuring transformer PT and the current transformer CT in the arrangement of the main circuit device measuring instrument as described above are introduced into the monitoring control device 7.

即ち、高圧側系統母線10の電圧は変成器PT101、変圧器
バンク3の1次の電流は変流器CT31、低圧系統側母線20
の電圧は変成器PT201変圧器バンク3の2次の電流は変
流器CT32、変圧器バンク3の3次の電圧は変成器PT45、
同じく電流は変流器CT46、又、低圧系統側母線20につな
がるフィーダ51…5nの電流は変流器CT511…5n1等によっ
て各々計測するようになっている。
That is, the voltage of the high voltage side system bus 10 is the transformer PT101, the primary current of the transformer bank 3 is the current transformer CT31, the low voltage system side bus 20.
Is the transformer PT201 transformer bank 3 secondary current is transformer CT32, transformer bank 3 tertiary voltage is transformer PT45,
Similarly, the current is measured by the current transformer CT46, and the current of the feeders 51 ... 5n connected to the low voltage system side bus 20 is measured by the current transformer CT511 ... 5n1.

尚、送電線21…2mは電源にも負荷にもなりうる系統で背
後に電源を想定しうる線路とし、その部分の潮流は一応
計測からは除去するが電圧制御は他電気所で可能である
とする。
The transmission lines 21 ... 2m are lines that can be both a power source and a load and can be assumed to be a power source behind. The power flow in that part is temporarily removed from the measurement, but voltage control is possible at other electric stations. And

7は上記のような系統各部の状態の入力データとして受
信し内部にマイクロコントローラを主体とする監視制御
回路装置を有し、以下に示す機能を実行してその出力を
配電盤81,82,及び情報伝送装置9へ出力を発する。
Numeral 7 receives as input data of the states of each part of the system as described above and has a supervisory control circuit device mainly composed of a micro-controller inside, and executes the following functions to output the output to the distribution boards 81, 82 and information. Outputs to the transmission device 9.

第1の配電盤81は変圧器電圧調整器盤であり負荷タップ
切替器30の上げ下げ指令を発するものである。第2の配
電盤82は変圧器バンク3の3次の調相機器制御盤であ
り、分岐リアクトル41、静止形コンデンサ42の入切を行
うしゃ断器43,44に操作信号を発する。
The first switchboard 81 is a transformer voltage regulator board, which issues a command to raise / lower the load tap changer 30. The second switchboard 82 is a third-order phase control device control panel of the transformer bank 3 and issues an operation signal to the breakers 43 and 44 for turning on and off the branch reactor 41 and the static capacitor 42.

9は情報伝送装置であり、前記監視制御装置7の状態、
指令等の出力を他電気所へ伝送する為の装置であり、通
常テレメータ,伝送装置として公知のものである。
Reference numeral 9 denotes an information transmission device, which is the state of the monitoring control device 7,
It is a device for transmitting the output of commands and the like to other electric stations, and is usually known as a telemeter or a transmission device.

以上のように構成された監視制御装置7は系統各部の電
圧,電流を計測入力信号とし、内部でディジタル信号化
しマイクロコントローラによりディジタル演算,判定処
理を行いその結果を操作指令として出力するか、もしく
は他電気所への情報伝達として出力するようにしてい
る。監視制御装置7の詳細については以下第4図により
説明する。
The monitoring and control device 7 configured as described above uses the voltage and current of each part of the system as measurement input signals, converts them into digital signals internally, performs digital calculation and determination processing by the microcontroller, and outputs the results as operation commands, or The information is output to other electric stations. Details of the monitoring control device 7 will be described below with reference to FIG.

第4図に本発明の一実施例による監視制御装置の詳細な
構成図を示す。
FIG. 4 shows a detailed block diagram of the supervisory control device according to an embodiment of the present invention.

図において、端子101,201,511,521…5n1は夫々、第3図
の変成器PT、変流器CT101,201,511,521…5n1に接続され
る事を示し同様に端子311,321,451,461は夫々変流器CT3
1,32,45,46に接続される事を示す。
In the figure, terminals 101, 201, 511, 521 ... 5n1 are respectively connected to the transformer PT and current transformer CT101, 201, 511, 521 ...
It shows that it is connected to 1,32,45,46.

102,202,452は変成器PT101,201,451の2次電圧を受け、
これを直流電圧に変換する電圧変換器である。
102,202,452 receives the secondary voltage of the transformer PT101,201,451,
This is a voltage converter that converts this into a DC voltage.

312a,322aは変成器PT101,201の電圧と変流器CT31,32の
電流を入力として有効電力に比例した直流電圧を得る電
力変換器、312b,322bは同じく入力を受けて無効電力に
比例する直流電圧を得る無効電力変換器、462は同じく
変成器PT45、変流器CT46の2次電圧,電流を入力とする
同様無効電力変換器である。
312a and 322a are power converters that receive a DC voltage proportional to active power by inputting the voltage of transformers PT101 and 201 and currents of current transformers CT31 and 32, and 312b and 322b are also proportional to reactive power when receiving inputs. A reactive power converter that obtains a DC voltage, 462 is a reactive power converter that also receives the secondary voltage and current of the transformer PT45 and current transformer CT46 as inputs.

また、512…5n2は変成器PT201、変流器CT511,521…5n1
の2次出力を入力とする潮流変換器であり、有効分電流
無効分電流を導出する為、e+ki,e−kiに比例する電圧
瞬時値を出力する。この出力を受けて以降の回路の動作
は後述の通り各種電力を計測する。
In addition, 512 ... 5n2 are transformer PT201, current transformer CT511,521 ... 5n1
This is a power flow converter that receives the secondary output of ## EQU1 ## and outputs an instantaneous voltage value proportional to e + ki, e-ki in order to derive the active current and reactive current. The operation of the circuit after receiving this output measures various electric powers as described later.

次に103,203,313a,313b,323a,323b,453,463,513,523…5
n3はサンプルホールドアンプであって、前記夫々の変換
器102,202,312a,312b,322a,322b,452,462,512,522…5n2
の出力(但し、512…5n2については各2種ずつ)を記憶
し保持するもので、そのタイミングはマイクロコントロ
ーラ6から与えられる。49はマルチプレクサであって、
前記サンプルホールドアンプ103,203,313a,313b…513…
5n3の出力を逐次切換えてA/Dコンバータ50に加える。
Next 103,203,313a, 313b, 323a, 323b, 453,463,513,523… 5
n3 is a sample and hold amplifier, and each of the converters 102, 202, 312a, 312b, 322a, 322b, 452, 462, 512, 522 ... 5n2
Output (however, 2 types for 512 ... 5n2 each) are stored and held, and the timing is given from the microcontroller 6. 49 is a multiplexer,
The sample and hold amplifiers 103, 203, 313a, 313b ... 513 ...
The 5n3 output is sequentially switched and added to the A / D converter 50.

50はA/Dコンバータであって前記マルチプレクサ49の出
力を受けディジタル値に変換するものである。
Reference numeral 50 denotes an A / D converter which receives the output of the multiplexer 49 and converts it into a digital value.

60はマイクロコントローラ(ユニット)であって内部に
マイクロプロセッサ,入出力ポート,タイマー,メモリ
ーなどを内蔵し、前記A/Dコンバータ50の出力信号を受
けて後出の機能に示すような演算,判定,表示,出力等
の処理を行う。
A reference numeral 60 denotes a micro controller (unit), which internally has a micro processor, an input / output port, a timer, a memory, etc., and receives an output signal of the A / D converter 50 to perform an operation and a judgment as shown in a function described later. , Display, output, etc. are processed.

70はリードオンリーメモリー(ROM)であって、前記マ
イクロコントローラ60が行う演算判定処理に必要な数
表,データなどを記憶しROM70から適宜読出して使用し
該マイクロコントローラ60の処理負担を軽減する。
Reference numeral 70 denotes a read-only memory (ROM), which stores a numerical table, data, etc. necessary for the arithmetic determination process performed by the microcontroller 60, and reads them from the ROM 70 as needed to reduce the processing load of the microcontroller 60.

上記各説明の中の各種変換器V,P,Q,CONV、サンプルホー
ルドアンプSH、マルチプレクサMPX49、A/Dコンバータ5
0、マイクロコントローラ60、ROM70、パワーインターフ
ェースのための配電盤81,82、シグナルインターフェー
スのための情報伝送装置9は以下説明するものを除き公
知であり市販されているものであるので、詳細説明を省
略する。
Various converters V, P, Q, CONV, sample hold amplifier SH, multiplexer MPX49, A / D converter 5 in the above description
0, the microcontroller 60, the ROM 70, the power distribution boards 81 and 82 for the power interface, and the information transmission device 9 for the signal interface are known and commercially available except for those described below, and thus detailed description thereof is omitted. To do.

512…5n2のコンバータである潮流変換器は変成器PT2次
電圧、CT2次電流を入力とする受動静止回路(変成器を
主体とする)であってその出力として、 e1=e+ki e2=e+ki ただし、 なる2つの交流出力を生じる。
The power flow converter, which is a 512 ... 5n2 converter, is a passive static circuit (mainly composed of a transformer) that receives the transformer PT secondary voltage and CT secondary current as its output, and its output is e 1 = e + ki e 2 = e + ki However, Results in two alternating current outputs.

この2つの出力を以下のような処理を行って各種の電力
を得るものである。その処理をマイクロコントローラ60
の内部で行う。
Various outputs are obtained by performing the following processing on these two outputs. The processing is done by the microcontroller 60.
Done inside.

まず、 eW=e1 2+e2 2 =(e+ki)−(e−ki) =4kei w=|ew|=4k|ei| として波相電力を得る。First, the wave phase power is obtained as e W = e 1 2 + e 2 2 = (e + ki) 2 − (e−ki) 2 = 4kei w = | ew | = 4k | ei |.

次に、 となって有効分電流を得る。next, And the effective current is obtained.

これに電圧変換器202の出力を積分して求めたE(2次
側母線電圧)を乗ずれば有効電力Pが以下のようにして
求まる。
By multiplying this by E (secondary side bus voltage) obtained by integrating the output of the voltage converter 202, the active power P can be obtained as follows.

P=E・eD =2kEIcos 又、有効電力Pが求まれば無効電力Qは次のようにして
求まる。
P = E · e D = 2kEIcos Further, if the active power P is found, the reactive power Q is found as follows.

以上の演算に必要なテーブルをROM70の内部に収納し、
引数をアドレスに関係させて該当アドレスをアクセスす
る事により演算した結果を得ることができる。
The table required for the above calculations is stored inside the ROM70,
The operation result can be obtained by relating the argument to the address and accessing the corresponding address.

従って潮流変換器512〜5n2は以後のサンプルホールドア
ンプ513…5n3、マルチプレクサ49、A/Dコンバータ50、
マイクロコントローラ60と組合せてディジタル原理の変
換・演算機能を果し、各フィーダからの全フィーダ負荷
W、有効電力P、無効電力Qを夫々計測検出できる。
Therefore, the power flow converters 512 to 5n2 are the sample hold amplifiers 513 ... 5n3, the multiplexer 49, the A / D converter 50,
In combination with the microcontroller 60, the function of digital principle conversion / arithmetic is fulfilled, and all feeder loads W, active power P and reactive power Q from each feeder can be measured and detected respectively.

次に第5図のフローチャートを参照して第4図の動作に
ついて説明する。
Next, the operation of FIG. 4 will be described with reference to the flowchart of FIG.

ただし、ステップST1〜5は計測手段、ステップST6〜11
は余裕値演算手段、ステップST12は安全性判別手段、ス
テップST13〜17は第1の制御手段、ステップST18は安全
性判別手段、ステップST19〜23は第2の制御手段であ
る。
However, steps ST1 to 5 are measuring means, and steps ST6 to 11
Is a margin value calculating means, step ST12 is safety determining means, steps ST13 to 17 are first controlling means, step ST18 is safety determining means, and steps ST19 to 23 are second controlling means.

まず、常時は動作原理で示したように高圧の電源系統1
の母線電圧V、無効電力潮流Q、として高圧系統側母線
10の母線電圧Vと変圧器バンク3へ流入する無効電力潮
流Qを検出する。
First, the high-voltage power supply system 1 is always operated as shown in the operating principle.
Bus voltage V, reactive power flow Q, as high voltage system side bus
The bus voltage V of 10 and the reactive power flow Q flowing into the transformer bank 3 are detected.

一般に高圧の電源系統1では潮流の向きが常に一定であ
るとはいい難いが、ここでは変圧器バンク3を介して接
続される低圧の電源系統との連系状態を計測する事と
し、高圧側を1つの電源系統として把握する。これらは
変換器102,312a,312bによって計測する。
Generally, it is hard to say that the direction of the tidal current is always constant in the high-voltage power supply system 1, but here, the interconnection state with the low-voltage power supply system connected via the transformer bank 3 is measured, and the high-voltage side Grasp as one power supply system. These are measured by the converters 102, 312a, 312b.

次に低圧の電源系統2はまず、変圧器バンク3を通過す
る潮流と電圧を第4図の変換器202,322a,322bを用いて
計測し、変圧器バンク3の3次側の電圧,無効潮流はサ
ンプルホールド・アンプ453,463を用いて計測する。
Next, the low-voltage power supply system 2 first measures the power flow and voltage passing through the transformer bank 3 using the converters 202, 322a, 322b in FIG. 4, and measures the voltage and reactive power flow on the tertiary side of the transformer bank 3. Is measured using sample hold amplifiers 453 and 463.

更に純負荷であるフィーダ51…5nの各種潮流Wi,Pi,Qi
(i=1〜n)は潮流変換器512…5n2を用い、構成の項
で述べたような方法で計測する(ステップST2)。
In addition, the net load of the feeder 51 ... 5n various currents Wi, Pi, Qi
For (i = 1 to n), the power flow converters 512 ... 5n2 are used and measured by the method described in the section of configuration (step ST2).

このような計測・変換を適当なサイクルの間実行し、デ
ータを蓄積する(ステップST3)。
Such measurement / conversion is executed for an appropriate cycle to accumulate data (step ST3).

前記ステップST1,ST2により高圧及び低圧の電源系統1,2
の電圧及び潮流各成分の変化分ΔV,ΔQ、と低圧側の電
源系統フィーダ部分のΔW,ΔP,ΔQを算出する(ステッ
プST4,ST5)。
High-voltage and low-voltage power supply systems 1, 2 by the steps ST1, ST2
The change amounts ΔV and ΔQ of the voltage and power flow components and ΔW, ΔP and ΔQ of the low-voltage side power system feeder are calculated (steps ST4 and ST5).

変化分を知った後、まず高圧の電源系統1における電源
リアクタンスxg1、低圧の電源系統2における電源リア
クタンスxg2を算出する。その方法は先願である特願昭6
2−234970(特開平1−81623号)及び特願昭62−255313
号(特開平1−99435号)に開示されているので説明を
省略する。
After knowing the changed amount, first, the power supply reactance x g1 in the high-voltage power supply system 1 and the power supply reactance x g2 in the low-voltage power supply system 2 are calculated. The method is the Japanese Patent Application Sho6.
2-234970 (JP-A-1-81623) and Japanese Patent Application No. 62-255313
No. 3, since it is disclosed in Japanese Patent Laid-Open No. 1-99435.

次に2次負荷系統において測定した夫々の変化分ΔV,Δ
Wi,ΔPi,ΔQi等により電源側を見た系統のインピーダン
スZ、その力率角、短絡容量Sを算出する。これらの
値は変圧器バンク3を通過する潮流、1次,2次両側の電
圧変化から求めた上位及び下位側母線の背後系統のリア
クタンスxg1,xg2を用いて求められ確認が可能となる。
Next, the respective changes ΔV, Δ measured in the secondary load system
From Wi, ΔPi, ΔQi, etc., the impedance Z of the system viewed from the power supply side, its power factor angle, and the short-circuit capacity S are calculated. These values can be confirmed by using the reactances x g1 and x g2 of the power flow passing through the transformer bank 3 and the reactances of the system behind the upper and lower busses, which are obtained from the voltage changes on both the primary and secondary sides. .

同時に負荷力率cosθを全フィーダ負荷W、各フィーダ
負荷W1,W2…Wn毎に求める。この値から力率角θを知る
(ステップST7)。
At the same time, the load power factor cos θ is calculated for all feeder loads W and each feeder load W 1 , W 2, ... W n . The power factor angle θ is known from this value (step ST7).

以上の各データから系統短絡容量ベースに換算した各フ
ィーダの潮流w1…wn,無限大母線電圧ベースに換算した
各フィーダの電圧vLLを算出する(ステップST8)。
From each of the above data, the power flow w 1 ... W n of each feeder converted to the system short-circuit capacity base, and the voltage v LL of each feeder converted to the infinite bus voltage base are calculated (step ST8).

以後先願に引用の公知の関係式(文献、電気学会技術報
告(II部)、第73号、ページ51〜52、参照)を用いて電
圧安定限界の最大電力wmとその時の母線電圧vLmが求め
る(ステップST9)。
The maximum power w m of the voltage stability limit and the bus voltage v at that time are calculated by using the well-known relational expression cited in the prior application (Reference, Technical Report of the Institute of Electrical Engineers of Japan (Part II), No. 73, pages 51 to 52). Lm determines (step ST9).

これら各フィーダの潮流w,wm,各フィーダの電圧vL,vLm
(必要に応じて次負荷端変電所迄のインピーダンスによ
り算定した相手端変電所母線における同様数値(wj,
wjm,vLj,vLjm)から電圧安定限界に対する各フィーダの
現在潮流w、各フィーダの電圧vLの安全余裕mw,mvLが求
まる(mwj,mvLjも同様にして求まる)。これらマージン
を予めオフライン計算によって求めた系統運用のセキュ
リティ指標に照し合せて安定,不安定を判別する(ステ
ップST10〜12)。
Flow of each of these feeders w, w m , voltage of each feeder v L , v Lm
(If necessary, the same value (w j ,
From w jm , v Lj , v Ljm ), the current flow w of each feeder with respect to the voltage stability limit, and the safety margins m w , m vL of the voltage v L of each feeder can be obtained (m wj , m vLj are also obtained). These margins are compared with the security index of the grid operation that is obtained in advance by offline calculation to determine whether the margin is stable or unstable (steps ST10 to ST12).

この指標の詳細は人間の判断も含むので触れない。The details of this index include human judgment, so it will not be discussed.

次にこのセキュリティ指標に対する各フィーダの現在潮
流対電圧の状態が満足できない状態であれば、無効電力
の供給を調整する必要があるが電圧低下に対する無効電
力供給必要量は前引用文献(電気学会技術報告(II
部)、第73号、ページ51〜52)の同一頁所載の簡略式を
ベースとして算出可能である。特に引出しフィーダ相手
端変電所母線における電圧安定性の確認も必要な場合は
前記方法で各フィーダ端で求めた安全余裕mwj,mvLjを用
いて安定判別し、夫々に応じた電圧対無効電力の調整・
制御を計る事もある。
Next, if the current power flow vs. voltage status of each feeder with respect to this security index is not satisfied, it is necessary to adjust the reactive power supply, but the reactive power supply requirement for the voltage drop is described in the cited document (Technical Review of the Institute of Electrical Engineers of Japan). Report (II
Part), No. 73, pages 51-52). In particular, if it is also necessary to confirm the voltage stability at the substation bus at the other end of the drawer feeder, use the safety margins m wj and m vLj obtained at each feeder end in the above method to make a stable determination, and adjust the voltage vs. reactive power accordingly. Adjustment of·
Sometimes it controls.

以上により求めた無効電力必要量と可用調相設備容量と
の対比により余裕量を算出する(ステップST13)。
The surplus amount is calculated by comparing the required reactive power amount obtained above and the available phase-modifying facility capacity (step ST13).

この結果余裕があれば、自所調相設備を操作して無効電
力を供給すべく監視制御装置7よりしゃ断器開閉指令を
出力する(ステップST14,15)。
If there is a margin as a result, a breaker opening / closing command is output from the monitor control device 7 to operate the self-phase adjusting equipment and supply reactive power (steps ST14, ST15).

又、上記余裕量算出の結果自所調相設備容量では不足と
判明すれば、自所外の電気所に通報し、応援必要状況を
連絡する(ステップST16)。
Further, if it is determined that the capacity of the self-phased equipment is insufficient as a result of the calculation of the surplus amount, the electric station outside the self-site is notified and the necessary support situation is notified (step ST16).

上記無効電力供給設備を操作した後、系統の理想的変圧
器の誘起電圧V、有効電力P、無効電力Q、全フィーダ
負荷WをステップST1,ST2と同様の手法で計測し、電圧
安定限界に対する余裕指標(mwmvR等)が十分改善され
たか否かを判定する(ステップST18)。
After operating the above reactive power supply equipment, the induced voltage V, active power P, reactive power Q, and total feeder load W of the ideal transformer of the grid are measured by the same method as steps ST1 and ST2, and the voltage stability limit is met. It is determined whether or not the margin index (m w m vR, etc.) has been sufficiently improved (step ST18).

もし、十分改善されていれば以下の高圧の電源系統V/Q
操作に移る。もし、十分改善されていなければ再度系統
条件の確認のため系統リアクタンスの同定操作へ戻る
(ステップST18→ステップST6前転)。
If sufficiently improved, the following high voltage power system V / Q
Move on to operation. If not sufficiently improved, the process returns to the system reactance identification operation to confirm the system condition again (step ST18 → step ST6 forward rotation).

電圧安定限界に対する余裕が確保できた後は、高圧及び
低圧の電源系統における理想的変圧器の誘起電圧V、無
効電力Qを更に精密に調整する。
After the margin for the voltage stability limit is secured, the induced voltage V and reactive power Q of the ideal transformer in the high-voltage and low-voltage power systems are adjusted more precisely.

まず、負荷時タップ切替器30及び調相設備4を操作して
巻線比変化Δn、無効電力供給のへんかΔqを発生さ
せ、この変化分によって生じたV,Qの変化分、すなわち
1次及び2次系統母線の電圧ΔVt1,ΔVt2を計測した
上、(1.2),(1.3),(1.4),(1.5)式から上位側
及び下位側母線の背後系統のリアクタンスxg1,xg2を同
定する(ステップST20)。
First, the tap changer 30 during load and the phasing equipment 4 are operated to generate the winding ratio change Δn and the reactive power supply pendant Δq, and the changes in V and Q caused by these changes, that is, the primary And the secondary system bus voltage ΔV t1 and ΔV t2 are measured, and then the reactances x g1 and x g2 of the system behind the upper and lower bus lines are calculated from equations (1.2), (1.3), (1.4) and (1.5). Is identified (step ST20).

尚、1次側及び2次側漏洩リアクタンスxt1,xt2は変圧
器内部リアクタンスなので予め計測し常数として取扱
う。この方法の詳細はステップST6と同様であり、先発
明特願昭57−173464号で公知であるので説明は省略す
る。
Since the primary and secondary leakage reactances x t1 and x t2 are the reactances inside the transformer, they are measured in advance and treated as constants. The details of this method are the same as those in step ST6, and since they are known in Japanese Patent Application No. 57-173464, they are not described here.

以上により得られた前記xg1,xg2,x0を用いて系統背後の
電圧変化ΔVg1,ΔVg2を生じた時の、操作必要量巻線比
変化Δn,無効電力供給の変化Δqを算定するが、下位負
荷系統の電圧安定限界に対する余裕指標を確保する為、
まず調相設備4を操作した後、この状態を基準として、
予め定めた上位系統のV−Q目標値に抑え込むような前
記Δn,Δqの操作を行う(ステップST21,ST22)。
Using the x g1 , x g2 , and x 0 obtained as described above, when the voltage changes ΔV g1 and ΔV g2 behind the system are generated, the required operation amount winding ratio change Δn and the reactive power supply change Δq are calculated. However, in order to secure a margin index for the voltage stability limit of the lower load system,
First, after operating the phasing equipment 4, with this state as a reference,
The operation of Δn and Δq is performed so as to suppress the VQ target value of a predetermined upper system (steps ST21 and ST22).

この結果、V,Qが所定の不感帯範囲を満足する領域に落
着けば終了となり、次の常時計測の時期を待つ。もし、
調整不良で所定の不感帯範囲を満足する領域に入らない
場合には、再度電圧安定性の限界の推定から実行する事
として最初の計測動作(ステップST1)へ戻る。
As a result, if V and Q reach a region satisfying the predetermined dead zone range, the process ends, and the next constant measurement period is awaited. if,
If it does not fall within the region that satisfies the predetermined dead zone range due to poor adjustment, the process returns from the estimation of the limit of voltage stability to the first measurement operation (step ST1).

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば高圧の電源系統につなが
る電気所において、低圧側の電源系統や負荷変電所の引
込口における電圧安定性を監視制御装置によって監視制
御しつつ、高圧側の電源系統と連系した電圧・無効電力
制御を行う事が可能となるので、重負荷系統における電
圧・無効電力の制御が負荷変化に追随して高安定かつ高
精度で行える効果がある。
As described above, according to the present invention, in an electric station connected to a high-voltage power system, the high-voltage power system is monitored and controlled by the monitoring control device for voltage stability at the low-voltage power system and the load inlet of the load substation. Since it is possible to perform voltage / reactive power control that is connected to the control system, it is possible to control the voltage / reactive power in a heavy load system by following load changes with high stability and high accuracy.

また、系統の諸状態を監視制御装置で監視して制御する
ので、監視制御地点に対し計測・監視・制御のための系
統状態実時間データを特段にオンライン伝送する必要も
なく、全体装置が簡単化される効果がある。しかし、も
し、更に高圧側に位置する電気所で収集確認した上記デ
ータが容易に入手できるならば、これ等をも含めて上記
の動作において述べた演算判定を行って、その結果をよ
り確実なものとする事ができる事は云う迄もない。
Moreover, since the system status is monitored and controlled by the supervisory control device, it is not necessary to transmit online the system status real-time data for measurement, monitoring and control to the supervisory control point, and the whole system is simple. There is an effect that is converted. However, if the above-mentioned data collected and confirmed at the electric station located on the higher voltage side can be easily obtained, the calculation judgment described in the above-mentioned operation including these is performed, and the result is more reliable. It goes without saying that things can be done.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による原理説明図、第2図
はこの発明の適用対象の説明図、第3図はこの発明の一
実施例を示す詳細構成図、第4図は第3図の監視制御装
置のブロック構成図、第5図a〜cはこの発明の具体的
動作を示すフローチャートである。 図において、1は高圧の電流系統、2は低圧の電源系
統、3は変圧器バンク、4は調相設備、10は高圧系統側
母線、20は低圧系統側母線、7は監視制御装置、30は負
荷時タップ切替器、31,51〜5n,46,32は変流器、101,20
1,45は変成器、81,82は(第1,第2の)配電盤、9は情
報電送装置、41は分岐リアクトル、42は静止形コンデン
サ、43,44はしゃ断器、49はマルチプレクサ、50はA/Dコ
ンバータ、60はマイクロコントローラ、102,202,452電
圧変換器、312a,322aは電力変換器、312b,322b,462は無
効電力変換器、512,522〜5n2は潮流変換器、103,313a,3
13b,203,323a,323b,453,463,513,523〜5n3はサンプルホ
ールドアンプ。 なお、図中同一部分は同一符号をもって示す。
1 is an explanatory view of the principle according to an embodiment of the present invention, FIG. 2 is an explanatory view of an object to which the present invention is applied, FIG. 3 is a detailed configuration view showing an embodiment of the present invention, and FIG. FIG. 5 is a block diagram of the supervisory control apparatus shown in FIG. 5, and FIGS. 5A to 5C are flowcharts showing the specific operation of the present invention. In the figure, 1 is a high voltage current system, 2 is a low voltage power system, 3 is a transformer bank, 4 is a phase adjusting equipment, 10 is a high voltage system side bus, 20 is a low voltage system side bus, 7 is a supervisory control device, 30 Is tap changer at load, 31,51 to 5n, 46, 32 are current transformers, 101, 20
1,45 is a transformer, 81,82 is a (first and second) switchboard, 9 is an information transmission device, 41 is a branch reactor, 42 is a static capacitor, 43,44 is a circuit breaker, 49 is a multiplexer, 50 Is an A / D converter, 60 is a microcontroller, 102,202,452 voltage converters, 312a, 322a are power converters, 312b, 322b, 462 are reactive power converters, 512,522-5n2 are power flow converters, 103,313a, 3
13b, 203, 323a, 323b, 453, 463, 513, 523-5n3 are sample-hold amplifiers. In the figure, the same parts are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高圧電源系統の電圧及び電力潮流,低圧電
源系統の電圧及び電力潮流,並びに上記高圧電源系統と
低圧電源系統を結合する変圧器バンクの3次側及び低圧
負荷フィーダ側の電圧及び電力潮流の変化分をそれぞれ
計測する計測手段と、上記計測手段の計測結果に基づい
て上記高圧電源系統及び低圧電源系統のリアクタンスを
仮同定するとともに、負荷系統から見た電源系統のリア
クタンスを仮同定し、そのリアクタンス及び負荷側系統
の潮流の計測結果を用いて各フィーダ毎の基準化潮流及
び電力安定限界を演算し、その電力安定限界に対する基
準化潮流の余裕値を各フィーダ毎に演算する余裕値演算
手段と、上記余裕値演算手段により演算された各フィー
ダ毎の余裕値をそれぞれの基準値と比較して安全性を判
別する安定性判別手段と、上記安全性判別手段により安
全性がないと判別された場合、各フィーダ毎の余裕値と
それぞれの基準値に基づいて上記調相設備を制御して上
記リアクタンスを再度仮同定する第1の制御手段と、上
記第1の制御手段の制御前あるいは制御後に、上記安全
性判別手段により安全性を確認されると上記リアクタン
スを決定し、上記変圧器のタップ値及び調相設備を計画
的に制御して電圧・無効電力を微調整する第2の制御手
段とを備えた電圧・無効電力制御装置。
1. A voltage and power flow of a high-voltage power supply system, a voltage and power flow of a low-voltage power supply system, and a voltage on the tertiary side and low-voltage load feeder side of a transformer bank connecting the high-voltage power supply system and the low-voltage power supply system, Measuring means for measuring the amount of change in the power flow respectively, and based on the measurement results of the measuring means, the reactances of the high-voltage power supply system and the low-voltage power supply system are provisionally identified, and the reactance of the power supply system as seen from the load system is provisionally identified. Then, the normalized flow and the power stability limit for each feeder are calculated using the reactance and the load side power flow measurement results, and the margin value of the standardized flow for the power stability limit is calculated for each feeder. Stability discrimination for discriminating safety by comparing the margin value of each feeder calculated by the value arithmetic means and the margin value arithmetic means with each reference value And the safety discriminating means discriminates that there is no safety, the phasing equipment is controlled on the basis of the margin value for each feeder and the respective reference value, and the reactance is provisionally identified again. Before and after the control means and the first control means are controlled, the reactance is determined when the safety is confirmed by the safety determination means, and the tap value of the transformer and the phasing equipment are planned. And a second control means for finely adjusting the voltage / reactive power by controlling the voltage / reactive power.
JP62290529A 1987-11-19 1987-11-19 Voltage / reactive power control device Expired - Fee Related JPH0785624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290529A JPH0785624B2 (en) 1987-11-19 1987-11-19 Voltage / reactive power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290529A JPH0785624B2 (en) 1987-11-19 1987-11-19 Voltage / reactive power control device

Publications (2)

Publication Number Publication Date
JPH01133523A JPH01133523A (en) 1989-05-25
JPH0785624B2 true JPH0785624B2 (en) 1995-09-13

Family

ID=17757207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290529A Expired - Fee Related JPH0785624B2 (en) 1987-11-19 1987-11-19 Voltage / reactive power control device

Country Status (1)

Country Link
JP (1) JPH0785624B2 (en)

Also Published As

Publication number Publication date
JPH01133523A (en) 1989-05-25

Similar Documents

Publication Publication Date Title
RU2605083C2 (en) Method of electric generator controlling
US6754597B2 (en) Method and device for assessing the stability of an electric power transmission network
CN112366714B (en) Ring closing and electricity regulating device and method for power distribution network for regulating pressure difference angle difference
CN111952970B (en) Method and device for closing loop and regulating electricity of power distribution network
JPH0734624B2 (en) Voltage-reactive power controller
JPH08103025A (en) Load management controller
ES2779782T3 (en) Method to control a regulation transformer and electrical installation to couple two alternating current networks
US4419591A (en) Multiterminal DC power transmission system
US10784677B2 (en) Enhanced utility disturbance monitor
JP3591247B2 (en) Loosely coupled power system controller
CN102593737A (en) Method for checking and testing relay protection vectors before commissioning of capacitance-compensated transformer substation
WO2019198585A1 (en) Power supply system
EP3361593B1 (en) Uninterruptible power supply for loads
JPH09163607A (en) Return feeder voltage compensation method and device
US4516198A (en) Control system for DC power transmission
JPH0785624B2 (en) Voltage / reactive power control device
KR20200003631A (en) Protection device and method for distributed energy resources in electric distribution system
JPH07241035A (en) Method for stabilizing single separated system
JPH07322494A (en) Multiple output converter with power factor and voltage adjustment function
RU218476U1 (en) CONTROL DEVICE FOR STATIC REACTIVE POWER COMPENSATOR AT SECTIONALIZATION POST
Neves et al. Two Years of Battery Energy Storage System performance in automatic islanding in the Portuguese MV network
CN109193711A (en) A kind of imbalance compensation system and method for resisting voltage distortion
RU2790145C1 (en) Method and device for adaptive automatic voltage regulation in an electrical network using capacitor devices
CN108347170A (en) A kind of DC power supply regulator, system and method
Jacobsen et al. Multi-Machine Synchronous Islanding Achieved in a Laboratory Test Bed Utilizing PMUs

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees