JPH07241035A - Method for stabilizing single separated system - Google Patents

Method for stabilizing single separated system

Info

Publication number
JPH07241035A
JPH07241035A JP6028581A JP2858194A JPH07241035A JP H07241035 A JPH07241035 A JP H07241035A JP 6028581 A JP6028581 A JP 6028581A JP 2858194 A JP2858194 A JP 2858194A JP H07241035 A JPH07241035 A JP H07241035A
Authority
JP
Japan
Prior art keywords
control
voltage
frequency
amount
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6028581A
Other languages
Japanese (ja)
Inventor
Takeshi Kurose
健 黒瀬
Yasuyuki Kowada
靖之 小和田
Hideji Oshida
秀治 押田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6028581A priority Critical patent/JPH07241035A/en
Publication of JPH07241035A publication Critical patent/JPH07241035A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To calculate a control amount for sustaining the frequency and voltage appropriately at the time of single separation even in case of an intricate system configuration or a feed power flow by determining the necessity of control for every case of single separation being predicted previously. CONSTITUTION:A unit 4 for stabilizing a single separated system prepares a data for calculating power flow based on bus voltages, load amounts, etc., received on control input cables 11a-33a. A finish voltage of each bus and a system frequency are then calculated in case of uncontrollable after single separation and then a decision is made whether a control is required or not. If a control is required, the load of power flow for a system interconnection line or the power supply interrupting amount thereof is calculated followed by calculations of finish frequency and voltage for the case where only a generator 31 or loads b1-b3 is interrupted. A decision is then made whether that control is sufficient and a control pattern for only the effective power is determined if it is sufficient otherwise a control pattern for simultaneous control of effective power and phase modification is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、系統の構成,運用状
況等の情報に基づき、系統の周波数,電圧等を、系統分
離後に維持するための制御量を算出する単独分離系統安
定化方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single isolated system stabilizing method for calculating a control amount for maintaining system frequency, voltage, etc. after system isolation based on information such as system configuration and operation status. It is a thing.

【0002】[0002]

【従来の技術】図5は例えば特開昭60―255018
号公報に示された従来の系統安定化装置を示す構成図で
あり、図において、1は主系統M側に属する変電所、2
は分離系統Lの中心となる変電所、3は分離系統Lに属
する発電所、31は発電機であり、それぞれ連系線とし
ての送電線5,6で結ばれている。
2. Description of the Related Art FIG. 5 shows, for example, JP-A-60-255018.
It is a block diagram which shows the conventional system stabilization apparatus shown by the publication, 1 is a substation which belongs to the main system M side, 2
Is a substation that is the center of the separation system L, 3 is a power plant belonging to the separation system L, and 31 is a generator, which are connected by transmission lines 5 and 6 as interconnection lines, respectively.

【0003】また、4は分離系統安定化回路、a1〜a
3は調相設備、b1〜b3は負荷、22はセンサとして
の電流変成器(CT)、25はセンサとしての負荷用電
流変成器、26は電圧センサ、11,21は送電線5の
両端における系統分離遮断器、23,24は制御系の分
離遮断器、23−24a,25aはいずれも制御入力ケ
ーブル、47は出力制御ケーブルである。
Reference numeral 4 denotes a separate system stabilizing circuit, a1 to a.
3 is a phase adjusting equipment, b1 to b3 are loads, 22 is a current transformer (CT) as a sensor, 25 is a load current transformer as a sensor, 26 is a voltage sensor, 11 and 21 are at both ends of the transmission line 5. System isolation circuit breakers, 23 and 24 are control system isolation circuit breakers, 23 to 24a and 25a are control input cables, and 47 is an output control cable.

【0004】また、上記系統安定化装置の基本原理は図
6〜図8に示す通りであり、ここではまず、主系統Mか
ら分離された分離系統であるローカル系統Lの有効電力
制御量、すなわち遮断すべき負荷量の決定法から説明す
る。主系統Mから分離された後、ローカル系統L内にお
ける有効電力のアンバランス分は、全負荷有効電力出力
量から発電機有効電力量を引いたものである。
Further, the basic principle of the system stabilizing device is as shown in FIGS. 6 to 8. Here, first, the active power control amount of the local system L which is a system separated from the main system M, that is, The method of determining the load amount to be cut off will be described. After being separated from the main system M, the unbalanced amount of active power in the local system L is the total load active power output amount minus the generator active power amount.

【0005】これらは、線路損失を無視すれば、分離前
に主系統Mから供給されていた有効電力量にほぼ等しい
ものである。従って、遮断すべき負荷量は、分離点で計
測していた有効電力量と等しくなるように決定すること
になる。
If these line losses are ignored, these are almost equal to the amount of active power supplied from the main system M before the separation. Therefore, the load amount to be interrupted is determined to be equal to the active power amount measured at the separation point.

【0006】一方、負荷は有効電力分だけでなく無効電
力分も持っているため、有効電力バランスにのみ着目し
た制御を行うと、無効電力バランスがくずれ、都市部の
電力系統のようにケーブルの充電容量が大きな場合に
は、過電圧現象が生じることがある。
On the other hand, since the load has not only active power but also reactive power, if control focusing only on the active power balance is performed, the reactive power balance will be disturbed and the load of the cable like the power system in urban areas will be lost. When the charge capacity is large, an overvoltage phenomenon may occur.

【0007】この負荷遮断の際に生ずるような過電圧現
象を未然に予測し、これを防止するのに必要な無効電力
制御を負荷遮断と同時に実行することが望ましい。この
無効電力制御量を決定するための基本原理を図5〜図8
に従って説明していくことにする。なお、以下に述べる
各状態量は、すべて単位表現とする。
It is desirable to predict the overvoltage phenomenon that would occur when the load is cut off, and to execute the reactive power control necessary for preventing it at the same time when the load is cut off. 5 to 8 show the basic principle for determining the reactive power control amount.
I will explain according to. Each state quantity described below is expressed as a unit.

【0008】図6および図7は上記基本原理を説明する
ため簡略化して描かれた電力系統図およびその等価回路
図をそれぞれ示している。図6に示すような発電機gを
有する1発電所GEと、変電所AおよびBの2変電所か
らなるローカル系統Lが、主系統Mから分離された場合
を例に述べることにする。
FIG. 6 and FIG. 7 respectively show a power system diagram and its equivalent circuit diagram drawn in a simplified manner for explaining the basic principle. A case will be described as an example in which a local power system L including one power generation station GE having a generator g as shown in FIG. 6 and two substations A and B is separated from the main power system M.

【0009】図6において、a1〜a3は調相設備とし
ての並列リアクトル、b1〜b6は負荷、c1〜c11
は遮断器、e1〜e3は送電線である。一般に、同図に
示すような規模の電力系統に対して解析を行う場合に、
図7に示す簡略化等価回路モデルを使用しても、あまり
大きな誤差はでない。そこで、この図7の等価回路を用
いて説明する。
In FIG. 6, a1 to a3 are parallel reactors as phase adjusting equipment, b1 to b6 are loads, and c1 to c11.
Is a circuit breaker, and e1 to e3 are power transmission lines. Generally, when conducting an analysis on a power system of the scale shown in the figure,
Even if the simplified equivalent circuit model shown in FIG. 7 is used, the error is not so large. Therefore, description will be made using the equivalent circuit of FIG.

【0010】図7において、各符号G,BC ,XL は、
それぞれ次のような物理的意味を有する。
In FIG. 7, the symbols G, B C and X L are
Each has the following physical meaning.

【0011】G :ローカル系統L内の負荷を定インピ
ーダンス特性として、その有効電力分の合計を対地コン
ダクタンスとして表現したもの。
G: A load in the local system L is expressed as a constant impedance characteristic, and the total active power is expressed as a ground conductance.

【0012】BC :ローカル系統L内の負荷を定インピ
ーダンス特性として、その無効電力分の合計および架空
線路,ケーブルの対地キャパシタンス,その他並列リア
クトル等を合計したものを対地サセプタンスとして表現
したもの。
B C : The load in the local system L is defined as a constant impedance characteristic, and the total of the reactive power, the ground capacitance of the overhead line, the cable, and other parallel reactors are expressed as a ground susceptance.

【0013】XL :発電機過渡リアクタンスも含めて、
代表ノードとして選んだ変電所Aの母線までの線路(ま
たはケーブル)リアクタンスを並列合成したもの。
X L : Including the generator transient reactance,
A parallel combination of line (or cable) reactances up to the bus of substation A selected as the representative node.

【0014】なお、一般的には代表ノードとして、フェ
ランティ効果の影響が出やすい発電所からなるべく離れ
た比較的バンク容量の大きな変電所母線を選べばよい。
ここでは変電所Aを代表ノードとしている。
Generally, as the representative node, a substation bus having a relatively large bank capacity, which is as far away from the power plant that is likely to be affected by the ferrant effect as possible, may be selected.
Here, substation A is the representative node.

【0015】図7の等価回路で示す系統において、発電
機gの過渡リアクタンス背後電圧V'gと負荷点電圧VL
の関係は、VL =[{1/(G+jBC )}/{1/
(G+jBC )+jXL }]V'g={1/(1−BC
L +jG・XL )}V'gとなる。
In the system shown by the equivalent circuit of FIG. 7, the transient reactance back voltage V'g of the generator g and the load point voltage V L
The relationship of V L = [{1 / (G + jB C )} / {1 /
(G + jB C) + jX L}] V 'g = {1 / (1-B C ·
X L + jG · X L )} V ′ g .

【0016】また、発電機gの過渡リアクタンス背後電
圧V'gの大きさは、系統分離や負荷遮断などの外乱が生
じてもほとんど変化しないので、その絶対値を負荷点で
の過電圧を評価する基準に選ぶ。すなわち、k=|V'L
|/|V'g|なる量を定義して、このkを以後過電圧係
数と呼ぶことにする。
[0016] The size of the transient reactance behind voltage V 'g of the generator g, since hardly changes even when disturbances such as the system partition and load shedding, to evaluate the overvoltage of the absolute value at the load point Choose as a standard. That is, k = | V ' L
The quantity | / | V ′ g | is defined, and this k is hereinafter referred to as an overvoltage coefficient.

【0017】これにより、上記負荷点電圧VL から過電
圧係数は、k=|1/(1−BC ・XL +jG・XL
|=1/{(1−BC ・XL2 +(G・XL2
1/2 で与えられる。また、この式を変形すると、{BC
−(1/XL )}2 +G2 =1/k2 ・XL 2が得られ
る。
As a result, the overvoltage coefficient from the load point voltage V L is k = | 1 / (1-B C · X L + jG · X L ).
│ = 1 / {(1-BC C XL ) 2 + (G XL ) 2 }
Given by 1/2 . Also, if this equation is transformed, {B C
- (1 / X L)} 2 + G 2 = 1 / k 2 · X L 2 is obtained.

【0018】この式は対地コンダクタンスGを横軸、対
地サセプタンスBC を縦軸とした座標G−BC 平面上に
おいて、過電圧係数kが一定の領域の中心(0,1/X
L )、半径1/k・XL の円で表わされることを示して
いる。そしてk=1の時、この円は原点を通ることを意
味している。図8はG−BC 平面上に上記の変形した式
を座標表示した様子を示している。
This formula is based on the coordinate G-B C plane with the horizontal conductance G as the horizontal axis and the vertical susceptance B C as the vertical axis, and the center (0,1 / X) of the region where the overvoltage coefficient k is constant.
L), indicating that represented by a circle with a radius 1 / k · X L. And when k = 1, this circle means passing through the origin. FIG. 8 shows a state in which the above-mentioned modified formulas are displayed as coordinates on the G-B C plane.

【0019】一方、負荷を定インピーダンス特性と仮定
すると、負荷遮断の軌跡はG−BC平面上において直線
で表現される。従って、この負荷遮断の軌跡と上記の変
形した式によって規定される過電圧領域より、過電圧現
象の予測およびそれを抑制するのに必要な無効電力制御
量の決定を行うことができる。
On the other hand, assuming that the load has a constant impedance characteristic, the locus of load shedding is represented by a straight line on the G-B C plane. Therefore, it is possible to predict the overvoltage phenomenon and determine the reactive power control amount necessary to suppress the overvoltage phenomenon based on the locus of the load cutoff and the overvoltage region defined by the modified expression.

【0020】すなわち、負荷遮断の軌跡がk>1の領域
に入る場合には、1p・u以上のはねあがり電圧が生じ
ると予測し、軌跡がk≦1の領域にくるように無効電力
の制御を行う。この無効電力制御量の具体的な決定法を
次に示す。
That is, when the locus of load shedding falls within the region of k> 1, it is predicted that a bouncing voltage of 1 p · u or more will occur, and the reactive power of the reactive power is adjusted so that the locus falls within the region of k ≦ 1. Take control. A specific method for determining the reactive power control amount will be described below.

【0021】図8において、負荷遮断の軌跡がA→Bの
ようになったとする。ここでA点の座標(G0 ,BC0
は、定常逆転時におけるローカル系統の負荷状態(並列
リアクトル,ケーブルの対地キャパシタンス等も含む)
を表わす。
In FIG. 8, it is assumed that the locus of load shedding becomes A → B. Here, the coordinates of point A (G 0 , B C0 )
Indicates the load state of the local system during steady reverse rotation (including parallel reactors, cable ground capacitance, etc.)
Represents

【0022】今、負荷をすべて誘導性負荷と仮定し、そ
の負荷力率で決まる平均力率角を−ΘL とし、有効電力
制御量、すなわちローカル系統内の有効電力アンバラン
ス量をPC とすると、B点の座標は、(G0 −PC ,B
C0+PC tan ΘL )となる。一方、負荷遮断によっ
て生ずるはねあがり電圧を1p・u以内に抑えるために
は、G=G0 −PC 点でのBC 軸上の直線と、k=kC
における円とが交わる点Cまで軌跡を移動させる必要が
ある。
Now, assuming that all loads are inductive loads, the average power factor angle determined by the load power factor is −Θ L , and the active power control amount, that is, the active power imbalance amount in the local grid is P C. Then, the coordinates of the point B are (G 0 −P C , B
C0 + P C tan Θ L ). On the other hand, in order to suppress the bouncing voltage generated by load shedding within 1 p · u, a straight line on the B C axis at the point G = G 0 −P C and k = k C
It is necessary to move the locus to a point C where the circle at intersects.

【0023】ここで、kC は制御目標を与える過電圧係
数で、通常の基準となる発電機過渡リアクタンス背後電
圧が1p・uより大きくなるので、kC の値としては、
1よりやや小さめの0.8〜0.9ぐらいの値を選ぶこ
とになる。上記の変形した式よりC点の座標は、(G0
−PC ,−{1/(kC ・XL2 −(G0 −PC
21/2 +(1/XL ))で与えられる。
Here, k C is an overvoltage coefficient that gives a control target, and since the normal reference generator transient reactance back voltage is greater than 1 p · u, the value of k C is
A value of 0.8 to 0.9, which is slightly smaller than 1, will be selected. From the above modified formula, the coordinates of the point C are (G 0
−P C , − {1 / (k C · XL ) 2 − (G 0 −P C )
2 } 1/2 + (1 / XL )).

【0024】従って、負荷遮断のみの軌跡A→BをA→
Cまで移動させるのに必要な無効電力制御量QC は同図
上でB→Cとして表わされ、QC =BC0+PC tan
ΘL+{1/(kC ・XL2 −(G0 −PC21/2
−(1/XC )より決定できる。
Therefore, the locus A → B only for load shedding is A →
The reactive power control amount Q C required to move to C is expressed as B → C in the figure, and Q C = B C0 + P C tan
Θ L + {1 / (k C · XL ) 2 − (G 0 −P C ) 2 } 1/2
It can be determined from − (1 / X C ).

【0025】これより無効電力の制御量の総和がQC
なるまでキャパシター遮断またはシヤレトリアクターの
投入およびケーブル遮断を実施すればよい。従って、図
8中軌跡A→Cは負荷遮断と無効電力制御の和の軌跡と
なる。
From this, it is sufficient to cut off the capacitor or turn on the shear reactor and cut off the cable until the total sum of the control amounts of the reactive power reaches Q C. Therefore, the locus A → C in FIG. 8 is the locus of the sum of the load shedding and the reactive power control.

【0026】次に図5の系統安定化装置の動作について
説明する。分離系統安定化回路4は事前に制御入力ケー
ブル22a〜26aを介して入力した電流,電圧の情報
などを用いて、1機1ノードの系統に制御対象,系統を
モデル化し、図8について説明した方法で制御量を算出
し、それに基づき制御対象を選択する。そして、遮断器
11,21が開き、分離系統Lに移行したことを、制御
入力ケーブル11a,21aを通じて分離系統安定化回
路4で受信すると、この分離系統安定化回路4は出力制
御ケーブル47を通じて、負荷b1〜b3,調相設備で
ある並列リアクトルa1〜a3のうち事前に選択されて
いた遮断対象側の遮断器23,24のいずれかにトリッ
プ指令を出力し、分離系統Lの安定化を図る。
Next, the operation of the system stabilizing device shown in FIG. 5 will be described. The isolated system stabilizing circuit 4 models the controlled object and the system in the system of one machine and one node by using the information of the current and the voltage input through the control input cables 22a to 26a in advance, and described FIG. The controlled variable is calculated by the method, and the controlled object is selected based on the calculated controlled variable. Then, when the separated system stabilizing circuit 4 receives through the control input cables 11a and 21a that the circuit breakers 11 and 21 open and shifts to the separated system L, the separated system stabilizing circuit 4 receives the output control cable 47, Stabilize the separation system L by outputting a trip command to any of the circuit breakers 23 and 24 on the side to be interrupted that have been selected in advance among the loads b1 to b3 and the parallel reactors a1 to a3 that are phase adjusting equipment. .

【0027】[0027]

【発明が解決しようとする課題】従来の系統安定化装置
は以上のように構成されているので、系統を1機1ノー
ド系に縮約してから、制御量を算出しなければならず、
複雑な系統に対して適用しようとすると、正確に制御量
が算出できないばかりか、送り潮流時には対応できず、
また、1機1ノード系に縮約するので、複数の母線が存
在する場合には制御量を振り分けるのが困難であるなど
の問題点があった。
Since the conventional system stabilizing device is constructed as described above, the control amount must be calculated after the system is contracted into a one-machine one-node system.
If you try to apply it to a complicated system, not only can you not accurately calculate the control amount, but you can not cope with the feed flow,
In addition, since it is reduced to a 1-machine 1-node system, there is a problem that it is difficult to distribute the control amount when there are a plurality of buses.

【0028】請求項1の発明は上記のような問題点を解
消するためになされたものであり、系統構成が複雑で、
1機1ノードに縮約し難い場合や、送り潮流時において
も単独分離時に適切に周波数,電圧を維持できる制御量
を算出することができる単独分離系統安定化方法を得る
ことを目的とする。
The invention of claim 1 has been made to solve the above problems, and has a complicated system configuration.
An object of the present invention is to provide a method for stabilizing a single isolated system that can calculate a control amount that can appropriately maintain the frequency and voltage during single isolation even when it is difficult to reduce the number to one node per node, or even during a power flow.

【0029】請求項2の発明は周波数変動を考慮できる
潮流計算を用いて制御の要否を判断することで、高精度
に制御実施判定を実行できる単独分離系統安定化方法を
得ることを目的とする。
It is an object of the invention of claim 2 to obtain a single isolated system stabilizing method capable of highly accurately performing control execution determination by determining the necessity of control by using a power flow calculation capable of considering frequency fluctuations. To do.

【0030】請求項3の発明は周波数変動を考慮できる
潮流計算を用いて制御量を算出することで、周波数,電
圧を単独分離前の値に維持することができる単独分離系
統安定化方法を得ることを目的とする。
According to the third aspect of the present invention, by calculating the control amount by using the power flow calculation capable of considering the frequency fluctuation, a method for stabilizing the isolated system which can maintain the frequency and the voltage at the values before the independent separation is obtained. The purpose is to

【0031】請求項4の発明は潮流計算を用いて制御量
を算出することで、周波数,電圧を任意の値に維持する
ことができる単独分離系統安定化方法を得ることを目的
とする。
It is an object of the invention of claim 4 to obtain a method for stabilizing an isolated system which can maintain a frequency and a voltage at arbitrary values by calculating a control amount using a power flow calculation.

【0032】[0032]

【課題を解決するための手段】請求項1の発明に係る単
独分離系統安定化方法は、事前に想定される単独分離ケ
ース毎に、潮流計算を用いた制御実施判定方式により制
御の必要性を判定し、必要がある場合には、潮流計算を
用いた安定化制御量算出方式により制御量を算出し、分
離系統の安定化を図るものである。
A method for stabilizing a single isolated system according to the invention of claim 1 determines the necessity of control by a control execution determination method using a power flow calculation for each single isolated case assumed in advance. The determination is made, and if necessary, the control amount is calculated by the stabilized control amount calculation method using the power flow calculation to stabilize the separated system.

【0033】請求項2の発明に係る単独分離系統安定化
方法は、安定化制御の必要性を判断する制御実施判定方
式において、潮流計算により制御を実施しない場合ある
いは行った場合の仕上り周波数,電圧を算出し、制御の
要否を判定するようにしたものである。
In the method for stabilizing a single isolated system according to the invention of claim 2, in the control execution judging method for judging the necessity of stabilization control, the finishing frequency and voltage when the control is not executed by the power flow calculation or when the control is executed. Is calculated and the necessity of control is determined.

【0034】請求項3の発明に係る単独分離系統安定化
方法は、分離系統内の周波数,電圧維持に必要な制御量
を算出する安定化制御量算出方式において、周波数,電
圧を系統分離前と同じ値に維持するために必要な制御量
を潮流計算により算出するようにしたものである。
According to a third independent system stabilizing method of the present invention, in the stabilizing control amount calculation method for calculating the control amount necessary for maintaining the frequency and voltage in the separated system, the frequency and voltage are compared with those before the system separation. The amount of control required to maintain the same value is calculated by power flow calculation.

【0035】請求項4の発明に係る単独分離系統安定化
方法は、分離系統内の周波数,電圧維持に必要な制御量
を算出する安定化制御算出方式において、任意の周波
数,電圧とするために必要な制御量を潮流計算により算
出するようにしたものである。
According to a fourth aspect of the present invention, there is provided a single isolated system stabilizing method, wherein a stabilizing control calculation method for calculating a control amount necessary for maintaining a frequency and a voltage in the separated system has an arbitrary frequency and voltage. The required control amount is calculated by power flow calculation.

【0036】[0036]

【作用】請求項1の発明における単独分離系統安定化方
法は、事前に規定される単独分離ケース毎に、制御実施
判定方式により制御の必要性を判定し、その結果、制御
の必要がある場合には、安定化制御量算出方式を用いて
制御量を算出することにより、系統構成の複雑さに拘ら
ず、分離系統の安定化を図る。
According to the method for stabilizing an isolated system according to the first aspect of the invention, the necessity of control is judged by the control execution judgment method for each isolated case defined in advance. In order to stabilize the separated system, the control amount is calculated using the stabilized control amount calculation method regardless of the complexity of the system configuration.

【0037】請求項2の発明における単独分離系統安定
化方法は、潮流計算を用いて無制御または発電機,負荷
の遮断を行った場合の仕上り周波数,電圧を求め、算出
された結果が一定の許容範囲内にあるかどうかで、制御
の要否や制御の十分,不十分を判定する。
In the method for stabilizing an isolated system according to the second aspect of the present invention, the finished frequency and voltage are calculated using power flow calculation without control or when the generator and load are cut off, and the calculated results are constant. Whether or not control is necessary and whether control is sufficient or inadequate is determined by whether or not it is within the allowable range.

【0038】請求項3の発明における単独分離系統安定
化方法は、単独分離後も、発電機,負荷の遮断量が送電
線潮流値に等しくなるようにし、調相設備をもつ変電所
の母線は通常、潮流計算をする時にはPQ指定母線であ
るものをPV指定母線に変更した後に、負荷,発電機出
力に周波数特性,電圧特性を考慮した式を用いた系統周
波数の変動を考慮できる潮流計算を実施し、その結果を
もとに、上記変電所ごとに調相制御量を算出し、周波
数,電圧を単独分離前の値に維持する。
In the method for stabilizing an isolated system according to the third aspect of the present invention, the amount of interruption of the generator and the load is made equal to the power flow value of the transmission line even after the independent separation, and the bus of the substation having the phase-adjustment facility is Normally, when calculating the power flow, after changing the PQ designated bus to the PV designated bus, the power flow calculation that can consider the fluctuation of the system frequency using the formula that considers the frequency characteristics and voltage characteristics of the load and generator output is performed. Based on the result, the phase control amount is calculated for each of the substations, and the frequency and voltage are maintained at the values before the independent separation.

【0039】請求項4の発明における単独分離系統安定
化方法は、発電機,負荷の遮断量を定め、PQ指定母線
をPV指定母線に変更し、その変更した1つをスラック
母線とし、予め目標とする周波数と事前の周波数との偏
差を考慮して、負荷と発電機の出力を設定し、目標とす
る周波数に固定して潮流計算を行い、周波数,電圧を任
意の値に維持する。
In the method for stabilizing an isolated system according to the invention of claim 4, the amount of interruption of the generator and the load is determined, the PQ designated busbar is changed to the PV designated busbar, and the changed one is set as the slack busbar, and the target is set in advance. The output of the load and the generator is set in consideration of the deviation between the frequency to be set and the frequency in advance, and the power flow is calculated by fixing the output to the target frequency, and the frequency and voltage are maintained at arbitrary values.

【0040】[0040]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図に基づいて説
明する。図1において、1は主系統M側の変電所、2は
ローカル系統としての分離系統L側の変電所、11,2
1は連系線としての送電線5に入れた系統分離遮断器、
22は連系線潮流を計測するためのセンサとしての電流
変成器、3は発電所(母線)、31は発電機、32は発
電機出力等を計測するセンサとしての電流変成器、33
は発電機の遮断器である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a substation on the side of the main system M, 2 is a substation on the side of the isolated system L as a local system, 11, and 2.
1 is a system isolation circuit breaker put in a transmission line 5 as an interconnection line,
Reference numeral 22 is a current transformer as a sensor for measuring the interconnection power flow, 3 is a power plant (bus), 31 is a generator, 32 is a current transformer as a sensor for measuring generator output and the like, 33
Is the breaker of the generator.

【0041】また、23は変電所2の調相設備a1〜a
3の分離遮断器、24は負荷b1〜b3の分離遮断器、
25は負荷b1〜b3の潮流等を取り込むセンサとして
の負荷用電流変成器、26Aは電流センサ、11a,2
1a,22a,23−24a,25a,26a,32
a,33aは系統の各種情報を単独分離系統安定化回路
4に取り込むための伝送路としての制御入力ケーブル、
47は出力制御ケーブルである。
Reference numeral 23 denotes phase adjusting equipment a1 to a of the substation 2.
3 is a circuit breaker, 24 is a circuit breaker for loads b1 to b3,
Reference numeral 25 is a load current transformer as a sensor for taking in the tidal current of the loads b1 to b3, 26A is a current sensor, and 11a, 2a.
1a, 22a, 23-24a, 25a, 26a, 32
a and 33a are control input cables as a transmission line for taking in various system information to the single isolated system stabilizing circuit 4,
47 is an output control cable.

【0042】次に動作について説明する。単独分離系統
安定化装置4は、図2に示すような演算を一定時間おき
に行い、制御入力ケーブル11a,22aを通じて分離
系統Lが主系統Mから系統分離したという情報を受け取
ると、系統分離前の系統の各種情報をもとに図2の演算
ルーチンで決定されていた制御量により、単独分離系統
安定化装置4は出力制御ケーブル47を通じ調相設備a
1〜a3,負荷b1〜b3のうち事前に選択された対象
にトリップ指令を出力する。
Next, the operation will be described. When the isolated system stabilizing device 4 receives the information that the system L has been systemically separated from the main system M through the control input cables 11a and 22a by performing the calculation as shown in FIG. The independent isolation system stabilizing device 4 through the output control cable 47 uses the control amount determined by the calculation routine of FIG.
1 to a3, loads b1 to b3, and outputs a trip command to a preselected object.

【0043】すなわち、図2に示す演算ルーチンにおい
て、まず、各制御入力ケーブル11a〜33aから入力
される母線電圧,負荷量,発電機出力,連系線潮流,調
相投入量などから、潮流計算用のデータを準備する(ス
テップST1)。次に、この潮流計算に用いられ、安定
化制御の必要性を判断する制御実施判定方式により、単
独分離後に無制御の場合の各母線ごとの仕上り電圧,系
統周波数を算出し(ステップST2)、続いて、周波
数,電圧の変動範囲から制御の要否を判定し(ステップ
ST3)、制御の必要がなければ、制御パターンを無制
御に決定する(ステップST8)。
That is, in the calculation routine shown in FIG. 2, first, the power flow is calculated from the bus voltage, the load amount, the generator output, the interconnection line power flow, the phase input amount, etc. input from the control input cables 11a to 33a. Data for use is prepared (step ST1). Next, by the control execution determination method used for this power flow calculation and determining the necessity of stabilizing control, the finished voltage and the system frequency for each bus in the case of no control after single isolation are calculated (step ST2), Then, the necessity of control is determined from the fluctuation range of the frequency and voltage (step ST3), and if control is not necessary, the control pattern is determined to be uncontrolled (step ST8).

【0044】一方、制御の必要があれば連系線潮流分の
負荷,または電源遮断量を算出し(ステップST4)、
制御実施判定方式により発電機31,負荷b1〜b3の
いずれかの遮断のみを行った場合の仕上り周波数,電圧
を算出する(ステップST5)。そして、ここで再びこ
の制御で充分か否かを判定し(ステップST6)、充分
であれば、制御パターンを有効電力のみの制御に決定す
る(ステップST9)。それでも、充分でなければ、分
離系統L内の周波数,電圧維持に必要な制御量を算出す
る安定化制御算出方式により調相制御量を算出し(ステ
ップST7)、制御パターンを有効電力,調相同時制御
に決定する(ステップST10)。
On the other hand, if control is required, the load or power cutoff amount for the power flow of the interconnection line is calculated (step ST4),
A finishing frequency and a voltage when only the generator 31 or any of the loads b1 to b3 are cut off by the control execution determination method are calculated (step ST5). Then, it is again determined whether or not this control is sufficient (step ST6), and if it is sufficient, the control pattern is determined to control only active power (step ST9). If it is still not enough, the phase control amount is calculated by the stabilization control calculation method that calculates the control amount necessary for maintaining the frequency and voltage in the isolated system L (step ST7), and the control pattern is set to the active power and the same phase. Time control is determined (step ST10).

【0045】この実施例では、無制御,負荷b1〜b
2,発電機31の制御,調相同時制御について、順を追
って制御実施判定を行い、最後に安定化制御量算出方式
を用いるものを示したが、ステップST1からいきなり
ステップST7へ進んでもよいし、ステップST1から
ステップST4,ステップST5,ステップST6,ス
テップST7という手順を踏んでもかまわない。
In this embodiment, there is no control and loads b1 to b
2. Regarding the control of the generator 31 and the simultaneous phase adjustment control, the control execution determination is performed in order, and the stabilization control amount calculation method is used at the end, but it is possible to proceed from step ST1 to step ST7. , Step ST1 to step ST4, step ST5, step ST6, step ST7 may be performed.

【0046】実施例2.次に上記実施例の演算ルーチン
における潮流計算を用いた制御実施判定方式について説
明する。まず、無制御または発電機31,負荷b1〜b
3の遮断のみを行った場合の仕上り周波数,電圧を求め
る。この場合、系統周波数の変動を考慮できる潮流計算
を用い、基本的には、図2のステップST1で用いたデ
ータを流用するが、単独分離系統Lに移行した条件で、
図1における主系統側の変電所1と送電線5を無いもの
として潮流計算する。潮流計算を行う条件としては、負
荷をもつ変電所の母線はPQ指定、発電機をもつ変電所
の母線はPV指定とし、負荷P,Qは、周波数特性と電
圧特性を考慮した式とし、発電機出力は周波数特性を考
慮した式を用いる。
Example 2. Next, the control execution determination method using the power flow calculation in the arithmetic routine of the above embodiment will be described. First, uncontrolled or generator 31, loads b1 to b
Obtain the finished frequency and voltage when only the interruption in 3 is performed. In this case, the power flow calculation that can consider the fluctuation of the system frequency is used, and basically the data used in step ST1 of FIG.
The power flow is calculated assuming that there is no substation 1 and transmission line 5 on the main system side in FIG. The conditions for calculating the power flow are to specify PQ for the bus of a substation with a load, specify PV for the bus of a substation with a generator, and use loads P and Q as expressions that take frequency characteristics and voltage characteristics into consideration. The machine output uses a formula that considers the frequency characteristics.

【0047】さらに、発電機31,負荷b1〜b3の遮
断のみを行った場合の計算では、遮断する発電機31,
負荷b1〜b3を除いて計算する。この潮流計算を行っ
て算出された系統周波数および図1における変電所2の
電圧値が、一定の範囲内にあるかどうかで、制御の要
否,あるいは制御が充分であるかを判定する。
Further, in the calculation in the case where only the generator 31 and the loads b1 to b3 are cut off, the generator 31, which is cut off,
The calculation is performed excluding the loads b1 to b3. Whether or not control is necessary or sufficient is determined by whether or not the system frequency calculated by performing this power flow calculation and the voltage value of the substation 2 in FIG. 1 are within a certain range.

【0048】実施例3.続いて、上記実施例1の演算ル
ーチンにおける安定化制御量算出方式について、図3の
フローチャートに従って説明する。まず、単独分離後
も、系統周波数,電圧を系統分離前と同じ値に維持する
ために、発電機31,負荷b1〜b3の遮断量は、送電
線5の潮流値と等しくなるように定める(ステップST
11)。
Example 3. Next, the stabilization control amount calculation method in the calculation routine of the first embodiment will be described with reference to the flowchart of FIG. First, in order to maintain the system frequency and voltage at the same values as before the system isolation even after the independent isolation, the cutoff amounts of the generator 31 and the loads b1 to b3 are set to be equal to the power flow value of the transmission line 5 ( Step ST
11).

【0049】次に、調相設備a1〜a3を持つ変電所2
の母線をPQ指定母線からPV指定母線に変更し(ステ
ップST12)、このとき指定するV(電圧)は系統分
離前の値を指定する。次に、系統周波数を考慮できる潮
流計算を実施し(ステップST13)、続いてこの計算
結果をもとに、調相設備a1〜a3を持つ変電所毎に、
調相制御量を式QC =Q−QL より算出する(ステップ
ST14)。ここで、QC は調相制御量、Qは潮流計算
の結果で、各母線ごとに算出される電圧を維持するのに
必要な無効電力量、QL は負荷遮断後の無効電力負荷量
である。
Next, the substation 2 having the phase adjusting equipments a1 to a3
Is changed from the PQ designated bus to the PV designated bus (step ST12), and the V (voltage) designated at this time designates the value before the grid separation. Next, a power flow calculation that can consider the system frequency is performed (step ST13), and subsequently, based on this calculation result, for each substation having the phase-adjustment equipment a1 to a3,
The compensator control amount calculated from the equation Q C = Q-Q L (step ST14). Here, Q C is compensator control amount, Q is the result of power flow calculation, reactive energy necessary to maintain the voltage to be calculated for each generatrix, Q L is a reactive power load after load rejection is there.

【0050】実施例4.次に、実施例1の演算ルーチン
における他の安定化制御量算出方式について説明する。
この方式は、実施例3の安定化制御量算出方式が単独分
離前の周波数,電圧を目標に制御するのに対して、任意
の周波数,電圧を目標値に制御する。この制御手順を図
4のフローチャートに示す。
Example 4. Next, another stabilization control amount calculation method in the calculation routine of the first embodiment will be described.
In this method, the stabilization control amount calculation method of the third embodiment controls the frequency and voltage before the independent separation as targets, whereas it controls arbitrary frequencies and voltages to target values. This control procedure is shown in the flowchart of FIG.

【0051】まず、仮に、発電機31,負荷b1〜b3
の遮断量を定めて、合計値をPC とする(ステップST
21)。ここで、負荷遮断を正とし、PQ指定母線をP
V指定母線に変更する(ステップST22)。こうして
PV指定母線に変更した母線のうちの1つをスラック母
線とし(ステップST23)、続いて、予め目標とする
周波数と事前の周波数との偏差を考慮して、負荷b1〜
b3と発電機31の出力を設定し(ステップST2
4)、目標とする周波数に固定して潮流計算を行う(ス
テップST25)。
First, suppose that the generator 31 and the loads b1 to b3.
The amount of interruption of is determined and the total value is P C (step ST
21). Here, the load shedding is positive and the PQ designated bus bar is P
Change to V designated busbar (step ST22). One of the buses thus changed to the PV designated bus is set as a slack bus (step ST23), and then the loads b1 to b1 are taken into consideration in consideration of the deviation between the target frequency and the previous frequency.
b3 and the output of the generator 31 are set (step ST2
4) The power flow is calculated by fixing the target frequency (step ST25).

【0052】その結果、スラック母線の発電量をPG
すると、P'C=PC −PG で表わされるP'Cが最終的な
発電機31,負荷遮断量の合計値となる。調相制御量は
実施例3と同様に、調相設備a1〜a3をもつ変電所2
の母線ごとに、QC =Q−QL の式で算出することとな
る(ステップST26)。
As a result, when the power generation amount of the slack bus is P G , P ′ C represented by P ′ C = P C −P G is the final sum of the generator 31 and the load shedding amount. The phase control amount is the same as in the third embodiment, the substation 2 having the phase adjusting equipments a1 to a3.
Each of the bus, and can be calculated by the equation Q C = Q-Q L (step ST26).

【0053】[0053]

【発明の効果】以上のように、請求項1の発明によれ
ば、事前に想定される単独分離ケース毎に、潮流計算を
用いた制御実施判定方式により制御の必要性を判定し、
必要がある場合には、潮流計算を用いた安定化制御量算
出方式により制御量を算出するようにしたので、系統構
成が複雑な場合や送り潮流時の場合など従来方式で対応
できないケースでも、精度の高い制御量の算出ができ、
これによって分離系統の各母線ごとに安定化制御量が得
られる効果がある。
As described above, according to the first aspect of the present invention, the necessity of control is determined by the control execution determination method using the power flow calculation for each presumed single separation case,
When necessary, the control amount is calculated by the stabilized control amount calculation method using the power flow calculation, so even if the system configuration is complicated or in the case of sending power flow, the conventional method cannot handle It is possible to calculate the controlled variable with high accuracy,
This has the effect of obtaining a stabilized control amount for each bus of the isolated system.

【0054】請求項2の発明によれば、安定化制御の必
要性を判断する制御実施判定方式において、潮流計算に
より制御を実施しない場合あるいは行った場合の仕上り
周波数,電圧を算出し、制御の要否を判定するようにし
たので、精度の高い制御実施判定を実現できるものが得
られる効果がある。
According to the second aspect of the present invention, in the control execution judging method for judging the necessity of the stabilization control, the finishing frequency and the voltage when the control is not executed by the power flow calculation or when the control is executed are calculated, and the control Since it is determined whether or not it is necessary, there is an effect that it is possible to obtain a highly accurate control implementation determination.

【0055】請求項3の発明によれば、分離系統内の周
波数,電圧維持に必要な制御量を算出する安定化制御量
算出方式において、周波数,電圧を系統分離前と同じ値
に維持するために必要な制御量を潮流計算に基づき算出
するようにしたので、周波数,電圧を単独分離前の値に
高精度にて維持することができるものが得られる効果が
ある。
According to the third aspect of the present invention, in the stabilized control amount calculation method for calculating the control amount necessary for maintaining the frequency and voltage in the isolated system, the frequency and voltage are maintained at the same values as before the system isolation. Since the control amount required for the above is calculated based on the power flow calculation, there is an effect that the frequency and voltage can be maintained at the values before the single separation with high accuracy.

【0056】請求項4の発明によれば、分離系統内の周
波数,電圧維持に必要な制御量を算出する安定化制御算
出方式において、任意の周波数,電圧とするために必要
な制御量を潮流計算に基づき算出するようにしたので、
系統分離後の分離系統の系統周波数および各変電所の母
線毎の電圧を高精度に任意の値に維持することができる
ものが得られる効果がある。
According to the fourth aspect of the present invention, in the stabilization control calculation method for calculating the control amount necessary for maintaining the frequency and voltage in the separated system, the control amount necessary for setting the arbitrary frequency and voltage is the flow rate. I decided to calculate based on the calculation,
There is an effect that a system frequency of the separated system after the system separation and a voltage for each bus of each substation can be maintained at an arbitrary value with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による単独分離系統安定化
方法を実施する系統安定化装置を示す構成図である。
FIG. 1 is a configuration diagram showing a system stabilizing device for implementing a method for stabilizing an isolated system according to an embodiment of the present invention.

【図2】請求項1および請求項2の発明の実施例による
単独分離系統安定化方法を示すフローチャートである。
FIG. 2 is a flowchart showing a method for stabilizing an isolated system according to an embodiment of the inventions of claims 1 and 2.

【図3】請求項3の発明の実施例による単独分離系統安
定化方法を示すフローチャートである。
FIG. 3 is a flow chart showing a method for stabilizing a single isolated system according to an embodiment of the invention of claim 3;

【図4】請求項4の発明の実施例による単軸分離系統安
定化方法を示すフローチャートである。
FIG. 4 is a flow chart showing a method for stabilizing a single axis separated system according to an embodiment of the invention of claim 4;

【図5】従来のアドミタンス平面方式による系統安定化
装置を示す構成図である。
FIG. 5 is a configuration diagram showing a conventional system stabilizing device by an admittance plane system.

【図6】分離系統安定化装置を適用する電力系統例を示
す系統構成図である。
FIG. 6 is a system configuration diagram showing an example of a power system to which the isolated system stabilizing device is applied.

【図7】図5における電力系統の解析に適用するための
等価回路を示す回路図である。
FIG. 7 is a circuit diagram showing an equivalent circuit applied to analysis of the power system in FIG.

【図8】図5における電力系統の解析の様子を示す原理
動作説明図である。
8 is a principle operation explanatory diagram showing a state of analysis of the power system in FIG. 5. FIG.

【符号の説明】[Explanation of symbols]

M 主系統 L 分離系統 31 発電機 b1〜b3 負荷 M Main system L Separation system 31 Generator b1-b3 Load

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 母線電圧,負荷量,発電機出力,連系線
潮流,調相設備投入量に基づいて潮流計算用のデータを
準備するデータ準備ステップと、上記データに基づき、
潮流計算に用いる制御実施判定方式により主系統に対す
る分離系統の単独分離後に無制御での仕上り周波数,電
圧を算出する第1の算出ステップと、該算出した仕上り
周波数,電圧の変動範囲から制御の要否を判定する第1
の要否判定ステップと、該判定により制御不要とされた
場合には制御パターンを無制御に決定する無制御決定ス
テップと、上記判定により制御要とされた場合には、連
系線潮流分の負荷,または電源遮断量を算出する負荷・
電源遮断量算出ステップと、制御実施判定方式により上
記連系線潮流分の発電機,負荷の遮断のみを行った場合
の仕上り周波数,電圧を算出する第2の算出ステップ
と、該算出した仕上り周波数,電圧の各変動範囲から制
御の要否を判定する第2の要否判定ステップと、該第2
の要否判定ステップにて制御不要とされた場合には制御
パターンを有効電力のみの制御に決定する有効電力制御
決定ステップと、上記第2の要否判定ステップにて制御
要とされた場合には、安定化制御量算出方式により調相
制御量を算出する調相制御量算出ステップと、該算出し
た調相制御量により制御パターンを有効電力,調相の同
時制御に決定する有効電力,調相制御決定ステップとを
備えた単独分離系統安定化方法。
1. A data preparation step of preparing data for power flow calculation based on bus voltage, load amount, generator output, interconnection line power flow, and amount of phase-modulating equipment input, and based on the above data,
A first calculation step for calculating the uncontrolled control of the finishing frequency and voltage after the separation of the separation system from the main system by the control execution determination method used for the power flow calculation, and the control range from the fluctuation range of the calculated finishing frequency and voltage. First to judge
Necessity determination step, a non-control determination step of determining a control pattern as uncontrolled when control is unnecessary according to the determination, and a control line determination when the above determination determines that the interconnection line power flow component Load, or load that calculates the amount of power interruption
A power cutoff amount calculation step, a second calculation step of calculating a finishing frequency and a voltage when only the generator and load of the interconnection line power flow are cut off by the control execution determination method, and the calculated finishing frequency A second necessity determination step of determining necessity of control from each fluctuation range of the voltage;
If the control is not required in the necessity determination step, the active power control determination step that determines the control pattern to control only active power, and if the control is required in the second necessity determination step Is a phase control amount calculating step for calculating the phase control amount by the stabilized control amount calculation method, and a control pattern based on the calculated phase control amount for active power, active power for determining simultaneous control of phase, A method for stabilizing a single isolated system, which comprises a phase control determining step.
【請求項2】 安定化制御の必要性を判断する制御実施
判定方式において、潮流計算により制御を実施しない場
合あるいは行った場合の仕上り周波数,電圧を算出し、
制御の要否を判定する請求項1記載の単独分離系統安定
化方法。
2. A control execution determination method for determining the necessity of stabilizing control, calculating a finishing frequency and a voltage when control is not performed or when it is performed by power flow calculation,
The method for stabilizing an isolated system according to claim 1, wherein the necessity of control is determined.
【請求項3】 分離系統内の周波数,電圧維持に必要な
制御量を算出する安定化制御量算出方式において、周波
数,電圧を系統分離前と同じ値に維持するために必要な
制御量を潮流計算に基づき算出する請求項1に記載の単
独分離系統安定化方法。
3. In a stabilized control amount calculation method for calculating a control amount required for maintaining frequency and voltage in a separated system, a control amount necessary for maintaining the frequency and voltage at the same values as before the system separation flows. The method for stabilizing a single isolated system according to claim 1, which is calculated based on calculation.
【請求項4】 分離系統内の周波数,電圧維持に必要な
制御量を算出する安定化制御算出方式において、任意の
周波数,電圧とするために必要な制御量を潮流計算に基
づき算出する請求項1に記載の単独分離系統安定化方
法。
4. A stabilizing control calculation method for calculating a control amount necessary for maintaining frequency and voltage in a separated system, wherein a control amount necessary for setting an arbitrary frequency and voltage is calculated based on power flow calculation. The method for stabilizing an isolated system as described in 1.
JP6028581A 1994-02-25 1994-02-25 Method for stabilizing single separated system Pending JPH07241035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6028581A JPH07241035A (en) 1994-02-25 1994-02-25 Method for stabilizing single separated system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6028581A JPH07241035A (en) 1994-02-25 1994-02-25 Method for stabilizing single separated system

Publications (1)

Publication Number Publication Date
JPH07241035A true JPH07241035A (en) 1995-09-12

Family

ID=12252573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6028581A Pending JPH07241035A (en) 1994-02-25 1994-02-25 Method for stabilizing single separated system

Country Status (1)

Country Link
JP (1) JPH07241035A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151202A (en) * 2005-11-24 2007-06-14 Nippon Sharyo Seizo Kaisha Ltd Portable engine generator
JP2009177896A (en) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp Method and device for stabilizing system
JP2009284611A (en) * 2008-05-20 2009-12-03 Nippon Steel Corp Device and method for system stabilization
JP2010233319A (en) * 2009-03-26 2010-10-14 Chubu Electric Power Co Inc Apparatus and method for system stabilization
JP2012170167A (en) * 2011-02-09 2012-09-06 Tohoku Electric Power Co Inc Stabilization control method for power system, and apparatus using the same
JP2012170169A (en) * 2011-02-09 2012-09-06 Tohoku Electric Power Co Inc Stabilization device for power system and control method thereof
JP2013085452A (en) * 2012-09-18 2013-05-09 Chugoku Electric Power Co Inc:The Voltage regulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266831A (en) * 1989-04-05 1990-10-31 Toshiba Corp System stabilizer
JPH0382337A (en) * 1989-08-23 1991-04-08 Chubu Electric Power Co Inc System stabilizing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266831A (en) * 1989-04-05 1990-10-31 Toshiba Corp System stabilizer
JPH0382337A (en) * 1989-08-23 1991-04-08 Chubu Electric Power Co Inc System stabilizing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151202A (en) * 2005-11-24 2007-06-14 Nippon Sharyo Seizo Kaisha Ltd Portable engine generator
JP2009177896A (en) * 2008-01-23 2009-08-06 Mitsubishi Electric Corp Method and device for stabilizing system
JP2009284611A (en) * 2008-05-20 2009-12-03 Nippon Steel Corp Device and method for system stabilization
JP2010233319A (en) * 2009-03-26 2010-10-14 Chubu Electric Power Co Inc Apparatus and method for system stabilization
JP2012170167A (en) * 2011-02-09 2012-09-06 Tohoku Electric Power Co Inc Stabilization control method for power system, and apparatus using the same
JP2012170169A (en) * 2011-02-09 2012-09-06 Tohoku Electric Power Co Inc Stabilization device for power system and control method thereof
JP2013085452A (en) * 2012-09-18 2013-05-09 Chugoku Electric Power Co Inc:The Voltage regulator

Similar Documents

Publication Publication Date Title
Chaudhuri et al. Wide-area measurement-based stabilizing control of power system considering signal transmission delay
Kryonidis et al. A new voltage control scheme for active medium-voltage (MV) networks
CN108418255A (en) A kind of extra-high voltage direct-current suitable for the new energy containing high permeability sends Electric power network planning method and system outside
US10389125B2 (en) Expanded reactive following for distributed generation and loads of other reactive controller(s)
CN107732917B (en) A kind of closed loop network turn power supply Load flow calculation optimization method
CN109687497B (en) Prevention control method and system for inhibiting extra-high voltage direct current continuous commutation failure
Meah et al. A new simplified adaptive control scheme for multi-terminal HVDC transmission systems
Brandao et al. Coordinated control of three-and single-phase inverters coexisting in low-voltage microgrids
EP3070803B1 (en) Power transmission network
CN112636361A (en) Alternating current-direct current hybrid power grid dynamic reactive power optimization control method based on voltage sensitivity
CN110311403A (en) Low-voltage network voltage power integrated control method based on distributed photovoltaic power generation
CN107508298B (en) Hierarchical optimization control method for unbalanced voltage of micro-grid
CN109314395B (en) Improvements relating to interconnection of multiple renewable energy power plants
CN108075478B (en) Transient stability emergency control method
JPH07241035A (en) Method for stabilizing single separated system
El-Sherif et al. Optimal placement and settings of FACTS devices for reactive power compensation using a Firefly algorithm
CN108964120B (en) Low-voltage distributed photovoltaic access capacity optimization control method
CN109802423A (en) A kind of single flow interconnection micro-grid system and frequency and voltage control method
CN110601176B (en) Method and system for improving static stability limit of power grid tie line and early warning
Le Roux et al. 14-Bus IEEE Electrical Network Compensated for Optimum Voltage Enhancement using FACTS Technologies
JPH08182199A (en) Power system stabilizer
CN110649647B (en) Photovoltaic inverter low-voltage ride-through control based on reactive current boundary conditions under distribution network symmetric faults
CN107465213A (en) A kind of power station AVC systems and its idle regulated quantity computational methods in real time
Yadav et al. Transient stability analysis of multi-machine power system with hybrid power flow controller
Zabaiou et al. Time-delay compensation of a wide-area measurements-based hierarchical voltage and speed regulator