JP2009284611A - Device and method for system stabilization - Google Patents

Device and method for system stabilization Download PDF

Info

Publication number
JP2009284611A
JP2009284611A JP2008132397A JP2008132397A JP2009284611A JP 2009284611 A JP2009284611 A JP 2009284611A JP 2008132397 A JP2008132397 A JP 2008132397A JP 2008132397 A JP2008132397 A JP 2008132397A JP 2009284611 A JP2009284611 A JP 2009284611A
Authority
JP
Japan
Prior art keywords
separation
control
voltage
stabilization
stabilization control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008132397A
Other languages
Japanese (ja)
Other versions
JP4920634B2 (en
Inventor
Keiji Sato
啓二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008132397A priority Critical patent/JP4920634B2/en
Publication of JP2009284611A publication Critical patent/JP2009284611A/en
Application granted granted Critical
Publication of JP4920634B2 publication Critical patent/JP4920634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize isolated operation of a generator after a system separating accident involving voltage drop occurs and system separation takes place. <P>SOLUTION: A reference stabilization control amount is computed from load flow balance data obtained through a load-flow calculation. The reference stabilization control amount is a stabilization control amount required in a system separating accident that does not involve voltage drop. The computed reference stabilization control amount is corrected using a correction coefficient for reactive power transient variation obtained through transient stability calculation. The corrected stabilization control amount is tabulated using residual voltage as a parameter to generate a stabilization control amount table. A controlled object is selected according to preset priorities. Based on the contents of the stabilization control amount table, stabilization control preset values including the controlled object and a control amount are tabulated using residual voltage as a parameter to generate a stabilization control preset table. If system separation takes place, a stabilization control preset value corresponding to a measurement value of residual voltage is selected and stabilization control is instantaneously carried out. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発電設備と負荷設備とを備えて構成される需要設備の電源系統と、電力会社等の電力系統網とを連系させて負荷設備に電力供給する電源系統において、電力系統側の系統事故等により系統分離事故が発生した場合に分離系統内の発電設備による単独運転を実施し、安定的に負荷電力を供給するための、単独分離系統における系統安定化装置及び系統安定化方法に関するものである。   The present invention relates to a power system that supplies power to a load facility by connecting a power system of a demand facility configured with a power generation facility and a load facility and a power system network of an electric power company, etc. The present invention relates to a system stabilization device and a system stabilization method in an isolated system for performing isolated operation with a power generation facility in the isolated system and supplying load power stably when a system separation accident occurs due to a system accident, etc. Is.

図7は、特許文献1〜5に開示されているような従来の単独分離系統における系統安定化装置の構成図である。図7において、1は主系統の変電所母線、2は主系統と分離系統とを連系する連系用の送電線、3は主系統の変電所の遮断器、1A〜1Cは分離系統内の母線、2B〜2Cは分離系統内の送電線、3A〜3Dは遮断器、4A〜4Dは送電線電流を取り込んで検知するためのセンサ(変流器)、5Aは母線電圧を取り込んで検知するためのセンサ(変成器)、6A〜6Dは電流・電圧を取り込むための入力ケーブル、7A〜7Dは各遮断器3A〜3Dの開閉情報の入力や、電源制限(電源遮断)及び負荷制限(負荷遮断)の指令信号の出力をするための入出力ケーブル、8は分離系統内の発電機、9a〜9cは分離系統内の負荷(負荷設備)である。   FIG. 7 is a configuration diagram of a system stabilizing device in a conventional single separation system as disclosed in Patent Documents 1 to 5. In FIG. 7, 1 is a substation bus of the main system, 2 is a transmission line for connection between the main system and the separation system, 3 is a circuit breaker of the substation of the main system, and 1A to 1C are in the separation system 2B to 2C are transmission lines in the separation system, 3A to 3D are circuit breakers, 4A to 4D are sensors for detecting and detecting the transmission line current (current transformer), and 5A is a detection and detection of the bus voltage. Sensors (transformers) 6A to 6D are input cables for taking in currents and voltages, 7A to 7D are input of switching information of the circuit breakers 3A to 3D, power limit (power cutoff) and load limit ( An input / output cable for outputting a command signal (load cutoff), 8 is a generator in the separated system, and 9a to 9c are loads (load facilities) in the separated system.

10は送電線2や母線1における系統分離故障によって分離系統が主系統から分離された場合に、発電機8または負荷9a〜9cを遮断することによって、分離系統内の周波数及び電圧を維持するための系統安定化装置である。11は母線1Aの電圧を調整するための調相設備、12B〜12Cは分離系統内の電圧を変換するための変圧器である。   10 is for maintaining the frequency and voltage in the separated system by cutting off the generator 8 or the loads 9a to 9c when the separated system is separated from the main system due to a system separation failure in the transmission line 2 or the bus 1 It is a system stabilization device. 11 is a phase adjusting facility for adjusting the voltage of the bus 1A, and 12B to 12C are transformers for converting the voltage in the separation system.

系統安定化装置10は、分離系統内の母線電圧、負荷量、発電量、連系線潮流、投入されている調相量等の値を入力ケーブル6A〜6Dから得て、潮流計算を一定時間毎に実施する。送電線2が遮断され、分離系統に系統分離が発生すると、系統安定化装置10は、例えば入力ケーブル6Aを通じて得られる信号から、送電線2が遮断され系統分離が発生したことを認識する。そして系統安定化装置10は、系統分離が発生する前の各種情報を基にして、分離系統内の潮流計算を実施し、系統分離が発生した後の単独分離系統の周波数及び電圧を算出する。   The system stabilizing device 10 obtains values such as bus voltage, load amount, power generation amount, interconnection current flow, phase adjustment amount, etc. in the separated system from the input cables 6A to 6D, and performs the power flow calculation for a certain period of time. Perform every time. When the power transmission line 2 is interrupted and system separation occurs in the separated system, the system stabilizing device 10 recognizes that the power transmission line 2 is interrupted and system separation has occurred, for example, from a signal obtained through the input cable 6A. Then, the system stabilizing device 10 performs power flow calculation in the separated system based on various information before the system separation occurs, and calculates the frequency and voltage of the single separated system after the system separation occurs.

系統分離が発生した後の単独分離系統の周波数及び電圧のそれぞれの値が運用許容値を逸脱している場合、系統安定化装置10は、運用許容値内で運用できるように安定化制御量を算出し、入出力ケーブル7B、7Cを通じて発電機8及び負荷9a〜9cに制御指令を出力する。   When the values of the frequency and voltage of the isolated system after the system separation occur deviate from the operation allowable value, the system stabilizing device 10 sets the stabilization control amount so that the system can be operated within the operation allowable value. The control command is output to the generator 8 and the loads 9a to 9c through the input / output cables 7B and 7C.

このような従来の系統安定化装置では、単独分離系統の周波数及び電圧の変動範囲と運用許容値とから制御の要否を判断し、制御の必要があれば発電機8および負荷9のいずれかの遮断、あるいは調相制御、もしくはその両方を行い、単独分離系統の周波数及び電圧を制御する。   In such a conventional system stabilizing device, the necessity of control is determined from the frequency and voltage fluctuation range of the isolated system and the operation allowable value. If control is necessary, either the generator 8 or the load 9 is determined. The frequency and voltage of the single isolated system are controlled by shutting off the power supply and / or controlling the phase.

特開平7−241035号公報Japanese Patent Laid-Open No. 7-241035 特開2001−359241号公報JP 2001-359241 A 特開2004−72882号公報JP 2004-72882 A 特開2004−72883号公報JP 2004-72883 A 特開2004−72884号公報JP 2004-72884 A

上記したような従来の系統安定化装置は、系統分離事故が発生する前の潮流、電圧ならびに遮断器の開閉の状態などの系統情報を基にして、系統分離前後の定常的な潮流計算を実施し、その結果得られた潮流のアンバランス量に見合った制御量(負荷制限量、電源制限量、調相制御量)を算定し、制御する方式である。   The conventional system stabilization device as described above performs steady power flow calculation before and after system isolation based on system information such as the power flow, voltage, and circuit breaker switching status before the occurrence of a system isolation accident. Then, the control amount (load limiting amount, power source limiting amount, phase adjustment control amount) corresponding to the unbalanced amount of the tidal current obtained as a result is calculated and controlled.

一方、誘導電動機などの定電力特性の負荷設備は、系統電圧が低下すると電流値が増加するため、系統内の線路リアクタンス(例えば、図7の変圧器12Cなど)における無効電力の消費量は増加する特性がある。また、電力用コンデンサなどの調相設備は、系統電圧が低下すると調相量(無効電力の供給量)が減少する特性がある。このため、これらの機器の複合体である実際の工場配電系統で、電圧低下をともなう系統分離事故が発生した場合は、系統分離直後の無効電力のアンバランス量が過渡的に増加する特性となる。   On the other hand, in load equipment with constant power characteristics such as an induction motor, the current value increases when the system voltage decreases, and therefore the amount of reactive power consumed in the line reactance (for example, the transformer 12C in FIG. 7) in the system increases. There is a characteristic to do. In addition, phase adjusting equipment such as a power capacitor has a characteristic that the amount of phase adjustment (the amount of reactive power supplied) decreases when the system voltage decreases. For this reason, in the actual factory distribution system that is a complex of these devices, when a system separation accident with a voltage drop occurs, the unbalance amount of reactive power immediately after system separation becomes a characteristic that increases transiently. .

以上のことから、従来の系統安定化装置を上記のような特性の工場配電系統に適用した場合に、短絡事故や地絡事故に起因する"大幅な電圧低下をともなう系統分離事故"が発生すると、例えば、系統安定化装置が算定する調相制御量が、実際に必要とされる調相制御量に対して不足する問題があった。更に、この調相制御の不足量が大きい場合は、単独運転を行う発電機による系統電圧の回復制御が遅れるばかりか、発電機の過励磁運転状態が長時間継続することによって、発電機自身が保護動作により自動停止する。すなわち、発電機の単独運転が失敗に至る可能性があった。   From the above, when a conventional system stabilization device is applied to a factory distribution system with the above characteristics, a "system separation accident with a significant voltage drop" occurs due to a short circuit accident or a ground fault. For example, there is a problem that the phase control amount calculated by the system stabilizing device is insufficient with respect to the phase control amount actually required. Furthermore, when the shortage of this phase adjustment control is large, not only the system voltage recovery control by the generator that operates alone is delayed, but the generator overcurrent continues for a long time. Automatic stop by protective action. In other words, there was a possibility that the single operation of the generator would fail.

以上のような従来技術の問題点に鑑みて、本発明は、定電力特性の誘導性負荷や容量性負荷が混在するような電源系統において、電圧低下をともなう系統分離事故が発生した場合においても、系統分離後の発電機の単独運転を確実なものにすることが可能な系統安定化装置及び系統安定化方法を提供することを目的とする   In view of the above-described problems of the prior art, the present invention can be applied to a power supply system in which inductive loads and capacitive loads having constant power characteristics coexist, even when a system separation accident with a voltage drop occurs. An object of the present invention is to provide a system stabilization device and a system stabilization method capable of ensuring the independent operation of a generator after system separation.

本発明の系統安定化装置は、電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、前記遮断器からの開閉状態を示す信号に基づき、前記分離系統内の系統構成を所定の周期で検出する系統構成検出手段と、前記第1のセンサからの電流信号、及び第2のセンサからの電圧信号に基づき、前記分離系統内の送電線、負荷設備、発電機、及び調相設備を含む各設備について、電圧、周波数、電流、有効電力、及び無効電力を含む潮流情報を検出する潮流情報検出手段と、前記第2のセンサからの電圧信号に基づき、前記分離系統内の母線の電圧を、前記所定の周期よりも高速で検出して、前記系統分離事故が発生したときにおける、前記分離系統内の母線の電圧の過渡的変動値を検出する系統電圧検出手段と、前記系統構成及び前記潮流情報を含むオンライン系統情報と、前記負荷設備の過渡特性データと、前記調相設備の電圧特性データと、前記発電機の過励磁保護動作特性を含む過渡特性データとを基に、過渡安定度の計算を実行し、実行した計算の結果に基づき、前記系統分離事故が発生した直後の無効電力過渡変動量の補正係数を算定する過渡安定度解析手段と、前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記分離系統内の制御対象を安定化制御するための制御量を示す安定化制御プリセット値が格納された安定化制御プリセットテーブルを、前記オンライン系統情報に基づく潮流計算の結果と、前記無効電力過渡変動量の補正係数とを用いて生成する系統安定化制御プリセットテーブル生成手段と、前記連系線の遮断器の開閉状態から検出した系統分離を示す系統分離信号をトリガーに、前記分離系統内の母線の電圧の過渡的変動値に基づき、前記安定化制御プリセットテーブルから前記安定化制御プリセット値を選択して、安定化処理を瞬時に実行する安定化制御実行手段と、前記選択された安定化制御プリセット値に基づく安定化制御指令を制御対象の機器へ出力する安定化処理出力手段と、を備え、前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする。
また、本発明の他の態様例では、電力系統における系統分離事故の発生によって主系統と分離された分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、前記分離系統内の設備における潮流情報と、前記分離系統内の構成情報とを用いて潮流計算を実行する潮流計算実行手段と、前記系統分離事故によって前記分離系統内の母線の電圧が低下した際の前記分離系統内の無効電力を、過渡安定度の計算によって求め、求めた無効電力を用いて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための補正係数を算定する過渡安定度解析手段と、前記潮流計算の結果を用いて求められた安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記補正係数を用いて補正し、補正した基準安定化制御量を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成する安定化制御量テーブル生成手段と、前記分離系統内の制御対象を予め設定した優先順位に従って選定し、前記母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成する安定化制御プリセットテーブル生成手段と、前記系統分離事故が発生すると、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセット値を選択し、選択した安定化制御プリセット値に従って制御対象の制御を実行する安定化制御実行手段とを有することを特徴とする。
In the occurrence of a system separation accident in the power system, the system stabilization device of the present invention is configured to connect a busbar in the separation system connected to the main system via a connection line, a circuit breaker, and each transmission line in the separation system. In the separation system in the separation system including the first sensor for detecting the current, the second sensor for detecting the voltage of the bus in the separation system, the generator, the load facility, and the phase adjusting facility A system stabilization device for stabilizing an isolated operation by a generator of the system, wherein the system configuration detection detects a system configuration in the separated system at a predetermined cycle based on a signal indicating an open / close state from the circuit breaker Voltage for each facility including a transmission line, a load facility, a generator, and a phase adjusting facility in the separation system based on the means, the current signal from the first sensor, and the voltage signal from the second sensor. , Frequency, current, active power, and nothing Based on a power flow information detecting means for detecting power flow information including power and a voltage signal from the second sensor, a voltage of a bus in the separated system is detected at a speed higher than the predetermined period, and the system System voltage detection means for detecting a transient fluctuation value of the bus voltage in the separated system when a separation accident occurs, online system information including the system configuration and the power flow information, and transient characteristics of the load equipment Based on the data, the voltage characteristic data of the phase adjusting equipment, and the transient characteristic data including the overexcitation protection operation characteristic of the generator, the transient stability is calculated, and based on the result of the calculation, Transient stability analysis means for calculating a correction coefficient for the reactive power transient fluctuation amount immediately after the occurrence of the system separation accident, and the residual voltage of the bus in the separated system immediately before the occurrence of the system separation accident are parameterized. A stabilization control preset value indicating a control amount for stabilizing and controlling a control target in the separated system when a system separation accident accompanied by a drop in the voltage of the bus in the separated system occurs. System stabilization control preset table generating means for generating a control control preset table using a result of power flow calculation based on the online system information and a correction coefficient of the reactive power transient fluctuation amount, and a breaker of the interconnection line Using the system separation signal indicating the system separation detected from the open / closed state of the trigger as a trigger, the stabilization control preset value is selected from the stabilization control preset table based on the transient fluctuation value of the bus voltage in the separated system Stabilization control execution means for instantaneously executing stabilization processing, and a stabilization control command based on the selected stabilization control preset value to the device to be controlled A stabilization processing output means for outputting, and compensating for an imbalance of reactive power when a system separation accident accompanied by a transient voltage drop of a bus in the separated system occurred, and a system separation accident occurred It is characterized by stabilizing the single operation by the generator in the separated system later.
In another embodiment of the present invention, there is provided a system stabilizing device for stabilizing an isolated operation by a generator in a separated system separated from a main system by the occurrence of a system separation accident in the power system, A tidal current calculation execution means for executing tidal current calculation using tidal current information in the equipment in the separated system and configuration information in the separated system; and when the voltage of the bus in the separated system is reduced due to the system separation accident Reactive power in the separated system is obtained by calculating transient stability, and using the obtained reactive power, a correction coefficient for estimating a transient fluctuation amount of the reactive power when the system separation accident occurs is calculated. A stabilization control amount obtained by using the transient stability analysis means and the result of the power flow calculation, and a reference stabilization control amount required at the time of a system separation accident without a voltage drop is calculated using the correction coefficient. Stabilized control amount table generating means for generating a stabilized control amount table in which the corrected and stabilized reference stabilization control amount is stored with the residual voltage of the bus in the separated system as a parameter when the system separation accident occurs And selecting a control target in the separated system according to a preset priority, and a control amount for stabilizing the selected controlled object when a system separation accident accompanied by a decrease in the voltage of the bus occurs. A stabilization control preset table is generated by using the stabilization control amount table, which stores the stabilization control preset value shown as a parameter with the remaining voltage of the bus in the separated system accompanying the occurrence of the system separation accident. When the system separation accident occurs, the stable control preset table generating means generates the stable based on the transient fluctuation value of the bus voltage in the separated system. Select control preset value, and having a stabilization control execution means for executing the control of the controlled object according to the selected stabilizing control preset value.

本発明の系統安定化方法は、電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化方法であって、定電力特性を有する前記負荷設備を含む負荷群の動特性と、該負荷群と発電機群との間の線路リアクタンスと、無効電力の制限制御動作を含む前記発電機群の動特性と、前記調相設備の動特性とを考慮した過渡安定度の計算を行い、計算した結果に基づいて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための、無効電力過渡変動量の補正係数を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして生成するステップと、前記分離系統内の系統構成及び前記分離系統内の設備についての潮流情報を含むオンライン系統情報を基にした潮流計算で求められた潮流のバランスに関するデータから算出された安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記無効電力過渡変動量の補正係数で補正し、補正した基準安定化制御量を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成するステップと、予め設定した優先順位に従って前記分離系統内の制御対象を選定し、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値が、前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして格納された安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成するステップと、前記系統分離事故が発生した場合は、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセットテーブルから、前記安定化制御プリセット値を選択して瞬時に安定化制御を実行するステップと、を有し、前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする。   In the system stabilization method of the present invention, in the event of a system separation accident in the power system, the bus in the separation system connected to the main system via the interconnection line, the circuit breaker, and each transmission line in the separation system In the separation system in the separation system including the first sensor for detecting the current, the second sensor for detecting the voltage of the bus in the separation system, the generator, the load facility, and the phase adjusting facility A system stabilization method for stabilizing an isolated operation by a generator of a load, comprising: a dynamic characteristic of a load group including the load facility having a constant power characteristic; and a line reactance between the load group and the generator group And calculating the transient stability in consideration of the dynamic characteristics of the generator group including the reactive power limiting control operation and the dynamic characteristics of the phase adjusting equipment, and based on the calculated results, To estimate the amount of transient fluctuation of reactive power when it occurs Generating a reactive power transient fluctuation correction coefficient as a parameter of a residual voltage of a bus in the separation system immediately before the occurrence of the system separation accident, a system configuration in the separation system, and the inside of the separation system Stabilized control amount calculated from data on tidal current balance obtained from tidal current calculation based on on-line grid information including tidal current information on other facilities, and is necessary for system separation accidents without voltage drop The stabilization control amount is corrected by the correction coefficient of the reactive power transient fluctuation amount, and the corrected reference stabilization control amount is stored as a parameter of the residual voltage of the bus in the separated system immediately before the system separation accident occurs. Generating a stabilized control amount table, selecting a control target in the separation system according to a preset priority order, and generating a bus line in the separation system. The stabilization control preset value indicating the control amount for stabilizing control of the selected control object when a system separation accident with a decrease in pressure occurs is the value in the separated system immediately before the system separation accident occurs. A step of generating a stabilization control preset table stored using the remaining voltage of the bus of the system as a parameter using the stabilization control amount table, and a voltage of the bus in the separated system when the system separation accident occurs A step of selecting the stabilization control preset value from the stabilization control preset table on the basis of the transient fluctuation value and executing the stabilization control instantaneously. Compensation of the reactive power imbalance when a system separation accident accompanied by a voltage drop occurs, and the independent operation by the generator in the separation system after the system separation accident occurs It is characterized by stabilizing the rotation.

本発明によれば、電圧低下をともなう系統分離事故があっても、系統分離後の過渡的な無効電力のアンバランスを可及的に瞬時に補償することによって、無効電力の供給不足等による発電機の単独運転の失敗を可及的に回避し、系統分離後も安定的な電力供給が可能となる。   According to the present invention, even if there is a system separation accident accompanied by a voltage drop, power generation due to a shortage of reactive power supply, etc. is compensated as soon as possible by compensating transient transient power imbalance after system separation. The failure of the independent operation of the machine is avoided as much as possible, and stable power supply is possible even after system separation.

本発明の系統安定化装置を実施するための形態について図面を参照して詳細に説明する。なお、各図において、同じ機能を有する装置、部品等は同一の符号を付す。
<第1の実施の形態>
(系統安定化装置の構成)
図2は、本実施の形態の系統安定化装置及びそれを組み込む電力系統(系統構成)の概略図である。
図2において、1は主系統の変電所母線、2は主系統と分離系統とを連系する連系用の送電線(連系線)、3は主系統の変電所の遮断器、1A〜1Cは分離系統内の各母線、2B〜2Eは分離系統内の送電線、3A〜3Eは遮断器、4A〜4Fはそれぞれ分離系統内の各母線1A〜1C、各送電線2B〜2D、各遮断器3A〜3Dなどに流れる電流の値を測定するために取り込む第1のセンサ(変流器)、5A〜5Cは分離系統内の各母線1A〜1Cの母線電圧の値を測定するために取り込む第2のセンサ(変成器)である。
The form for implementing the system | strain stabilization apparatus of this invention is demonstrated in detail with reference to drawings. In each figure, devices, parts, etc. having the same function are denoted by the same reference numerals.
<First Embodiment>
(Configuration of system stabilization device)
FIG. 2 is a schematic diagram of the system stabilization device of the present embodiment and a power system (system configuration) incorporating the system stabilization apparatus.
In FIG. 2, 1 is a substation bus of the main system, 2 is a power transmission line (connection line) for connecting the main system and the separated system, 3 is a circuit breaker of the substation of the main system, 1A to 1C is each bus in the separated system, 2B to 2E are power transmission lines in the separated system, 3A to 3E are circuit breakers, 4A to 4F are each bus 1A to 1C in the separated system, each power transmission line 2B to 2D, each The first sensors (current transformers) 5A to 5C that are taken in to measure the value of the current flowing through the circuit breakers 3A to 3D and the like are used to measure the value of the bus voltage of each bus 1A to 1C in the separation system. It is the 2nd sensor (transformer) to take in.

6A〜6Fは、第1のセンサ4A〜4Fそれぞれからの電流及び第2のセンサ5A〜5Cそれぞれからの母線電圧を、系統安定化装置10に入力するための入力ケーブルである。7A〜7Dはそれぞれ、各遮断器3A、3B、3E、3Dの開閉情報の入力、系統安定化装置10から遮断器3B等への電源制限(電源遮断)、負荷制限(負荷遮断)、および調相制御の少なくとも何れか1つの指令信号を出力するための入出力ケーブルである。8は分離系統内の発電機、9a〜9cは分離系統内の各負荷(負荷設備)を表す。   6A to 6F are input cables for inputting the current from each of the first sensors 4A to 4F and the bus voltage from each of the second sensors 5A to 5C to the system stabilizing device 10. 7A to 7D are input of switching information of each circuit breaker 3A, 3B, 3E, 3D, power limitation (power cutoff), load limitation (load cutoff), and adjustment from the system stabilizing device 10 to the circuit breaker 3B, etc. It is an input / output cable for outputting at least one command signal for phase control. Reference numeral 8 denotes a generator in the separation system, and 9a to 9c denote loads (load facilities) in the separation system.

10は送電線2や母線1における分離故障によって分離系統が主系統から分離された場合に、発電機8または負荷9a〜9cを遮断したり、調相設備11における調相量を制御したりすることによって、分離系統内の周波数及び電圧を維持するための系統安定化装置である。11は分離系統内の母線1Aの電圧を運用電圧(例えば定格電圧)となるように調整するための調相設備、12B〜12Cは分離系統内の電圧を運用電圧(例えば定格電圧)となるように変換するための変圧器である。   10 shuts off the generator 8 or the loads 9a to 9c or controls the amount of phase adjustment in the phase adjusting equipment 11 when the separation system is separated from the main system due to a separation failure in the power transmission line 2 or the bus 1. Thus, there is a system stabilization device for maintaining the frequency and voltage in the separation system. 11 is a phase-adjusting facility for adjusting the voltage of the bus 1A in the separated system to be the operating voltage (for example, rated voltage), and 12B to 12C are the operating voltage (for example, the rated voltage) for adjusting the voltage in the separated system. It is a transformer for converting to.

本実施の形態の系統安定化装置10は、上記のように接続された分離系統内の第1のセンサ(変流器)4A〜4F、および第2のセンサ(変成器)5A〜5Cから、分離系統内の各送電線電流、各母線電圧の信号を、入力ケーブル6A〜6Fを通じて取り込み、これら各々の電流信号及び電圧信号から、負荷量、発電量、連系線潮流、投入されている調相量等の情報の信号にそれぞれ変換する。系統安定化装置10は、この情報を基に系統分離後の分離系統内の各潮流の計算を一定時間毎、例えば1秒毎あるいはそれ以下で実施する。そして、系統安定化制御に必要な制御量、すなわち、系統分離が発生した後の分離系統内の周波数と電圧とを運用許容値内にするための、電源遮断量、負荷遮断量、調相制御量を算出する。   The system stabilization device 10 of the present embodiment includes the first sensors (current transformers) 4A to 4F and the second sensors (transformers) 5A to 5C in the separated systems connected as described above. The signals of each transmission line current and each bus voltage in the separation system are taken in through the input cables 6A to 6F, and the load amount, the power generation amount, the interconnection current, and the adjustment of the input are made from these current signals and voltage signals. Each is converted into a signal of information such as phase amount. Based on this information, the system stabilizing device 10 calculates each tidal current in the separated system after the system separation at regular intervals, for example, every 1 second or less. And the control amount necessary for system stabilization control, that is, the power cutoff amount, the load cutoff amount, and the phase adjustment control to keep the frequency and voltage in the separated system after the system separation occurs within the operation allowable value. Calculate the amount.

図2において、例えば、連系用の送電線2で短絡事故等の系統事故が発生すると、変電所の保護装置として設けられた送電線保護装置等の保護装置(図示せず)が系統事故を検出し、この保護装置からの指令の信号に基づき遮断器3Aが遮断され、主系統の変電所母線1と分離系統の変電所母線1Aとが相互に分離し、系統分離事故に至る。この場合、系統安定化装置10は、遮断器3Aの遮断情報を、入力ケーブル6Aを通して取込むことで、系統分離が発生したことを認識し、系統安定化制御(負荷制御または負荷遮断、電源制限または電源遮断、調相制御)を実施する。   In FIG. 2, for example, when a grid fault such as a short-circuit fault occurs in the interconnection transmission line 2, a protection device (not shown) such as a transmission line protection device provided as a protection device for a substation causes a grid fault. The circuit breaker 3A is cut off based on a command signal from the protection device, and the substation bus 1 of the main system and the substation bus 1A of the separated system are separated from each other, resulting in a system separation accident. In this case, the system stabilization device 10 recognizes that system separation has occurred by taking in the interruption information of the circuit breaker 3A through the input cable 6A, and performs system stabilization control (load control or load interruption, power supply restriction). Or power off and phase adjustment control).

図1は、本実施の形態の系統安定化装置10の内部構成の概略図である。本実施の形態の系統安定化装置10は、例えば、各種の入出力インターフェースを備えたパーソナルコンピュータを用いることにより実現することができる。
図1において、10−1は、分離系統内の系統構成を把握するための各遮断器3A〜3E等の開閉状態を検出する系統構成検出手段である。系統構成検出手段10−1は、時々刻々変化する分離系統内の系統構成(母線1A〜1C、発電機8、負荷設備9a〜9c、および調相設備11のそれぞれの接続状態)を把握するために、分離系統内の各遮断器3A〜3Eから、遮断器3A〜3Eの開閉状態を示す補助接点信号を、所定(一定)の周期(例えば1秒毎あるいはそれ以下の周期)で入出力ケーブル7A〜7Dを通じて取り込む。取込んだ各遮断器3A〜3Eの開閉状態を示す補助接点信号はデジタル信号の形態でオンラインデータ入出力手段10−4に伝達される。
FIG. 1 is a schematic diagram of the internal configuration of the system stabilizing device 10 of the present embodiment. The system stabilizing device 10 according to the present embodiment can be realized by using, for example, a personal computer having various input / output interfaces.
In FIG. 1, 10-1 is a system | strain structure detection means which detects the switching state of each circuit breaker 3A-3E etc. for grasping | ascertaining the system | strain structure in a isolation | separation system | strain. The system configuration detection means 10-1 is for grasping the system configuration (the connection states of the buses 1A to 1C, the generator 8, the load facilities 9a to 9c, and the phase adjusting facility 11) in the separation system that changes every moment. In addition, an auxiliary contact signal indicating the open / closed state of the circuit breakers 3A to 3E is sent from the circuit breakers 3A to 3E in the separation system at a predetermined (constant) period (for example, every 1 second or less) Capture through 7A-7D. The auxiliary contact signals indicating the opened / closed states of the taken circuit breakers 3A to 3E are transmitted to the online data input / output means 10-4 in the form of digital signals.

10−2は、連系線2、母線1A〜1C、負荷設備9a〜9c、発電機8、調相設備11等の潮流情報を検出する潮流情報検出手段である。潮流情報検出手段10−2は、時々刻々変化する分離系統内の各種潮流情報(連系線2、母線1A〜1C、発電機8、負荷設備9a〜9c、調相設備11等の電圧V、周波数F、電流I、有効電力P、無効電力Q等)を把握するために、分離系統内の第1のセンサ(変流器)4A〜4Fで検出した各送電線(母線1A〜1C、送電線2、2B〜2E等)を流れる電流の信号、第2のセンサ(変成器)5A〜5Cで検出した各母線1A〜1Cの電圧の信号を、入力ケーブル6A〜6Fを通じて取り込む。潮流情報検出手段10−2に取り込まれた信号は、例えばトランスデューサ等の各種電気量変換器を用いて、電圧V、周波数F、電流I、有効電力P、無効電力Q等の各種電気量に変換される。このようにして得られた連系線2、母線1A〜1C、発電機8、負荷設備9a〜9c、調相設備11等の潮流情報は、アナログ信号の形態でオンラインデータ入出力手段10−4に伝達される。   10-2 is a tidal current information detecting means for detecting tidal current information of the interconnection line 2, the buses 1A to 1C, the load facilities 9a to 9c, the generator 8, the phase adjusting facility 11, and the like. The tidal current information detecting means 10-2 includes various tidal current information (interconnection line 2, buses 1A to 1C, generator 8, load equipment 9a to 9c, phase adjusting equipment 11 etc.) In order to grasp the frequency F, current I, active power P, reactive power Q, etc., each transmission line (bus 1A-1C, transmission line) detected by the first sensors (current transformers) 4A-4F in the separation system Signals of currents flowing through the electric wires 2, 2B to 2E, etc., and signals of voltages of the buses 1A to 1C detected by the second sensors (transformers) 5A to 5C are taken in through the input cables 6A to 6F. The signal taken into the tidal current information detection means 10-2 is converted into various electric quantities such as voltage V, frequency F, current I, active power P, reactive power Q, etc. using various electric quantity converters such as transducers. Is done. The current information of the interconnection line 2, the buses 1A to 1C, the generator 8, the load facilities 9a to 9c, the phase adjusting facility 11 and the like obtained in this way is the online data input / output means 10-4 in the form of analog signals. Is transmitted to.

10−3は、分離系統内の主要な系統電圧を検出する系統電圧検出手段である。系統電圧検出手段10−3は、系統分離事故が発生した時の母線電圧の過渡的な変動値(過渡的変動値)を検出するためのもので、図2における分離系統内の主要母線1Aに設置された第2のセンサ(変成器)5Aで検出した電圧信号を、例えば、系統構成検出手段10−1が各遮断器3A〜3Eの開閉状態を示す補助接点信号を取り込む周期よりも高速に処理して、分離系統内の母線電圧の低下、すなわち母線1Aの残存電圧Vpを検出する。検出された残存電圧Vpは、応答が速い電圧変換器で変換した連続的なアナログ信号、又は、電圧継電器の組合せで離散的なバンド値に変換したデジタル信号としてオンラインデータ入出力手段10−4へ伝達される。離散的なバンド値に変換したデジタル信号とは、例えば、残存電圧Vpが0〜10%(0≦Vp≦10%以下)である場合にはデジタル信号Vp1をON、残存電圧Vpが10〜20%はデジタル信号Vp2をON、同様に10%ステップでデジタル信号VpNをON−OFFさせる方式で出力されたデジタル信号である。尚、例えば、残存電圧Vpが0〜10%(10%〜20%)であるとは、分離系統内の母線電圧の低下が起こらなかったときの母線電圧の0〜10%(10%〜20%)であることをいう。   10-3 is a system voltage detecting means for detecting a main system voltage in the separated system. The system voltage detecting means 10-3 is for detecting a transient fluctuation value (transient fluctuation value) of the bus voltage when a system separation accident occurs. The system voltage detecting means 10-3 is connected to the main bus 1A in the separated system in FIG. The voltage signal detected by the installed second sensor (transformer) 5A is, for example, faster than the cycle in which the system configuration detection means 10-1 takes in auxiliary contact signals indicating the open / closed states of the circuit breakers 3A to 3E. Processing is performed to detect a drop in the bus voltage in the separated system, that is, a residual voltage Vp of the bus 1A. The detected residual voltage Vp is supplied to the online data input / output means 10-4 as a continuous analog signal converted by a voltage converter having a fast response or a digital signal converted into a discrete band value by a combination of voltage relays. Communicated. The digital signal converted into a discrete band value is, for example, when the residual voltage Vp is 0 to 10% (0 ≦ Vp ≦ 10% or less), the digital signal Vp1 is turned ON, and the residual voltage Vp is 10 to 20 % Is a digital signal output by a method in which the digital signal Vp2 is turned ON, and similarly, the digital signal VpN is turned ON / OFF in 10% steps. For example, when the residual voltage Vp is 0 to 10% (10% to 20%), 0 to 10% (10% to 20%) of the bus voltage when no drop in the bus voltage in the separation system occurs. %).

10−4は、系統構成検出手段10−1、潮流情報検出手段10−2、及び系統電圧検出手段10−3、並びに後述する系統分離検出手段10−8からのオンライン系統情報の入力信号と、後述する安定化制御実行手段10−9からの安定化処理の出力信号とを入出力処理するオンラインデータ入出力手段である。オンラインデータ入出力手段10−4は、上述の各遮断器3A〜3Eの開閉状態、各潮流情報、各母線電圧、各母線周波数等の時々刻々と変化するオンライン系統情報の入力信号を、10−1〜10−3及び10−8の各検出手段から、周期的(例えば数100ミリ秒あるいはそれ以下)に入力し、入力したデータをサンプリングする。サインプリングされたデータ(オンライン系統情報)は後述する潮流計算実行手段10−5、過渡安定度解析手段10−6、安定化制御実行手段10−9に伝達され、安定化制御実行手段10−9からの安定化処理の出力信号は後述する安定化処理出力手段10−10に伝達される。   10-4 is an input signal of online system information from the system configuration detecting means 10-1, power flow information detecting means 10-2, system voltage detecting means 10-3, and system separation detecting means 10-8 described later, Online data input / output means for performing input / output processing of an output signal of stabilization processing from a stabilization control execution means 10-9 described later. The online data input / output means 10-4 receives an input signal of online system information that changes from time to time, such as the open / close state of each of the circuit breakers 3A to 3E, each power flow information, each bus voltage, each bus frequency, etc. Input from each detection means 1-10-3 and 10-8 periodically (for example, several hundred milliseconds or less), and the input data is sampled. The signed data (online system information) is transmitted to a power flow calculation execution means 10-5, a transient stability analysis means 10-6, and a stabilization control execution means 10-9, which will be described later, and the stabilization control execution means 10-9. The output signal of the stabilization process from is transmitted to the stabilization process output means 10-10 described later.

10−5は、入力したオンライン系統情報を基に、系統分離後の分離系統内の潮流計算と、系統安定化装置10による安定化制御を実施した後の潮流計算とを行う潮流計算実行手段である。すなわち潮流計算実行手段10−5は、予め設定された系統構成情報(電源系統図等)に、各遮断器3A〜3Eの開閉状態のオンライン系統情報を取り込むことで、時々刻々と変化する系統構成を把握する。潮流計算実行手段10−5は、この状態において、系統分離が発生した際の分離系統内の有効電力P及び無効電力Qの需給のアンバランス量をそれぞれ推定する。また、潮流計算実行手段10−5は、系統安定化装置10による安定化制御を実行した後の分離系統内の電圧および周波数を推定する。更に、潮流計算実行手段10−5は、推定した電圧および周波数が、予め入力して設定された運転許容値内であることを判定して安定化制御量を算定する。   10-5 is a tidal current calculation execution means for performing tidal current calculation in the separated system after system separation and tidal current calculation after performing the stabilization control by the system stabilizing device 10 based on the input online system information. is there. That is, the power flow calculation execution means 10-5 takes in the online system information of the open / closed states of the circuit breakers 3A to 3E into preset system configuration information (power system diagram etc.), thereby changing the system configuration that changes every moment. To figure out. In this state, the tidal current calculation execution means 10-5 estimates the unbalance amount of the supply and demand of the active power P and the reactive power Q in the separated system when the system separation occurs. Moreover, the tidal current calculation execution means 10-5 estimates the voltage and frequency in the separated system after the stabilization control by the system stabilization device 10 is executed. Furthermore, the power flow calculation execution means 10-5 determines that the estimated voltage and frequency are within the operation allowable values set in advance by input, and calculates the stabilization control amount.

10−6は過渡安定度解析手段であって、系統構成及び潮流情報を含むオンライン系統情報、並びに、予め入力して設定された"負荷設備9a〜9cの過渡特性データ、調相設備11の電圧特性データ、及び発電機8の過励磁保護動作特性を含む過渡特性データ"を基にして、一定周期毎に過渡安定度の計算を実行し、系統分離の発生直前又は直後の無効電力過渡変動量の補正係数Kvを算定する。なお、過渡安定度とは、同期機(発電機及び同期電動機)が電力系統内で運転中に、短絡故障などによって系統じょう乱(過渡変動)を受けた場合に、その状態が経過した後も、同期外れ(脱調)を起こさずに、安定運転を継続できる度合である。過渡安定度解析手段10−6の内部には、過渡安定度解析用の各種情報(系統構成、負荷設備9a〜9cの過渡特性データ、調相設備11の電圧特性データ、発電機8の過渡特性データ等)が予め設定された"過渡安定度計算を行うシミュレータ"が組み込まれている。このシミュレータとしては、公知の技術の手法を用いることができるので、ここでは詳細な説明を省略する。過渡安定度解析手段10−6は、このシミュレータの変数に各オンライン系統情報を代入して過渡安定度の計算を実行する。   10-6 is transient stability analysis means, which includes online system information including system configuration and power flow information, “transient characteristic data of load facilities 9a to 9c, voltage of phase adjusting equipment 11 set in advance” Based on the characteristic data and the transient characteristic data including the overexcitation protection operation characteristic of the generator 8, the transient stability is calculated at regular intervals, and the reactive power transient fluctuation amount immediately before or after the occurrence of the system separation is calculated. The correction coefficient Kv is calculated. Transient stability means that when the synchronous machine (generator and synchronous motor) is operating in the power system and is subject to system disturbance (transient fluctuation) due to a short-circuit fault, etc. This is the degree to which stable operation can be continued without causing out-of-synchronization (step-out). The transient stability analysis means 10-6 includes various information for transient stability analysis (system configuration, transient characteristic data of the load facilities 9a to 9c, voltage characteristic data of the phase adjusting equipment 11, and transient characteristics of the generator 8). "Simulator for performing transient stability calculation" with preset data etc. is incorporated. As this simulator, since a technique of a known technique can be used, detailed description is omitted here. The transient stability analysis means 10-6 assigns each online system information to the variables of this simulator and executes the calculation of transient stability.

そして、過渡安定度解析手段10−6は、過渡安定度計算で得られた"分離系統内の母線の電圧が低下したときの分離系統内全体の無効電力の計算値"から、無効電力過渡変動の補正係数Kvを算定する。この無効電力の計算値は、系統分離の発生の直前(又は直後)の残存電圧Vpに依存する。このため、過渡安定度解析手段10−6は、残存電圧Vpが100%の場合と、それ以外の少なくとも2ケース以上の残存電圧Vpとなる場合とで、無効電力過渡変動の補正係数Kvを演算し、残存電圧Vpを変数とする関数として、無効電力過渡変動の補正係数Kvを求める。この無効電力過渡変動の補正係数Kvは、系統構成や負荷設備9a〜9cの稼動状態が大幅に変化しない限り、実運用上支障となるような大幅な変化はない。このため、例えば、分単位もしくは時間単位の周期、あるいは、系統運用の変更時に運転員の手動操作で、無効電力過渡変動の補正係数Kvの計算を実行しても問題ない。求められた無効電力過渡変動の補正係数Kvは、系統安定化制御プリセットテーブル生成手段10−7に伝達される。   Then, the transient stability analysis means 10-6 calculates the reactive power transient fluctuation from the “calculated value of the reactive power in the entire separated system when the voltage of the bus in the separated system decreases” obtained by the transient stability calculation. The correction coefficient Kv is calculated. The calculated value of reactive power depends on the residual voltage Vp immediately before (or immediately after) the occurrence of system separation. Therefore, the transient stability analysis means 10-6 calculates the reactive power transient fluctuation correction coefficient Kv when the residual voltage Vp is 100% and when the residual voltage Vp is at least two cases other than that. Then, the correction coefficient Kv of the reactive power transient fluctuation is obtained as a function having the residual voltage Vp as a variable. The reactive power transient correction coefficient Kv does not change so much as to hinder actual operation unless the system configuration and the operating state of the load facilities 9a to 9c change significantly. For this reason, for example, there is no problem even if the calculation of the correction coefficient Kv for the reactive power transient fluctuation is executed by a cycle in minutes or hours, or by manual operation of the operator when changing the system operation. The obtained reactive power transient fluctuation correction coefficient Kv is transmitted to the system stabilization control preset table generating means 10-7.

系統安定化制御プリセットテーブル生成手段10−7は、潮流計算実行手段10−5における潮流計算の結果と、過渡安定度解析手段10−6で求められた無効電力過渡変動の補正係数Kvとを用いて、系統分離の発生直前(又は直後)の残存電圧Vpをパラメータとする安定化制御プリセットテーブルを生成する。ここで安定化制御プリセットテーブルとは、系統安定化装置10が安定化制御するための各制御量と制御対象とを事前に算定し、系統分離が発生する直前(又は直後)の残存電圧Vpをパラメータとしてそれらをテーブル化したものである。例えば、系統分離後の有効電力Pのバランスが負荷過剰の状態の場合には、周波数の安定化のために、有効電力Pのアンバランス量に見合った負荷遮断が必要となる。この負荷遮断量(負荷制御量)に見合った量の遮断(制御)を行う対象の負荷設備9を選択するには、遮断可能な負荷設備9に予め優先順位を設定しておき、優先順位が高い負荷設備9から順番に、遮断(制御)を行う対象の負荷設備9を、1つ又は複数選択する。このように安定化制御の制御対象の選択状況が安定化制御プリセット値となる。また、上述のように、負荷制御量(負荷遮断量)は、残存電圧Vpの値に依存するため、残存電圧Vpの値に対応した安定化制御プリセット値(負荷制御量(負荷遮断量))が、無効電力過渡変動の補正係数Kvを用いて算定される。例えば、残存電圧Vpが0〜10%(0≦Vp≦10%)の時の安定化制御プリセット値、10〜20%(10%<Vp≦20%)の時の安定化制御プリセット値、というように10%ピッチで安定化制御プリセット値が算定され、安定化制御プリセットテーブルが生成される。生成された安定化制御プリセットテーブルは安定化制御実行手段10−9に伝達されて一次保存される。これらの安定化制御プリセット値は、潮流計算を実施したタイミングで更新され、系統分離事故が発生した際の最新値が実際に使用される。   The grid stabilization control preset table generation means 10-7 uses the result of the power flow calculation by the power flow calculation execution means 10-5 and the correction coefficient Kv of the reactive power transient fluctuation obtained by the transient stability analysis means 10-6. Thus, a stabilization control preset table using the remaining voltage Vp immediately before (or immediately after) occurrence of system separation as a parameter is generated. Here, the stabilization control preset table is calculated in advance for each control amount and control target for the system stabilization device 10 to perform stabilization control, and the residual voltage Vp immediately before (or just after) the system separation occurs. They are tabulated as parameters. For example, in the case where the balance of the active power P after system separation is in an excessive load state, it is necessary to interrupt the load in accordance with the unbalance amount of the active power P in order to stabilize the frequency. In order to select a load facility 9 to be blocked (controlled) in an amount corresponding to the load cutoff amount (load control amount), a priority order is set in advance for the load facility 9 that can be shut off. In order from the highest load facility 9, one or a plurality of load facilities 9 to be blocked (controlled) are selected. As described above, the selection state of the control object of the stabilization control becomes the stabilization control preset value. Further, as described above, since the load control amount (load cutoff amount) depends on the value of the remaining voltage Vp, the stabilization control preset value (load control amount (load cutoff amount)) corresponding to the value of the residual voltage Vp. Is calculated using the correction coefficient Kv of reactive power transient fluctuation. For example, a stabilization control preset value when the residual voltage Vp is 0 to 10% (0 ≦ Vp ≦ 10%), and a stabilization control preset value when the residual voltage Vp is 10 to 20% (10% <Vp ≦ 20%). Thus, the stabilization control preset value is calculated at a 10% pitch, and a stabilization control preset table is generated. The generated stabilization control preset table is transmitted to the stabilization control execution means 10-9 and temporarily stored. These stabilization control preset values are updated at the timing when the tidal current calculation is performed, and the latest values when a system separation accident occurs are actually used.

系統分離検出手段10−8は、連系線2の遮断器3Aの開閉状態から系統分離を検出する手段である。系統分離検出手段10−8では、例えば、図2の連系線2の遮断器3Aが遮断して系統分離が発生した場合、遮断器3Aの開閉状態を示す補助接点信号(遮断器3Aの状態信号)を、入出力ケーブル7Aを通じて取り込む。仮に、連系線2が平行2回線で受電されている場合、系統分離検出手段10−8は、2回線分の信号を取り込み、連系線2の遮断器3Aが2回線ともに遮断されたことをロジック回路で判定し、系統分離が発生したことを検出し、そのことを示す系統分離信号をオンライン系統情報として出力する。系統分離信号はオンラインデータ入出力手段10−4を経由して、安定化制御実行手段10−9に伝達される。   The system separation detection means 10-8 is a means for detecting system separation from the open / closed state of the circuit breaker 3A of the interconnection line 2. In the system separation detection means 10-8, for example, when the circuit breaker 3A of the interconnection line 2 in FIG. 2 is cut off and the system separation occurs, the auxiliary contact signal indicating the open / closed state of the circuit breaker 3A (the state of the circuit breaker 3A) Signal) through the input / output cable 7A. If the interconnection line 2 is received by two parallel lines, the system separation detection means 10-8 takes in signals for two lines, and the breaker 3A of the interconnection line 2 is cut off for both lines. Is detected by the logic circuit, the occurrence of system separation is detected, and a system separation signal indicating this is output as online system information. The system separation signal is transmitted to the stabilization control execution means 10-9 via the online data input / output means 10-4.

安定化制御実行手段10−9は、系統分離検出手段10−8の系統分離信号をトリガーに、この時の残存電圧Vpに応じた安定化制御プリセット値を、安定化制御プリセットテーブルから選択し、安定化制御処理を実行する。系統分離検出手段10−8から安定化制御実行手段10−9に系統分離信号が伝達されると、安定化制御実行手段10−9は、その内部に一次保存されている安定化制御プリセットテーブルから、実際の残存電圧Vpに対応した安定化制御プリセット値を選択する。選択した安定化制御プリセット値には、制御対象と制御量とが含まれているので、安定化制御実行手段10−9は、選択した安定化制御プリセット値に基づいて、制御対象に対する制御量を指示する安定化制御指令信号を出力することができる。すなわち、負荷遮断制御であれば、選択された安定化制御プリセット値に含まれる(遮断対象の)負荷設備9に遮断信号を出力する。また、電源制御であれば、選択された安定化制御プリセット値に含まれる(制御対象の)発電機8に停止信号を出力する。また、調相制御であれば、選択された安定化制御プリセット値に含まれる(制御対象の)調相設備11に投入信号あるいは遮断信号を出力する。   The stabilization control execution means 10-9 selects a stabilization control preset value corresponding to the remaining voltage Vp at this time from the stabilization control preset table using the system separation signal of the system separation detection means 10-8 as a trigger, The stabilization control process is executed. When the system separation signal is transmitted from the system separation detection unit 10-8 to the stabilization control execution unit 10-9, the stabilization control execution unit 10-9 reads the stabilization control preset table stored therein primarily. Then, a stabilization control preset value corresponding to the actual residual voltage Vp is selected. Since the selected stabilization control preset value includes the control target and the control amount, the stabilization control execution means 10-9 calculates the control amount for the control target based on the selected stabilization control preset value. An instructing stabilization control command signal can be output. That is, in the case of load cutoff control, a cutoff signal is output to the load equipment 9 (to be blocked) included in the selected stabilization control preset value. In the case of power control, a stop signal is output to the generator 8 (to be controlled) included in the selected stabilization control preset value. In the case of phase control, a closing signal or a cutoff signal is output to the phase adjusting equipment 11 (to be controlled) included in the selected stabilization control preset value.

安定化処理出力手段10−10は、安定化制御実行手段10−9で選定された安定化制御指令信号を各制御機器へ出力する。例えば、安定化制御指令信号が、負荷遮断制御を示すものであれば、安定化処理出力手段10−10は、その負荷遮断制御を示す安定化制御指令信号が、系統安定化装置10から、安定化制御指令信号に示される各遮断器3Eに入出力ケーブル7Cを通じて出力される。この際、各遮断器3Eの仕様にあわせた信号に変換してから、安定化制御指令信号を出力する必要がある。このため、安定化処理出力手段10−10は、安定化制御実行手段10−9で選定された安定化制御指令信号を、出力先となる遮断器3Eの仕様にあわせた信号に変換してから出力する。安定化処理出力手段10−10は、例えば補助リレーで構成すると良い。   The stabilization process output means 10-10 outputs the stabilization control command signal selected by the stabilization control execution means 10-9 to each control device. For example, if the stabilization control command signal indicates the load cutoff control, the stabilization processing output means 10-10 receives the stabilization control command signal indicating the load cutoff control from the system stabilizing device 10 in a stable manner. Is output to each circuit breaker 3E indicated by the control command signal through the input / output cable 7C. At this time, it is necessary to output a stabilization control command signal after conversion to a signal that matches the specifications of each circuit breaker 3E. For this reason, the stabilization processing output means 10-10 converts the stabilization control command signal selected by the stabilization control execution means 10-9 into a signal that matches the specification of the circuit breaker 3E that is the output destination. Output. The stabilization processing output means 10-10 may be constituted by an auxiliary relay, for example.

(フローチャート)
図3は、本実施の形態における系統安定化装置10の上記の各手段で実行する系統安定化制御の処理動作のフローの一例を説明した図である。
系統安定化装置10(オンラインデータ入出力手段10−4)は、潮流計算に用いる"連系線2、分離系統内の発電機群(例えば発電機8)、および分離系統内の制御対象となる負荷群(例えば負荷設備9a〜9c)の潮流値、遮断器(例えば遮断器3A〜3E)の開閉状態、分離系統内の母線電圧"等のオンライン系統情報のデータをサンプリングする(ステップS1)。
次に、潮流計算実行手段10−5は、このサンプリングデータを基にして、系統分離が発生した後の潮流計算(例えば、分離系統全体の有効電力および無効電力、ならびに分離系統内の制御対象(例えば負荷設備9a〜9c)の個々の有効電力および無効電力)を実施する(ステップS2)。このとき、系統分離とともに予め遮断することが決められている発電機群および負荷群がある場合、潮流計算実行手段10−5は、それぞれ遮断された状態にて潮流計算を実施する。この潮流計算の結果から、潮流計算実行手段10−5は、系統分離後の分離系統内の周波数および電圧が運用許容値内であるか否かを判定する(ステップS3)。
(flowchart)
FIG. 3 is a diagram for explaining an example of the flow of the processing operation of the system stabilization control executed by each means of the system stabilization apparatus 10 in the present embodiment.
The system stabilizing device 10 (online data input / output means 10-4) is used for the tidal current calculation "the interconnection line 2, the generator group (for example, the generator 8) in the separated system, and the control target in the separated system. Data of online system information such as a power flow value of a load group (for example, load facilities 9a to 9c), an open / close state of a circuit breaker (for example, circuit breakers 3A to 3E), and a bus voltage in a separated system is sampled (step S1).
Next, the tidal current calculation execution means 10-5 calculates the tidal current after the system separation occurs based on this sampling data (for example, the active power and reactive power of the whole separated system, and the control target in the separated system ( For example, individual active power and reactive power of the load facilities 9a to 9c) are performed (step S2). At this time, when there are a generator group and a load group that are determined to be shut off in advance together with system separation, the tidal current calculation execution unit 10-5 performs tidal current calculation in a state where each is shut off. From the result of the power flow calculation, the power flow calculation execution means 10-5 determines whether the frequency and voltage in the separated system after the system separation are within the operation allowable values (step S3).

この判定の結果、系統分離後の分離系統内の周波数および電圧が運用許容値内にあると判定された場合には、系統安定化装置(潮流計算実行手段10−5)は、無制御を選択し(ステップS21)、後述するステップS11に進む。
一方、系統分離後の分離系統内の周波数および電圧が運用許容値内でないと判定された場合には、潮流計算実行手段10−5は、分離系統内の有効電力Pのアンバランス量から、負荷制御量(負荷遮断量)および電源制御量(発電遮断量または発電出力抑制量)の少なくとも何れか一方を算出する(ステップS4)。
次に、潮流計算実行手段10−5は、周波数の安定化を目的として、分離系統内の有効電力Pを制御した後の潮流計算を実施する(ステップS5)。そして、潮流計算実行手段10−5は、この潮流計算の結果から、系統分離後の分離系統内の電圧および周波数が運用許容値内であるか否かを判定する(ステップS6)。
As a result of this determination, when it is determined that the frequency and voltage in the separated system after the system separation are within the allowable operating values, the system stabilizing device (the power flow calculation executing means 10-5) selects no control. (Step S21), the process proceeds to Step S11 described later.
On the other hand, when it is determined that the frequency and voltage in the separated system after the system separation are not within the operation allowable values, the tidal current calculation execution means 10-5 determines the load from the unbalanced amount of the active power P in the separated system. At least one of a control amount (load cutoff amount) and a power control amount (power generation cutoff amount or power generation output suppression amount) is calculated (step S4).
Next, the tidal current calculation execution means 10-5 performs tidal current calculation after controlling the active power P in the separated system for the purpose of stabilizing the frequency (step S5). Then, the power flow calculation executing means 10-5 determines whether or not the voltage and frequency in the separated system after the system separation are within the operation allowable value from the result of the power flow calculation (step S6).

この判定の結果、系統分離後の分離系統内の電圧が運用許容値内にあると判定された場合には、系統安定化装置10(潮流計算実行手段10−5)は、周波数安定化制御を選択し(ステップS22)、後述するステップS11に進む。
一方、系統分離後の分離系統内の電圧が運用許容値でないと判定された場合は、潮流計算実行手段10−5は、分離系統内の無効電力Qのアンバランス量から調相制御量の要求値を算出する(ステップS7)。
As a result of this determination, when it is determined that the voltage in the separated system after the system separation is within the operation allowable value, the system stabilizing device 10 (the power flow calculation executing means 10-5) performs the frequency stabilization control. Select (step S22), the process proceeds to step S11 to be described later.
On the other hand, when it is determined that the voltage in the separated system after the system separation is not an allowable operation value, the power flow calculation executing means 10-5 requests the phase adjustment control amount from the unbalance amount of the reactive power Q in the separated system. A value is calculated (step S7).

次に、潮流計算実行手段10−5は、算出された調相制御量の要求値(調相制御の制御要求値)が調相設備11の制御範囲内にあるかを判定する(ステップS8)。この判定の結果、調相制御量の要求値が調相設備11の制御範囲内であると判定された場合は、系統安定化装置10(潮流計算実行手段10−5)は、周波数および電圧安定化制御を選択し(ステップS23)、後述するステップS11へ進む。
一方、調相制御量の要求値が調相設備11の制御範囲内でないと判定された場合は、潮流計算実行手段10−5は、調相制御の不足量に見合った無効電力Qのバランス量に制御すべく負荷制御量(負荷遮断量)を追加補正する(ステップS9)。すなわち、潮流計算実行手段10−5は、調相制御の不足量に相当する制御量を、負荷制御量(負荷遮断量)に加算する。
次に、潮流計算実行手段10−5は、電圧安定化を目的として、調相制御と、その調相制御の不足量を補った負荷制御との両方を実施した場合の潮流計算を実施し(ステップS10)、ステップS11へ進む。
Next, the power flow calculation execution unit 10-5 determines whether the calculated required value of the phase adjustment control amount (control request value of the phase adjustment control) is within the control range of the phase adjustment equipment 11 (step S8). . As a result of this determination, if it is determined that the required value of the phase adjustment control amount is within the control range of the phase adjusting equipment 11, the system stabilizing device 10 (the power flow calculation executing means 10-5) stabilizes the frequency and voltage. Control is selected (step S23), and the process proceeds to step S11 described later.
On the other hand, when it is determined that the required value of the phase adjustment control amount is not within the control range of the phase adjustment equipment 11, the tidal current calculation execution means 10-5 balances the reactive power Q corresponding to the insufficient amount of phase adjustment control. The load control amount (load cutoff amount) is additionally corrected so as to be controlled (step S9). That is, the power flow calculation execution unit 10-5 adds a control amount corresponding to the shortage amount of the phase control to the load control amount (load cutoff amount).
Next, the tidal current calculation execution means 10-5 performs tidal current calculation when both the phase control and the load control that compensates for the shortage of the phase control for the purpose of voltage stabilization. The process proceeds to step S10) and step S11.

ステップS11に進むと、潮流計算実行手段10−5は、上述の処理で最終的に選択された制御モードの基準安定化制御量(負荷制御量、電源制御量、調相制御量)を設定する。この基準安定化制御量とは、電圧低下をともなわない系統分離事故時に必要な安定化制御量を意味する。   In step S11, the power flow calculation execution unit 10-5 sets the reference stabilization control amount (load control amount, power supply control amount, phase adjustment control amount) of the control mode finally selected in the above-described processing. . This reference stabilization control amount means a stabilization control amount that is necessary at the time of a system separation accident that is not accompanied by a voltage drop.

この基準安定化制御量の設定に際し、潮流計算実行手段10−5は、オンライン系統情報を基にした潮流計算の結果から、潮流(例えば、分離系統内全体の有効電力・無効電力および分離系統内の制御対象の個々の有効電力・無効電力)のバランスを示すデータを導出し、このデータを用いて、基準安定化制御量を設定する。
ここで、ステップS21で無制御が選択された場合には、基準安定化制御量は0(ゼロ)になる。また、ステップS23で周波数および電圧安定化制御が選択された場合には、ステップS7で算出された調相制御量を更に用いて、基準安定化制御量を設定する。さらに、ステップS9で負荷制御量(負荷遮断量)が追加補正された場合には、ステップS7で算出された調相制御量と、追加補正された負荷制御量(負荷遮断量)とを更に用いて基準安定化制御量を設定する。以上のようにすることによって、基準安定化制御量が可及的に適正な値になる。
When setting the reference stabilization control amount, the tidal current calculation execution means 10-5 determines the tidal current (for example, active power / reactive power in the entire separated system and in the separated system from the result of the tidal current calculation based on the online system information. The data indicating the balance of the individual active power and reactive power) to be controlled is derived, and the reference stabilization control amount is set using this data.
If no control is selected in step S21, the reference stabilization control amount is 0 (zero). When the frequency and voltage stabilization control is selected in step S23, the reference stabilization control amount is set by further using the phase adjustment control amount calculated in step S7. Further, when the load control amount (load cutoff amount) is additionally corrected in step S9, the phase control amount calculated in step S7 and the additionally corrected load control amount (load cutoff amount) are further used. To set the reference stabilization control amount. By doing so, the reference stabilization control amount becomes as appropriate as possible.

また、上述したステップS1でオンライン系統情報のデータがサンプリングされてから、後述するステップS12が開始するまでの任意のタイミングで、過渡安定度解析手段10−6は、オンライン系統情報、並びに、予め入力して設定された過渡特性データ等を基にして、一定周期毎に過渡安定度の計算を実行し、計算した結果に基づいて、系統分離が発生した直前又は直後の無効電力過渡変動量の補正係数Kvを算定する(ステップS31)。上述したように、無効電力過渡変動量の補正係数Kvは、残存電圧Vpをパラメータとする関数である。   In addition, the transient stability analysis means 10-6 inputs the online system information and the input in advance at an arbitrary timing after the online system information data is sampled in the above-described step S1 until step S12 described later starts. Based on the transient characteristics data set in this way, the transient stability is calculated at regular intervals, and the reactive power transient fluctuation amount immediately before or immediately after system separation is corrected based on the calculated result. The coefficient Kv is calculated (step S31). As described above, the reactive power transient fluctuation correction coefficient Kv is a function having the residual voltage Vp as a parameter.

次に、系統安定化制御プリセットテーブル生成手段10−7は、電圧低下をともなう系統分離事故時の過渡的な無効電力の変動量を加味するために、系統分離の発生の直前の残存電圧Vpをパラメータとする無効電力過渡変動の補正係数Kvを用いて、基準安定化制御量を補正し、補正した基準安定化制御量を、残存電圧Vpをパラメータとして格納した安定化制御量テーブルを生成する(ステップS12)。   Next, the system stabilization control preset table generation means 10-7 uses the residual voltage Vp immediately before the occurrence of the system separation in order to take into account the amount of transient reactive power fluctuation at the time of the system separation accident accompanied by the voltage drop. Using the correction coefficient Kv of reactive power transient fluctuation as a parameter, the reference stabilization control amount is corrected, and a stabilization control amount table is generated in which the corrected reference stabilization control amount is stored using the remaining voltage Vp as a parameter ( Step S12).

次に、系統安定化制御プリセットテーブル生成手段10−7は、分離系統内の母線電圧の低下を伴う系統分離事故時に必要な制御(負荷制御、電源制御および調相制御)の内容を記憶した安定化制御プリセットテーブルを生成する。すなわち、系統安定化制御プリセットテーブル生成手段10−7は、予め設定した優先順位に従って制御対象を選定し、安定化制御量テーブル(残存電圧Vp毎に算出された"電圧低下をともなわない系統分離事故時の安定化制御に必要な制御量データ")から、選定した制御対象に対する制御量を残存電圧Vp毎に求める。そして、それら制御対象と制御量とを含む安定化制御プリセット値を、残存電圧Vpをパラメータとして格納した"負荷制御、電源制御および調相制御のための安定化制御プリセットテーブル"を生成する(ステップS13)。
次に、系統分離検出手段10−8は、連系線2の遮断器3Aの開閉状態から、系統分離事故の有無を判定する(ステップS14)。この判定の結果、系統分離事故が発生していない場合には、ステップS1にもどり、上記の制御ループを繰り返して最新の系統状態における安定化制御プリセットテーブルに更新する。
一方、系統分離事故が発生した場合には、安定化制御実行手段10−9は、系統分離事故が発生する直前又は直後の母線1aの残存電圧Vpに対応した安定化制御プリセット値を選択して、選択した安定化制御プリセット値に基づく安定化制御指令信号を、安定化処理出力手段10−10を通して、各制御機器に送信し、安定化制御処理を実施する(ステップS15)。
Next, the system stabilization control preset table generation means 10-7 stores the contents of the control (load control, power supply control and phase adjustment control) necessary in the case of a system isolation accident accompanied by a drop in the bus voltage in the isolated system. The control control preset table is generated. That is, the system stabilization control preset table generation unit 10-7 selects a control target according to a preset priority order, and the system control accident table ("system separation accident without voltage drop calculated for each remaining voltage Vp"). The control amount for the selected control object is obtained for each residual voltage Vp from the control amount data “) necessary for the stabilization control at the time”. Then, a “stabilized control preset table for load control, power supply control, and phase adjustment control” in which the stabilization control preset value including the control object and the control amount is stored as a parameter is generated (step) S13).
Next, the system separation detection means 10-8 determines the presence or absence of a system separation accident from the open / closed state of the circuit breaker 3A of the interconnection line 2 (step S14). If the result of this determination is that a system separation accident has not occurred, the process returns to step S1, and the above control loop is repeated to update the stabilization control preset table in the latest system state.
On the other hand, when a system separation accident occurs, the stabilization control execution means 10-9 selects a stabilization control preset value corresponding to the remaining voltage Vp of the bus 1a immediately before or after the system separation accident occurs. Then, a stabilization control command signal based on the selected stabilization control preset value is transmitted to each control device through the stabilization process output means 10-10, and the stabilization control process is performed (step S15).

(具体的な信号処理)
次に、電圧低下を伴う系統分離事故時の過渡的な無効電力の変動量を加味するための、系統分離の発生直前(又は直後)の残存電圧Vpをパラメータとする無効電力過渡変動の補正係数Kvについて説明する。
(Specific signal processing)
Next, a reactive power transient fluctuation correction coefficient using the remaining voltage Vp immediately before (or immediately after) the occurrence of system separation as a parameter, in order to take into account the amount of transient reactive power fluctuation at the time of a system separation accident involving a voltage drop Kv will be described.

図4は、主系統で電圧低下をともなう系統分離事故が発生し、系統分離した場合の分離系統内の主要母線1aの母線電圧Vの時間変化の様相を示した一例である。この例では、主系統で短絡事故が発生したために、分離系統内の主要母線1aで急激な電圧低下が発生し、事故点の除去とともに発電機8の電圧制御等により、規定電圧に母線電圧Vが復帰する過程を示している。母線電圧Vは、事故点が除去あるいは系統分離が発生する直前(又は直後)が最低電圧となり、この時の残存電圧Vpの大きさによって、系統の無効電力Qのバランスが過渡的に変動する。   FIG. 4 is an example showing a temporal change of the bus voltage V of the main bus 1a in the separated system when a system separation accident with a voltage drop occurs in the main system and the system is separated. In this example, since a short-circuit accident has occurred in the main system, a sudden voltage drop occurs in the main bus 1a in the separation system, and the bus voltage V Shows the process of returning. The bus voltage V is the lowest voltage immediately before (or immediately after) the occurrence of the fault point or system separation, and the balance of the reactive power Q of the system changes transiently depending on the magnitude of the residual voltage Vp.

図5は、定電力負荷特性を有する負荷群の、残存電圧Vpと諸特性(有効電力P、無効電力Q、力率Pf、電流I)との関係を示した一例である。末端の負荷設備9a〜9cの有効電力Pは電圧低下の影響を比較的受けずにほぼ一定となる。しかし、母線電圧Vの低下(残存電圧Vpの低下)に伴い電流値が増加するために、線路リアクタンスにおける無効電力Qの消費が増加する。このため、電源側から見た無効電力Qは、残存電圧Vpの低下に伴い急増する一例を示している。   FIG. 5 is an example showing the relationship between the residual voltage Vp and various characteristics (active power P, reactive power Q, power factor Pf, current I) of a load group having constant power load characteristics. The effective power P of the terminal load facilities 9a to 9c is substantially constant without being relatively affected by the voltage drop. However, since the current value increases as the bus voltage V decreases (remaining voltage Vp decreases), the consumption of reactive power Q in the line reactance increases. For this reason, the reactive power Q seen from the power source side is an example of increasing rapidly as the residual voltage Vp decreases.

こうした定電力特性を有する負荷群の動特性、負荷群と発電機群の間の線路リアクタンス(発電所の昇圧変圧器や変電所の配電用変圧器)、無効電力Qの制限制御動作を含む発電機群の動特性、ならびに、調相設備の動特性を考慮した過渡安定度の計算を一定周期毎に実施して算定した、残存電圧Vpをパラメータとする無効電力過渡変動の補正係数Kvの一例を図6に示す。Kvは残存電圧Vpの関数であり、以下の式(1)となる。   Power generation including dynamic characteristics of load groups having such constant power characteristics, line reactance between load groups and generator groups (step-up transformers in power plants and distribution transformers in substations), and reactive power Q limiting control operations Example of correction coefficient Kv for reactive power transient fluctuation using residual voltage Vp as a parameter, calculated by performing transient stability calculation in consideration of the dynamic characteristics of the machine group and the dynamic characteristics of the phase adjusting equipment at regular intervals. Is shown in FIG. Kv is a function of the residual voltage Vp and is expressed by the following equation (1).

Kv=f(Vp) ・・・(1)   Kv = f (Vp) (1)

無効電力過渡変動の補正係数Kvは、系統を構成する個々の機器の特性で異なるが、例えば、下記のような近似式(2)で近似することができる。
Kv=1+(1−Vp)α ・・・(2)
ここで、αは近似式の変数、Vpの単位はパーユンニット値[pu]である。なお、αの値は、例えば1.5〜2の範囲で近似できる。
The reactive power transient fluctuation correction coefficient Kv varies depending on the characteristics of individual devices constituting the system, but can be approximated by the following approximate expression (2), for example.
Kv = 1 + (1-Vp) α (2)
Here, α is a variable of the approximate expression, and the unit of Vp is a unity value [pu]. Note that the value of α can be approximated within a range of 1.5 to 2, for example.

系統安定化制御プリセットテーブル生成手段10−7は、この無効電力過渡変動の補正係数Kvを用いて、基準安定化制御量を補正する。例えば、系統安定化制御プリセットテーブル生成手段10−7は、系統分離後の電源から見た負荷群の無効電力Qの消費量を補正し、補正後の無効電力Qのアンバランス量から負荷制御量を補正する。そして、この負荷制御量の補正にともない有効電力Pのバランスにもアンバランスが生じるため、系統安定化制御プリセットテーブル生成手段10−7は、有効電力Pのアンバランス量から電源制御量も同時に補正して、最終的な安定化制御量テーブルを生成する。   The system stabilization control preset table generation means 10-7 corrects the reference stabilization control amount using the reactive power transient fluctuation correction coefficient Kv. For example, the system stabilization control preset table generation unit 10-7 corrects the consumption amount of the reactive power Q of the load group viewed from the power source after the system separation, and the load control amount from the unbalanced amount of the reactive power Q after the correction. Correct. Since the balance of the active power P is also unbalanced due to the correction of the load control amount, the system stabilization control preset table generating means 10-7 simultaneously corrects the power control amount from the unbalance amount of the active power P. Then, a final stabilization control amount table is generated.

なお、図3の系統安定化制御のフローでは、この無効電力過渡変動の補正係数Kvを算定するための過渡安定度の計算を制御周期毎に実施しているが、負荷設備9の稼動状態及び負荷特性の変化が少ない場合は、必ずしも制御周期毎に実施する必要はなく、例えば、分単位または時間単位で実施しても精度上の問題はない。また、この無効電力過渡変動の補正係数Kvを算出する処理は必ずしも系統安定化装置10で実施する必要はなく、オフライン解析により求めて、その結果を系統安定化装置10が通信を行って取得することで実現しても構わない。さらに、この無効電力過渡変動の補正係数Kvは、残存電圧Vpの範囲毎に設定した離散値を使用しても構わない。   In the system stabilization control flow of FIG. 3, the transient stability calculation for calculating the correction coefficient Kv of the reactive power transient fluctuation is performed for each control cycle. When the change of the load characteristic is small, it is not always necessary to carry out every control cycle. For example, there is no problem in accuracy even if it is carried out in units of minutes or hours. Further, the processing for calculating the correction coefficient Kv of the reactive power transient fluctuation does not necessarily have to be performed by the system stabilizing device 10, but is obtained by offline analysis, and the system stabilizing device 10 communicates and acquires the result. It may be realized. Further, a discrete value set for each range of the residual voltage Vp may be used as the reactive power transient fluctuation correction coefficient Kv.

<第2の実施の形態>
図1に示した系統安定化装置10において、本発明の系統安定化装置を実現するための具体的なシステム構成の一例を説明する。
本実施形態では、系統構成検出手段10−1は補助リレー、潮流情報検出手段10−2はトランスデューサ、系統電圧検出手段10−3は高応答トランスデューサ又は電圧継電器、系統分離検出手段10−8は補助リレー及びリレー回路、安定化処理出力手段10−10は補助リレー回路で構成される。それぞれの設置場所が同一の場所であれば、それぞれは、同一のインターフェース盤に収納される。一方、それぞれの設置場所が異なる場合には、それぞれを独立したインターフェース盤に収納し、インターフェースケーブルまたはリモートI/O盤を用いた通信ケーブルにて、オンラインデータ入出力手段10−4と信号の授受を行うようにする。オンラインデータ入出力手段10−4、潮流計算実行手段10−5、系統安定化制御プリセットテーブル生成手段10−7、安定化制御実行手段10−9は、系統安定化装置10の主幹制御装置にあたり、同一のデジタル制御装置(一般にDCS装置という)またはプログラミングコントローラ(一般にPLCという)にて構成される。それぞれの機能は主幹制御装置内に組み込んだソフトウエアで構築される。過渡安定度解析手段10−6は上記の主幹制御装置内に組み込むことも可能であるが、主幹制御装置内の演算処理速度の低下を防止するために、独立した工業用パソコン内に組み込み、主幹制御装置と通信でデータを伝送する構成とすることが望ましい。
<Second Embodiment>
An example of a specific system configuration for realizing the system stabilization apparatus of the present invention in the system stabilization apparatus 10 shown in FIG. 1 will be described.
In this embodiment, the system configuration detection means 10-1 is an auxiliary relay, the power flow information detection means 10-2 is a transducer, the system voltage detection means 10-3 is a high response transducer or voltage relay, and the system separation detection means 10-8 is an auxiliary. The relay, relay circuit, and stabilization processing output means 10-10 are constituted by an auxiliary relay circuit. If each installation place is the same place, each is stored in the same interface board. On the other hand, if each installation location is different, each is housed in an independent interface board, and signals are exchanged with the online data input / output means 10-4 using an interface cable or a communication cable using a remote I / O board. To do. Online data input / output means 10-4, power flow calculation execution means 10-5, system stabilization control preset table generation means 10-7, and stabilization control execution means 10-9 correspond to the main controller of the system stabilization apparatus 10, It is composed of the same digital control device (generally called DCS device) or programming controller (generally called PLC). Each function is constructed by software embedded in the master controller. The transient stability analysis means 10-6 can be incorporated in the above master controller, but in order to prevent a reduction in calculation processing speed in the master controller, it is incorporated in an independent industrial personal computer. It is desirable to have a configuration for transmitting data by communication with the control device.

上記の系統安定化装置10の構成は一例であって、構成に用いる素子、装置等は当業者に周知の代替部品及び装置で構成しても良いことは明らかである。又、各手段で実施する信号処理及びデータ処理に際して、アナログ信号又はデジタル信号を用いるかは、実装する設備環境に応じて適宜使い分ければ良い。   The configuration of the system stabilizing device 10 described above is an example, and it is obvious that elements, devices, and the like used for the configuration may be configured by alternative parts and devices well known to those skilled in the art. In addition, in the signal processing and data processing performed by each means, whether to use an analog signal or a digital signal may be properly used depending on the installation environment.

以上のように系統安定化装置10を構成すれば、電圧低下をともなう系統分離事故においても、系統分離後の過渡的な無効電力Qのアンバランスを瞬時に補償することによって、無効電力Qの供給不足等による、分離系統内の発電設備(発電機8)の単独運転の失敗を回避し、系統分離後も安定的な電力供給が可能となる。   If the system stabilizing device 10 is configured as described above, the reactive power Q can be supplied by instantaneously compensating for the transient unbalance of the reactive power Q after the system separation, even in a system separation accident involving a voltage drop. The failure of the independent operation of the power generation facility (generator 8) in the separated system due to shortage or the like can be avoided, and stable power supply can be performed even after the system is separated.

以上説明した本発明の各実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、プログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD−ROM等のコンピュータ読み取り可能な記録媒体、又はかかるプログラムを伝送する伝送媒体も本発明の実施の形態として適用することができる。また、上記プログラムを記録したコンピュータ読み取り可能な記録媒体などのプログラムプロダクトも本発明の実施の形態として適用することができる。上記のプログラム、コンピュータ読み取り可能な記録媒体、伝送媒体及びプログラムプロダクトは、本発明の範疇に含まれる。
尚、前述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
Each embodiment of the present invention described above can be realized by a computer executing a program. Further, a means for supplying the program to the computer, for example, a computer-readable recording medium such as a CD-ROM recording such a program, or a transmission medium for transmitting such a program may be applied as an embodiment of the present invention. it can. A program product such as a computer-readable recording medium in which the program is recorded can also be applied as an embodiment of the present invention. The above programs, computer-readable recording media, transmission media, and program products are included in the scope of the present invention.
The above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

本発明の実施の形態を示し、系統安定化装置の構成図である。1 shows an embodiment of the present invention and is a configuration diagram of a system stabilizing device. FIG. 本発明の実施の形態を示し、系統安定化装置及びそれを組み込む電力系統(系統構成)の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of an electric power system (system | strain structure) which shows embodiment of this invention and incorporates it. 本発明の実施の形態を示し、系統安定化制御の処理動作を説明するフローチャートである。It is a flowchart which shows embodiment of this invention and demonstrates the processing operation of system | strain stabilization control. 本発明の実施の形態を示し、電圧低下をともなう系統分離事故が発生した時の残存電圧の様相を説明した図である。It is a figure which showed the embodiment of this invention and demonstrated the aspect of the residual voltage when the system isolation | separation accident with a voltage drop occurred. 本発明の実施の形態を示し、定電力特性を有する負荷群の残存電圧に対する諸特性の一例を示した図である。It is a figure showing an example of various characteristics to a residual voltage of a load group which shows an embodiment of the invention and has a constant power characteristic. 本発明の実施の形態を示し、無効電力過渡変動の補正係数の一例を示した図である。It is a figure showing an embodiment of the present invention and showing an example of a correction coefficient of reactive power transient fluctuation. 従来の系統安定化装置の構成図である。It is a block diagram of the conventional system | strain stabilization apparatus.

符号の説明Explanation of symbols

1 主系統の変電所母線
1A 分離系統の変電所母線
1B 発電所の母線
1C 負荷設備の母線
2 主系統との連系用の送電線
2B〜2E 分離系統内の送電線
3A〜3D 遮断器
4A〜4F センサ(変流器)
5A〜5C センサ(変成器)
6A〜6F 入力ケーブル
7A〜7D 入出力ケーブル
8 発電機
9a〜9c 負荷
10 系統安定化装置
11 調相設備
12B、12C 変圧器
10−1 系統構成検出手段
10−2 潮流情報検出手段
10−3 系統電圧検出手段
10−4 オンラインデータ入出力手段
10−5 潮流計算実行手段
10−6 過渡安定度解析手段
10−7 系統安定化制御プリセットテーブル生成手段
10−8 系統分離検出手段
10−9 安定化制御実行手段
10−10 安定化処理出力手段
1 Main system substation bus 1A Separation system substation bus 1B Power station bus 1C Load facility bus 2 Transmission lines 2B to 2E for interconnection with the main system Transmission lines 3A to 3D Breaker 4A in the separation system -4F sensor (current transformer)
5A-5C sensor (transformer)
6A to 6F Input cables 7A to 7D Input / output cable 8 Generators 9a to 9c Load 10 System stabilizing device 11 Phase adjusting equipment 12B, 12C Transformer 10-1 System configuration detecting means 10-2 Power flow information detecting means 10-3 System Voltage detection means 10-4 Online data input / output means 10-5 Power flow calculation execution means 10-6 Transient stability analysis means 10-7 System stabilization control preset table generation means 10-8 System separation detection means 10-9 Stabilization control Execution means 10-10 Stabilization processing output means

Claims (4)

電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、
前記遮断器からの開閉状態を示す信号に基づき、前記分離系統内の系統構成を所定の周期で検出する系統構成検出手段と、
前記第1のセンサからの電流信号、及び第2のセンサからの電圧信号に基づき、前記分離系統内の送電線、負荷設備、発電機、及び調相設備を含む各設備について、電圧、周波数、電流、有効電力、及び無効電力を含む潮流情報を検出する潮流情報検出手段と、
前記第2のセンサからの電圧信号に基づき、前記分離系統内の母線の電圧を、前記所定の周期よりも高速で検出して、前記系統分離事故が発生したときにおける、前記分離系統内の母線の電圧の過渡的変動値を検出する系統電圧検出手段と、
前記系統構成及び前記潮流情報を含むオンライン系統情報と、前記負荷設備の過渡特性データと、前記調相設備の電圧特性データと、前記発電機の過励磁保護動作特性を含む過渡特性データとを基に、過渡安定度の計算を実行し、実行した計算の結果に基づき、前記系統分離事故が発生した直後の無効電力過渡変動量の補正係数を算定する過渡安定度解析手段と、
前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記分離系統内の制御対象を安定化制御するための制御量を示す安定化制御プリセット値が格納された安定化制御プリセットテーブルを、前記オンライン系統情報に基づく潮流計算の結果と、前記無効電力過渡変動量の補正係数とを用いて生成する系統安定化制御プリセットテーブル生成手段と、
前記連系線の遮断器の開閉状態から検出した系統分離を示す系統分離信号をトリガーに、前記分離系統内の母線の電圧の過渡的変動値に基づき、前記安定化制御プリセットテーブルから前記安定化制御プリセット値を選択して、安定化処理を瞬時に実行する安定化制御実行手段と、
前記選択された安定化制御プリセット値に基づく安定化制御指令を制御対象の機器へ出力する安定化処理出力手段と、を備え、
前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする系統安定化装置。
Upon occurrence of a system separation accident in the power system, a first line for detecting the current of each bus line in the separated system, the circuit breaker, and each transmission line in the separated system connected to the main system via the interconnection line Stabilization of single operation by the generator in the separation system in the separation system including the sensor, the second sensor for detecting the voltage of the bus in the separation system, the generator, the load facility, and the phase adjusting facility A system stabilizing device for
Based on a signal indicating the open / close state from the circuit breaker, system configuration detection means for detecting the system configuration in the separated system at a predetermined cycle;
Based on the current signal from the first sensor and the voltage signal from the second sensor, for each facility including the transmission line, load facility, generator, and phase adjusting facility in the separation system, the voltage, frequency, Tidal current information detecting means for detecting tidal current information including current, active power, and reactive power;
Based on the voltage signal from the second sensor, the bus voltage in the separation system is detected when the voltage of the bus in the separation system is detected at a speed higher than the predetermined period and the system separation accident occurs. System voltage detection means for detecting a transient fluctuation value of the voltage of
Based on online system information including the system configuration and the power flow information, transient characteristic data of the load equipment, voltage characteristic data of the phase adjusting equipment, and transient characteristic data including overexcitation protection operation characteristics of the generator. In addition, a transient stability analysis means for calculating the transient stability and calculating a correction coefficient for the reactive power transient variation immediately after the occurrence of the system separation accident based on the result of the executed calculation;
The control object in the separated system when a system separation accident occurs with a decrease in the voltage of the bus in the separated system, with the residual voltage of the bus in the separated system as a parameter immediately before the occurrence of the system separated accident A stabilization control preset table storing a stabilization control preset value indicating a control amount for stabilizing control, a result of power flow calculation based on the online system information, and a correction coefficient for the reactive power transient fluctuation amount. A system stabilization control preset table generating means to be generated using,
The stabilization from the stabilization control preset table based on the transient fluctuation value of the voltage of the bus in the separation system, triggered by a system separation signal indicating the system separation detected from the open / close state of the circuit breaker of the interconnection line Stabilization control execution means for selecting a control preset value and executing the stabilization process instantaneously;
A stabilization process output means for outputting a stabilization control command based on the selected stabilization control preset value to a device to be controlled,
Compensation for reactive power imbalance when a system separation accident involving a transient voltage drop of the bus in the separated system occurs, and the islanding operation by the generator in the separated system after the system separation accident occurs A system stabilizing device characterized by stabilizing the system.
電力系統における系統分離事故の発生に際して、主系統に連系線を介して接続された分離系統内の母線と、遮断器と、分離系統内の各送電線の電流を検知するための第1のセンサと、分離系統内の母線の電圧を検知するための第2のセンサと、発電機と、負荷設備と、調相設備とを含む分離系統における分離系統内の発電機による単独運転を安定化するための系統安定化方法であって、
定電力特性を有する前記負荷設備を含む負荷群の動特性と、該負荷群と発電機群との間の線路リアクタンスと、無効電力の制限制御動作を含む前記発電機群の動特性と、前記調相設備の動特性とを考慮した過渡安定度の計算を行い、計算した結果に基づいて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための、無効電力過渡変動量の補正係数を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして生成するステップと、
前記分離系統内の系統構成及び前記分離系統内の設備についての潮流情報を含むオンライン系統情報を基にした潮流計算で求められた潮流のバランスに関するデータから算出された安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記無効電力過渡変動量の補正係数で補正し、補正した基準安定化制御量を、前記系統分離事故が発生する直前の前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成するステップと、
予め設定した優先順位に従って前記分離系統内の制御対象を選定し、前記分離系統内の母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値が、前記系統分離事故が発生する直前の、前記分離系統内の母線の残存電圧をパラメータとして格納された安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成するステップと、
前記系統分離事故が発生した場合は、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセットテーブルから、前記安定化制御プリセット値を選択して瞬時に安定化制御を実行するステップと、を有し、
前記分離系統内の母線の過渡的な電圧低下を伴う系統分離事故が発生した時の無効電力のアンバランスを補償して、系統分離事故が発生した後の前記分離系統内の発電機による単独運転を安定化することを特徴とする系統安定化方法。
Upon occurrence of a system separation accident in the power system, a first line for detecting a current of each bus line in the separation system, the circuit breaker, and each transmission line in the separation system connected to the main system via the interconnection line Stabilization of single operation by the generator in the separation system in the separation system including the sensor, the second sensor for detecting the voltage of the bus in the separation system, the generator, the load facility, and the phase adjusting facility A system stabilization method for
Dynamic characteristics of the load group including the load facility having constant power characteristics, line reactance between the load group and the generator group, dynamic characteristics of the generator group including a reactive power limit control operation, Reactive power transient fluctuation to calculate the transient fluctuation amount of the reactive power when the system separation accident occurs based on the calculated transient stability considering the dynamic characteristics of the phased equipment Generating an amount of correction coefficient as a parameter of a residual voltage of a bus in the separated system immediately before the occurrence of the system separation accident;
A stabilization control amount calculated from data relating to tidal current balance obtained from tidal current calculation based on online system information including tidal current information about the system configuration in the segregated system and equipment in the segregated system, The reference stabilization control amount required at the time of system separation accident without voltage drop is corrected with the correction coefficient of the reactive power transient fluctuation amount, and the corrected reference stabilization control amount is immediately before the occurrence of the system separation accident. Generating a stabilization control amount table storing the residual voltage of the bus in the separation system as a parameter;
Control for selecting a control target in the separated system according to a preset priority, and stabilizing control of the selected control target when a system separation accident accompanied by a drop in the voltage of the bus in the separated system occurs The stabilization control preset table in which the stabilization control preset value indicating the amount is stored with the remaining voltage of the bus in the separated system immediately before the occurrence of the system separation accident as a parameter is used as the stabilization control amount table. Generating steps,
When the system separation accident occurs, the stabilization control preset value is selected from the stabilization control preset table based on the transient fluctuation value of the voltage of the bus in the separation system, and the stabilization control is instantaneously performed. Performing the steps of:
Compensation for reactive power imbalance when a system separation accident involving a transient voltage drop of the bus in the separated system occurs, and the islanding operation by the generator in the separated system after the system separation accident occurs The system stabilization method characterized by stabilizing.
前記調相設備における調相制御の制御要求値が、前記調相設備の制御範囲内にあるか否かを判定するステップと、
前記調相制御の制御要求値が、前記調相設備の制御範囲内でないと判定された場合に、前記調相制御の不足量に見合った無効電力のバランス量に制御すべく、負荷制御量を追加補正して基準安定化制御量を適正な値にするステップとを有することを特徴とする請求項2に記載の系統安定化方法。
Determining whether a control request value for phase control in the phase adjusting equipment is within a control range of the phase adjusting equipment; and
When it is determined that the control request value of the phase control is not within the control range of the phase control equipment, the load control amount is set to control the reactive power balance amount corresponding to the shortage amount of the phase control. The system stabilization method according to claim 2, further comprising a step of performing additional correction to set the reference stabilization control amount to an appropriate value.
電力系統における系統分離事故の発生によって主系統と分離された分離系統内の発電機による単独運転を安定化するための系統安定化装置であって、
前記分離系統内の設備における潮流情報と、前記分離系統内の構成情報とを用いて潮流計算を実行する潮流計算実行手段と、
前記系統分離事故によって前記分離系統内の母線の電圧が低下した際の前記分離系統内の無効電力を、過渡安定度の計算によって求め、求めた無効電力を用いて、前記系統分離事故が発生した際の無効電力の過渡変動量を推定するための補正係数を算定する過渡安定度解析手段と、
前記潮流計算の結果を用いて求められた安定化制御量であって、電圧低下を伴わない系統分離事故時に必要な基準安定化制御量を、前記補正係数を用いて補正し、補正した基準安定化制御量を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御量テーブルを生成する安定化制御量テーブル生成手段と、
前記分離系統内の制御対象を予め設定した優先順位に従って選定し、前記母線の電圧の低下を伴う系統分離事故が発生した際に前記選定した制御対象を安定化制御するための制御量を示す安定化制御プリセット値を、前記系統分離事故の発生に伴う、前記分離系統内の母線の残存電圧をパラメータとして格納した安定化制御プリセットテーブルを、前記安定化制御量テーブルを用いて生成する安定化制御プリセットテーブル生成手段と、
前記系統分離事故が発生すると、前記分離系統内の母線の電圧の過渡的変動値に基づいて、前記安定化制御プリセット値を選択し、選択した安定化制御プリセット値に従って制御対象の制御を実行する安定化制御実行手段とを有することを特徴とする系統安定化装置。
A system stabilization device for stabilizing an isolated operation by a generator in a separated system separated from a main system by the occurrence of a system separation accident in the power system,
Tidal current calculation execution means for performing tidal current calculation using the tidal current information in the equipment in the separated system and the configuration information in the separated system;
Reactive power in the separated system when the voltage of the bus in the separated system is reduced due to the system separation accident is obtained by calculation of transient stability, and the system separation accident occurs using the obtained reactive power. A transient stability analysis means for calculating a correction coefficient for estimating the transient fluctuation amount of the reactive power at the time,
The stabilization control amount obtained using the result of the power flow calculation, which is necessary for a system separation accident not accompanied by a voltage drop, is corrected using the correction coefficient, and is corrected. A stabilization control amount table generating means for generating a stabilization control amount table in which a control voltage is stored as a parameter with a residual voltage of a bus in the separation system accompanying the occurrence of the system separation accident;
A stability indicating a control amount for stabilizing the selected control target when a control target in the isolated system is selected according to a predetermined priority order and a system separation accident accompanied by a decrease in the voltage of the bus occurs. Stabilization control for generating a stabilization control preset table using the stabilization control amount table as a parameter for storing a control control preset value as a parameter of a residual voltage of a bus in the separation system when the system separation accident occurs Preset table generation means;
When the system separation accident occurs, the stabilization control preset value is selected based on a transient fluctuation value of the voltage of the bus in the separation system, and the control target is controlled according to the selected stabilization control preset value. A system stabilization apparatus comprising: stabilization control execution means.
JP2008132397A 2008-05-20 2008-05-20 System stabilization device and system stabilization method Expired - Fee Related JP4920634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132397A JP4920634B2 (en) 2008-05-20 2008-05-20 System stabilization device and system stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132397A JP4920634B2 (en) 2008-05-20 2008-05-20 System stabilization device and system stabilization method

Publications (2)

Publication Number Publication Date
JP2009284611A true JP2009284611A (en) 2009-12-03
JP4920634B2 JP4920634B2 (en) 2012-04-18

Family

ID=41454465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132397A Expired - Fee Related JP4920634B2 (en) 2008-05-20 2008-05-20 System stabilization device and system stabilization method

Country Status (1)

Country Link
JP (1) JP4920634B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841154A (en) * 2010-04-07 2010-09-22 云南电力试验研究院(集团)有限公司 Voltage stability margin real-time evaluation and optimum control method after grid major failure
JP2014011933A (en) * 2012-07-03 2014-01-20 Central Research Institute Of Electric Power Industry Power system stabilization analyzer, power system stabilization analysis method, and power system stabilization analysis program
JP2018164346A (en) * 2017-03-24 2018-10-18 新日鐵住金株式会社 Voltage abnormality determination device and recovery control apparatus
CN111682553A (en) * 2020-07-02 2020-09-18 华北电力大学 SVG-based control system and control method for suppressing transient overvoltage of direct current system
CN116260154A (en) * 2023-05-11 2023-06-13 华北电力科学研究院有限责任公司 Phase modulation unit control method, device and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382337A (en) * 1989-08-23 1991-04-08 Chubu Electric Power Co Inc System stabilizing apparatus
JPH07241035A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Method for stabilizing single separated system
JP2001359241A (en) * 2000-06-12 2001-12-26 Mitsubishi Electric Corp Method and apparatus for controlling power system stabilization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382337A (en) * 1989-08-23 1991-04-08 Chubu Electric Power Co Inc System stabilizing apparatus
JPH07241035A (en) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp Method for stabilizing single separated system
JP2001359241A (en) * 2000-06-12 2001-12-26 Mitsubishi Electric Corp Method and apparatus for controlling power system stabilization

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841154A (en) * 2010-04-07 2010-09-22 云南电力试验研究院(集团)有限公司 Voltage stability margin real-time evaluation and optimum control method after grid major failure
JP2014011933A (en) * 2012-07-03 2014-01-20 Central Research Institute Of Electric Power Industry Power system stabilization analyzer, power system stabilization analysis method, and power system stabilization analysis program
JP2018164346A (en) * 2017-03-24 2018-10-18 新日鐵住金株式会社 Voltage abnormality determination device and recovery control apparatus
CN111682553A (en) * 2020-07-02 2020-09-18 华北电力大学 SVG-based control system and control method for suppressing transient overvoltage of direct current system
CN111682553B (en) * 2020-07-02 2023-11-03 华北电力大学 SVG-based control system and control method for inhibiting transient overvoltage of direct current system
CN116260154A (en) * 2023-05-11 2023-06-13 华北电力科学研究院有限责任公司 Phase modulation unit control method, device and system
CN116260154B (en) * 2023-05-11 2023-08-18 华北电力科学研究院有限责任公司 Phase modulation unit control method, device and system

Also Published As

Publication number Publication date
JP4920634B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
CN110573972A (en) Transient simulation modeling of dynamic remedial action scenarios using real-time protection setting updates
JP5408889B2 (en) Power converter
DK2102495T3 (en) WIND ENERGY INSTALLATION WITH INVERSE SYSTEM REGULATION AND OPERATING PROCEDURE
JP4680102B2 (en) Power converter
JP4920634B2 (en) System stabilization device and system stabilization method
AU2015200864A1 (en) Method and device for monitoring the state of a network
EP2501014B1 (en) Method and apparatus for detecting islanding conditions of distributed generator
SE517714C2 (en) Mains protection system for protecting the integrity of a total electrical power system against slightly damped power fluctuations, electric power system including a network protection, system protection system procedure, system protection terminal, computer program product and computer readable medium
AU2013327557A1 (en) Distributed coordinated wide-area control for electric power delivery systems
JPWO2012070141A1 (en) Output control method and output control apparatus for wind power generation equipment
US9391537B2 (en) Photovoltaic system and power supply system
WO2017086099A1 (en) Voltage/reactive power control device and method, and voltage/reactive power control system
WO2014209688A2 (en) Distributed control in electric power delivery systems
WO2012116748A1 (en) A control device for controlling a circuit breaker, and methods
JP5427762B2 (en) Power conversion device, power conversion device control device, and power conversion device control method
US8798800B2 (en) Control of a power transmission system
CN108983096A (en) A kind of high-tension motor power determining method and measuring device
JP2012228045A (en) Voltage adjusting device and method of adjusting voltage
EP2858201A1 (en) Detection of islanding condition in electricity network
JP5191245B2 (en) Distribution line compensation reactor automatic control system
JP3590276B2 (en) Reactive power compensator
JP2020137299A (en) Electric power system stabilization system
JP2007202372A (en) Distributed power supply device
JP7139585B2 (en) CONTROL DEVICE, CONTROL METHOD, AND CONTROL PROGRAM FOR POWER CONVERTER
JPH1146447A (en) Frequency maintenance system for power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R151 Written notification of patent or utility model registration

Ref document number: 4920634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees