JPH0784852B2 - Cogeneration system - Google Patents

Cogeneration system

Info

Publication number
JPH0784852B2
JPH0784852B2 JP61049226A JP4922686A JPH0784852B2 JP H0784852 B2 JPH0784852 B2 JP H0784852B2 JP 61049226 A JP61049226 A JP 61049226A JP 4922686 A JP4922686 A JP 4922686A JP H0784852 B2 JPH0784852 B2 JP H0784852B2
Authority
JP
Japan
Prior art keywords
heat
temperature water
heat exchanger
exhaust gas
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61049226A
Other languages
Japanese (ja)
Other versions
JPS62206260A (en
Inventor
貞夫 森田
Original Assignee
株式会社明電舍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舍 filed Critical 株式会社明電舍
Priority to JP61049226A priority Critical patent/JPH0784852B2/en
Publication of JPS62206260A publication Critical patent/JPS62206260A/en
Publication of JPH0784852B2 publication Critical patent/JPH0784852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 A 産業上の利用分野 エンジン等の原動機により駆動される発電機による発電
と、原動機により発生する排熱を回収し同時に利用する
熱併給発電運用と防災用非常用発電機としての運用を兼
ね備える熱併給発電装置に係わり、特に回収した蓄熱量
のうちの過剰熱量を処理する冷却器の小容量化をはかる
制御手段をそなえた熱併給発電装置に関する。
[Detailed Description of the Invention] A Field of Industrial Use Emergency power generator for co-generation and disaster prevention, which generates electricity by a generator driven by a prime mover such as an engine, and collects and uses exhaust heat generated by the prime mover at the same time. The present invention relates to a combined heat and power generation device having an operation as described above, and more particularly to a combined heat and power generation device having a control means for reducing the capacity of a cooler that processes an excess heat amount of the recovered heat storage amount.

B 発明の概要 本発明は、防災用非常用発電機としての運用を兼ね備え
る熱併給発電装置において、排気ガス熱交換器の温水循
環系に該排気ガス熱交換器への通流水をバイパスさせ且
つ該排気ガス熱交換器への通流を止めてそのドレンを排
出させる切替弁手段を設けて、通常の熱併給発電運用に
際しては、冷却水熱交換器と排気ガス熱交換器を介して
低温水にエンジン冷却水、排気ガスの両排熱を回収して
最大限の蓄熱を行ない、一方防災用非常用発電機運用お
よび熱負荷半減以下の熱併給発電運用に際しては、排気
ガス熱交換器はバイパスさせドレンを抜き空焚きとし、
冷却水熱交換器を介して低温水にエンジン冷却水の排熱
のみ回収して最小限の蓄熱を行なわせ、熱併給発電運用
では過剰蓄熱量を冷却器で大気放出しつつ熱負荷への熱
供給を行ない、防災用非常用発電機運用では専ら過剰蓄
熱量を冷却器で大気放出して、エンジン冷却水を許容温
度以内に制御して熱バランスをはかることにより冷却器
容量を縮小化せしめたものである。
B Outline of the Invention The present invention is a co-generation power generator that also operates as an emergency generator for disaster prevention, and allows the hot water circulation system of the exhaust gas heat exchanger to bypass the flow water to the exhaust gas heat exchanger. By providing switching valve means to stop the flow to the exhaust gas heat exchanger and discharge the drain, during normal cogeneration power generation operation, low temperature water is passed through the cooling water heat exchanger and the exhaust gas heat exchanger. The exhaust heat of the engine cooling water and exhaust gas is collected to maximize the heat storage, while the exhaust gas heat exchanger should be bypassed during emergency emergency generator operation and co-generation operation with heat load less than half. Remove the drain and make it empty,
Only the exhaust heat of the engine cooling water is collected in the low-temperature water through the cooling water heat exchanger to store a minimum amount of heat, and in cogeneration operation, the excess heat storage amount is released to the atmosphere by the cooling device and the heat to the heat load is released. In the operation of emergency generators for disaster prevention, the excess heat storage amount was released to the atmosphere by the cooler, and the engine cooling water was controlled within the allowable temperature to balance the heat and reduce the cooler capacity. It is a thing.

C 従来技術 熱併給発電装置は、原動機に駆動される発電機の電気出
力と同時に原動機の排熱に基づく熱出力を利用すること
によって、装置の経済性の向上をはかる発電装置であ
る。
C Prior Art A cogeneration system is a power generation system that improves the economical efficiency of the system by utilizing the electric output of the generator driven by the prime mover and the heat output based on the exhaust heat of the prime mover at the same time.

例えば従来、エンジンにより駆動される発電機出力を電
力負荷に供給すると同時に、エンジン冷却水の排熱を熱
交換器を介して低温水槽と高温水槽を有するシステムタ
ンクの低温水槽より圧送される低温水に熱回収し、更に
この低温水をエンジン排気ガスの排熱で加温して蓄熱高
温水としてシステムタンクの高温水槽に一旦貯えておき
これを給湯などの熱負荷に供給する。そして、熱負荷で
熱放出して降温した低温水を前記の低温水槽へ回送する
ようにしている。
For example, conventionally, the output of a generator driven by an engine is supplied to an electric power load, and at the same time, exhaust heat of engine cooling water is pumped from a low temperature water tank of a system tank having a low temperature water tank and a high temperature water tank through a heat exchanger. Then, the low-temperature water is heated by the exhaust heat of the engine exhaust gas, stored as high-temperature heat storage water in the high-temperature water tank of the system tank, and then supplied to a heat load such as hot water supply. Then, the low temperature water, which has been released by heat due to the heat load and cooled, is sent to the low temperature water tank.

なお熱出力は電気出力に比例して発生し熱負荷に供給さ
れるが、熱負荷が軽い場合には熱供給が過剰となるの
で、前記高温水を冷却塔などの冷却器に導き供給過剰熱
量に相当する熱量を大気中に放出し、前記低温水槽へ回
送し熱バランスをはかるように構成して熱併給発電装置
を運用している。
The heat output is generated in proportion to the electric output and is supplied to the heat load.However, when the heat load is light, the heat supply becomes excessive.Therefore, the high temperature water is guided to a cooler such as a cooling tower, and the excess heat amount is supplied. The heat cogeneration system is operated by discharging a quantity of heat corresponding to the above into the atmosphere and sending it to the low temperature water tank to balance the heat.

D 発明が解決しようとする問題点 上記のような熱併給発電装置を防災用非常用発電機とし
て運用する場合は、緊急事態であるため電気出力のみ利
用し、熱出力は全く使用しない。
D Problems to be Solved by the Invention When the cogeneration system as described above is operated as an emergency generator for disaster prevention, since it is an emergency, only the electric output is used and the heat output is not used at all.

このためその熱出力を冷却塔などで放熱する必要があ
る、従って冷却塔などの冷却器が熱併給発電運用に際し
必要とする冷却能力に比べ、はるかに上回る冷却能力を
備えなければならないこととなる。この冷却能力は実際
に熱併給発電装置を防災用非常用発電機として運用する
際の処理熱量が非常用発電専用発電装置の約2倍の冷却
器容量が必要とされ、また熱併給発電運用において熱負
荷が半減以下とするような場合にも過剰熱量を処理する
ために大きな熱容量の冷却器が必要とされるという問題
がある。
For this reason, it is necessary to radiate that heat output in a cooling tower, etc. Therefore, it is necessary for the cooler such as a cooling tower to have a cooling capacity far higher than the cooling capacity required for cogeneration operation. . This cooling capacity requires a cooler capacity that is about twice the amount of heat that can be processed when operating the cogeneration system as an emergency generator for disaster prevention. Even when the heat load is reduced to less than half, there is a problem that a cooler having a large heat capacity is required to handle the excess heat amount.

本発明は以上のような問題点にかんがみなされたもの
で、排気ガス熱交換器を選択使用することにより排熱回
収した蓄熱量の過剰分を大気放出して熱バランスをはか
り冷却器の熱容量を小容量化せしめる熱併給発電装置を
提供することを目的とする。
The present invention has been made in view of the above problems, and by selectively using the exhaust gas heat exchanger, the excess amount of the heat storage amount of the exhaust heat recovered is released to the atmosphere to balance the heat and improve the heat capacity of the cooler. It is an object of the present invention to provide a cogeneration power generation device that can be reduced in capacity.

E 問題点を解決するための手段および作用 低温水槽と高温水槽を有するシステムタンクと、この低
温水槽の低温水を冷却水熱交換器でエンジン冷却水の排
熱を回収し、更に該エンジンの排気ガス熱交換器でこれ
を加熱して前記高温水槽に導水する手段と、前記高温水
槽の高温水を熱負荷に供給し前記低温水槽に導水する手
段と、前記高温水槽の温水を冷却塔などの冷却器を介し
て冷却し前記低温水槽に導水する手段と、前記排気ガス
熱交換器への流水をバイパスさせ且つ該排気ガス熱交換
器への給水を止めてそのドレンを排出させる切替弁手段
とを備え、前記排気ガス熱交換器を空焚きできる部材で
構成して、防災用非常用発電機運用および熱負荷半減以
下の熱併給発電運用に際して前記切替弁手段により前記
排気ガス熱交換器はバイパスして空焚きとし冷却水熱交
換器を介して通流する温水に原動機冷却水の排熱のみを
回収し最小限度の蓄熱を行ない、熱併給発電運用では熱
負荷への熱供給を行なうと同時に過剰熱量を冷却器にて
大気放出処理し、防災用非常用発電機運用では専ら過剰
蓄熱量を冷却器にて大気放出処理しエンジン冷却水を許
容温度以内に制御して熱バランスをはかり冷却器の熱容
量を小容量化し設備面積およびコストを大巾に減少し熱
併給発電設備の経済性を向上させる。
E Means and Actions for Solving Problems The system tank having the low temperature water tank and the high temperature water tank, the low temperature water in the low temperature water tank is used as the cooling water heat exchanger to recover the exhaust heat of the engine cooling water, and the exhaust gas of the engine is further exhausted. A means for heating this with a gas heat exchanger to conduct water to the high temperature water tank, a means for supplying high temperature water from the high temperature water tank to a heat load to conduct water to the low temperature water tank, a hot water of the high temperature water tank such as a cooling tower Means for cooling through a cooler and conducting water to the low temperature water tank, and switching valve means for bypassing flowing water to the exhaust gas heat exchanger and stopping water supply to the exhaust gas heat exchanger to discharge its drain. The exhaust gas heat exchanger is constituted by a member capable of being heated in an empty state, and the exhaust gas heat exchanger is bypassed by the switching valve means at the time of emergency emergency generator operation for disaster prevention and cogeneration operation with heat load less than half. Only the exhaust heat of the engine cooling water is collected in the hot water that flows through the cooling water heat exchanger to store a minimum amount of heat. The heat quantity is released into the atmosphere by the cooler, and in the operation of the emergency power generator for disaster prevention, the excess heat quantity is exclusively released into the atmosphere by the cooler and the engine cooling water is controlled within the allowable temperature to balance the heat and cool the cooler. The heat capacity will be reduced and the equipment area and cost will be greatly reduced to improve the economical efficiency of the cogeneration power generation equipment.

F 実施例 以下に本発明の一実施例を図に基づいて説明する。F Example One example of the present invention will be described below with reference to the drawings.

図は防災用非常用発電機の機能を兼備した熱併給発電装
置のブロック図である。1はエンジンであり、発電機2
を駆動する。3は、冷却水熱交換器でありエンジン冷却
水Wの熱を回収する。4は空焚き可能な排気ガス熱交換
器であり、エンジンの排気ガスGの排熱を回収する。V1
1、V12は前記排気ガス熱交換器4の流通電磁弁、V2はバ
イパス電磁弁、V3およびV4は夫々通気用電磁弁およびド
レンぬき電磁弁であり、前記流通電磁弁V11、V12とバイ
パス電磁弁、通気用電磁弁、ドレン抜き電磁弁V2、V3、
V4は連動して逆動作する。5はドレン槽である。6はシ
ステムタンクであり、低温水W1を貯える低温水槽61と高
温水W2を貯える高温水槽62で構成されている。7は給湯
などの熱負荷であり高温水槽より送られる高温水W2の熱
を利用する。8は冷却塔であり、高温水W2の過剰熱量の
大気放出を行なう。
The figure is a block diagram of a cogeneration system that also has the function of an emergency generator for disaster prevention. 1 is an engine, and a generator 2
To drive. A cooling water heat exchanger 3 recovers heat of the engine cooling water W. Reference numeral 4 denotes an exhaust gas heat exchanger that can be heated empty, and recovers exhaust heat of the exhaust gas G of the engine. V1
1, V12 is a circulation solenoid valve of the exhaust gas heat exchanger 4, V2 is a bypass solenoid valve, V3 and V4 are ventilation solenoid valves and drain-free solenoid valves, respectively, and the circulation solenoid valves V11, V12 and the bypass solenoid valve. , Ventilation solenoid valve, Drain drain solenoid valve V2, V3,
V4 works in reverse by interlocking. 5 is a drain tank. The system tank 6 is composed of a low temperature water tank 61 for storing low temperature water W1 and a high temperature water tank 62 for storing high temperature water W2. 7 is a heat load such as hot water supply, which utilizes the heat of the high temperature water W2 sent from the high temperature water tank. Reference numeral 8 denotes a cooling tower, which releases the excess heat of the high-temperature water W2 to the atmosphere.

P1、P2、P3はポンプで、低温水W1、高温水W2の圧送用で
ある。
P1, P2 and P3 are pumps for pumping low temperature water W1 and high temperature water W2.

次に実施例の動作を説明する。Next, the operation of the embodiment will be described.

先づ本発明の装置を通常の熱併給発電装置として運用す
る場合の動作につき述べる。この運用では、排気ガス熱
交換器4の流通電磁弁V11、V12を開きバイパス電磁弁V
2、通気用電磁弁V3、ドレン抜き電磁弁V4は閉じてお
く。循環するエンジン冷却水Wはエンジン1において排
熱を吸収し温度上昇して冷却水熱交換器3の1次側へ送
られ熱源となる。一方、システムタンク6の低温水槽61
に貯えられた低温水W1がポンプP1により圧送され前記冷
却水熱交換器3の2次側を通流する。
First, the operation when the device of the present invention is operated as a normal cogeneration system will be described. In this operation, the flow solenoid valves V11 and V12 of the exhaust gas heat exchanger 4 are opened and the bypass solenoid valve V is opened.
2. Close the ventilation solenoid valve V3 and drain drain solenoid valve V4. The circulating engine cooling water W absorbs exhaust heat in the engine 1 and rises in temperature to be sent to the primary side of the cooling water heat exchanger 3 to serve as a heat source. On the other hand, the low temperature water tank 61 of the system tank 6
The low temperature water W1 stored in the pump is pumped by the pump P1 and flows through the secondary side of the cooling water heat exchanger 3.

この際低温水W1は前記冷却水熱交換器3の1次側より前
記エンジン冷却水Wの蓄熱を回収し加温された後、前記
流通電磁弁V11を経て前記排気ガス熱交換器4に流入す
る。低温水W1はこの排気ガス熱交換器4においてエンジ
ンの排気ガスGの排熱を回収加温された後、流通電磁弁
V12を経由してシステムタンク6の高温水槽62へ送られ
蓄熱高温水W2として貯えられる。一旦この高温水槽62へ
貯えられた前記高温水W2はポンプP2により圧送されあ熱
負荷7へ送られ熱利用が行なわれる。熱放出して温度低
下した低温水W1は前記システムタンク6の低温水槽61へ
循環回送される。なお熱負荷7が電気出力に比例して発
生する熱出力に比べて軽い場合には冷却塔8を運転し、
ポンプP3により前記高温水槽62の高温水W2を前記冷却塔
8へ圧送し供給過剰相当の熱量を大気へ放出することに
よりエンジン冷却水Wの温度を許容値以内に制御し熱バ
ランスをはかるように運転を行なう。次に災害発生の際
防災用非常用発電機として運用する場合の動作につき述
べる。この運用にあたっては、前記排気ガス熱交換器4
の流通電磁弁V11、V12を閉じ前記バイパス電磁弁V2を開
き前記排気ガス熱交換器4への低温水W1の通流をバイパ
ス形成させると共に、前記通気電磁弁V3、ドレン抜き電
磁弁V4を開き、前記排気ガス熱交換器4のドレンをドレ
ン槽5へ排出し前記排気ガス熱交換器4は空焚きとす
る。
At this time, the low-temperature water W1 recovers the heat of the engine cooling water W from the primary side of the cooling water heat exchanger 3 and is heated, and then flows into the exhaust gas heat exchanger 4 via the flow solenoid valve V11. To do. The low temperature water W1 collects and heats the exhaust heat of the exhaust gas G of the engine in the exhaust gas heat exchanger 4, and then the flow solenoid valve
It is sent to the high temperature water tank 62 of the system tank 6 via V12 and stored as heat storage high temperature water W2. The high temperature water W2 once stored in the high temperature water tank 62 is pumped by the pump P2 to the heat load 7 for heat utilization. The low-temperature water W1 that has released heat and decreased in temperature is circulated to the low-temperature water tank 61 of the system tank 6 and circulated. When the heat load 7 is lighter than the heat output generated in proportion to the electric output, the cooling tower 8 is operated,
By pumping the high-temperature water W2 in the high-temperature water tank 62 to the cooling tower 8 by the pump P3, and releasing a heat amount equivalent to the excessive supply to the atmosphere, the temperature of the engine cooling water W is controlled within the allowable value to achieve heat balance. Drive. Next, the operation when operating as an emergency generator for disaster prevention in the event of a disaster will be described. In this operation, the exhaust gas heat exchanger 4
The flow solenoid valves V11 and V12 are closed, the bypass solenoid valve V2 is opened to allow the low temperature water W1 to flow to the exhaust gas heat exchanger 4 by bypass, and the ventilation solenoid valve V3 and the drain solenoid valve V4 are opened. The drain of the exhaust gas heat exchanger 4 is discharged to the drain tank 5, and the exhaust gas heat exchanger 4 is not fired.

つまり、熱併給発電運用の場合と同様前記システムタン
ク6の低温水槽61に貯えられた低温水W1がポンプP1によ
り圧送され、前記冷却水熱交換器3においてエンジン冷
却水Wの排熱を回収し加温され通流するが前記流通電磁
弁V11、V12が閉じられているため前記排気ガス熱交換器
4を循環せず、バイパス電磁弁V2を経由して前記システ
ムタンク6の高温水槽62へ送られ蓄熱高温水W2として貯
えられる。この高温水W2は排気ガスの排熱回収を行なわ
ぬため熱併給発電運用の場合に比べ蓄熱量は減少する
が、本運用の場合は電力供給のみで全く熱負荷7への供
給を行なわないため蓄熱される一方となる。依って前記
エンジン冷却水Wの温度が許容値以上となるのを防ぐた
め、前記高温水W2を前記ポンプP3により前記冷却塔8へ
圧送し、蓄熱を大気中に放出し低温水W1として前記シス
テムタンク6の低温水槽61へ回送することとし、熱バラ
ンスをはかるよう運転を行なう。
That is, as in the case of combined heat and power generation operation, the low temperature water W1 stored in the low temperature water tank 61 of the system tank 6 is pumped by the pump P1, and the exhaust heat of the engine cooling water W is recovered in the cooling water heat exchanger 3. Although it is heated and flows, it does not circulate in the exhaust gas heat exchanger 4 because the flow solenoid valves V11 and V12 are closed, and is sent to the high temperature water tank 62 of the system tank 6 via the bypass solenoid valve V2. It is stored and stored as heat storage high temperature water W2. Since this high-temperature water W2 does not collect exhaust heat of exhaust gas, the amount of heat storage decreases compared to the case of combined heat and power generation operation, but in this operation only electric power is supplied and no heat load 7 is supplied at all. It becomes one of the ones where heat is stored. Therefore, in order to prevent the temperature of the engine cooling water W from exceeding the allowable value, the high temperature water W2 is pressure-fed to the cooling tower 8 by the pump P3, and the stored heat is released into the atmosphere to generate the low temperature water W1. It is decided that the water is transferred to the low temperature water tank 61 of the tank 6, and the operation is performed so as to balance the heat.

また熱併給発電運用において熱負荷が半分以下に減少し
た場合にも蓄熱量が大巾に過剰となり冷却塔の放熱容量
が大きく必要とされるので、前述の防災用非常用発電機
運用と同様の構成に電磁弁の選択操作を行ない排気ガス
熱交換器4をバイパスし蓄熱量を減少させ冷却塔8の熱
容量の小容量化をはかる。
Moreover, even if the heat load is reduced to less than half in cogeneration power generation operation, the amount of heat storage will be excessively large and the heat dissipation capacity of the cooling tower will need to be large. A solenoid valve is selected in the configuration, the exhaust gas heat exchanger 4 is bypassed to reduce the amount of accumulated heat, and the heat capacity of the cooling tower 8 is reduced.

具体的な数値例を示せば、400KWディーゼル発電機の熱
併給発電装置では、ディーゼルエンジン400KW出力次に
冷却水熱交換器の交換熱量は212,000KCal/hであり、排
気ガス熱交換器の熱出力は240,000KCal/hとなり 総熱量1,060,000KCal/h 発電出力400KW32.4% 熱回収452,000KCal/h42.6% 総合効率75% である。従来の防災用非常用発電機運用では冷却器能力
としては熱回収量を処理するために452,000KCal/hを必
要とする。併し本発明によれば排気ガス熱回収量240,00
0KCal/hを除いた212,000KCal/hの熱処理を行なうだけで
済むようになる。
As a specific numerical example, in the cogeneration system of 400KW diesel generator, diesel engine 400KW output, then the heat exchange amount of the cooling water heat exchanger is 212,000KCal / h, the heat output of the exhaust gas heat exchanger Is 240,000KCal / h, total heat is 1,060,000KCal / h, power output 400KW 32.4%, heat recovery 452,000KCal / h 42.6%, total efficiency 75%. In the conventional emergency generator operation for disaster prevention, 452,000KCal / h is required as a cooler capacity to process the heat recovery amount. However, according to the present invention, the exhaust gas heat recovery amount 240,00
Only heat treatment of 212,000 KCal / h excluding 0 KCal / h will be sufficient.

G 発明の効果 以上説明したように、本発明は熱併給発電装置におい
て、排気ガス熱交換器の温水循環系に該排気ガス熱交換
器をバイパスさせ且つ該熱交換器への給水を止めてその
ドレンを排出させる手段を設け、通常の熱併給発電運用
に際しては、冷却水熱交換器と排気ガス熱交換器を介し
て通流する温水に原動機の排熱を最大限に回収蓄熱する
構成とし、一方防災用非常用発電機運用および熱負荷半
減以下の熱併給発電運用に際しては、前記排気ガス熱交
換器はバイパスして空焚きとし、冷却水熱交換器用介し
て通流する温水に原動機冷却水の排熱のみを回収最小限
の蓄熱を行なう構成とし、熱併給発電運用では熱負荷供
給を行なうと同時に過剰熱量を冷却器にて大気放出処理
し、防災用非常用発電機運用では専ら過剰蓄熱量を冷却
器にて大気放出処理しエンジン冷却水を許容温度以内に
制御して熱バランスをはかるものであるので、冷却器の
熱容量は小容量化し設備面積およびコストが大巾に減少
し熱併給発電化装置の経済性が一段と向上するというす
ぐれた効果を有する。
G Effect of the invention As described above, the present invention is, in a cogeneration system, a hot water circulation system of an exhaust gas heat exchanger, bypassing the exhaust gas heat exchanger and stopping water supply to the heat exchanger. A means for discharging the drain is provided, and in a normal cogeneration power generation operation, the exhaust water of the prime mover is maximally recovered and stored in the hot water flowing through the cooling water heat exchanger and the exhaust gas heat exchanger, On the other hand, when operating an emergency power generator for disaster prevention and co-generation with heat load less than half the heat load, the exhaust gas heat exchanger is bypassed to be empty, and the engine cooling water is used as hot water flowing through the cooling water heat exchanger. Only the exhaust heat of is collected and the minimum heat is stored. In the combined heat and power generation operation, the heat load is supplied and at the same time excess heat is released to the atmosphere by the cooler. Quantity to cooler Since it releases heat into the atmosphere and controls the engine cooling water within the allowable temperature to balance the heat, the heat capacity of the cooler is reduced, the equipment area and cost are greatly reduced, and the cogeneration power generation system is economical. Has an excellent effect that it is further improved.

【図面の簡単な説明】[Brief description of drawings]

図は本考案の一実施例で防災時の非常用発電機運用を兼
備する熱併給発電装置のブロック図である。 1はエンジン、2は発電機、3は冷却水熱交換器、4は
排気ガス熱交換器、5はドレン槽、6はシステムタン
ク、61は低温水槽、62は高温水槽、7は熱負荷、8は冷
却塔、Wはエンジン冷却水、W1は低温水、W2は高温水、
Gは排気ガス、P1〜P3はポンプ、V11、V12は流通電磁
弁、V2はバイパス電磁弁、V3は通気用電磁弁、V4はドレ
ン抜き電磁弁。
FIG. 1 is a block diagram of a cogeneration system that also operates an emergency generator in case of disaster prevention according to an embodiment of the present invention. 1 is an engine, 2 is a generator, 3 is a cooling water heat exchanger, 4 is an exhaust gas heat exchanger, 5 is a drain tank, 6 is a system tank, 61 is a low temperature water tank, 62 is a high temperature water tank, 7 is a heat load, 8 is a cooling tower, W is engine cooling water, W1 is low temperature water, W2 is high temperature water,
G is exhaust gas, P1 to P3 are pumps, V11 and V12 are flow solenoid valves, V2 is a bypass solenoid valve, V3 is a ventilation solenoid valve, and V4 is a drain solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低温水槽と高温水槽を有するシステムタン
クと、この低温水槽の低温水を冷却水熱交換器でエンジ
ン冷却水の排熱を回収し、更に該エンジンの排気ガス熱
交換器でこれを加熱して前記高温水槽に導水する手段
と、前記高温水槽の高温水を熱負荷に供給し前記低温水
槽に導水する手段と、前記高温水槽の温水を冷却器を介
して冷却し前記低温水槽に導水する手段と、前記排気ガ
ス熱交換器への通流水をバイパスさせ且つ該排気ガス熱
交換器への通流を止めてそのドレンを排出させる切替弁
手段とを備え前記排気ガス熱交換器を空焚きできる部材
で構成したことを特徴とする熱併給発電装置。
Claim: What is claimed is: 1. A system tank having a low temperature water tank and a high temperature water tank, low temperature water in the low temperature water tank is used as a cooling water heat exchanger to recover exhaust heat of engine cooling water, and the exhaust gas heat exchanger of the engine is used to recover the exhaust heat. Means for heating and guiding water to the high-temperature water tank, means for supplying high-temperature water from the high-temperature water tank to a heat load to conduct water to the low-temperature water tank, and cooling the hot water in the high-temperature water tank via a cooler to cool the low-temperature water tank. The exhaust gas heat exchanger, and a switching valve means for bypassing the flowing water to the exhaust gas heat exchanger and stopping the flow to the exhaust gas heat exchanger to discharge the drain. A combined heat and power generation device, characterized in that it is constituted by a member that can be heated.
JP61049226A 1986-03-06 1986-03-06 Cogeneration system Expired - Fee Related JPH0784852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049226A JPH0784852B2 (en) 1986-03-06 1986-03-06 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049226A JPH0784852B2 (en) 1986-03-06 1986-03-06 Cogeneration system

Publications (2)

Publication Number Publication Date
JPS62206260A JPS62206260A (en) 1987-09-10
JPH0784852B2 true JPH0784852B2 (en) 1995-09-13

Family

ID=12825006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049226A Expired - Fee Related JPH0784852B2 (en) 1986-03-06 1986-03-06 Cogeneration system

Country Status (1)

Country Link
JP (1) JPH0784852B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8862517B2 (en) 2001-05-31 2014-10-14 Contentguard Holdings, Inc. Digital rights management of content when content is a future live event
US8869293B2 (en) 2001-05-31 2014-10-21 Contentguard Holdings, Inc. Method and apparatus for hierarchical assignment of rights to documents and documents having such rights
US8892473B2 (en) 2001-05-31 2014-11-18 Contentguard Holdings, Inc. Method and system for subscription digital rights management

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63221477A (en) * 1987-03-11 1988-09-14 Fujitsu Ltd File converting system
JP2571723Y2 (en) * 1987-04-15 1998-05-18 日産ディーゼル工業株式会社 Exhaust heat exchange control device of heat supply power generation system
US4896830A (en) * 1987-09-30 1990-01-30 Kubota Ltd. Waste heat recovery system for horizontal liquid-cooled internal combustion engine
JPH0792279B2 (en) * 1988-05-23 1995-10-09 神鋼電機株式会社 Hot water supply system using engine exhaust gas
JPH0742062Y2 (en) * 1988-05-23 1995-09-27 神鋼電機株式会社 Hot water supply system using engine exhaust gas
JPH0742061Y2 (en) * 1988-05-23 1995-09-27 神鋼電機株式会社 Hot water supply system using engine exhaust gas
JP2582301B2 (en) * 1989-09-26 1997-02-19 株式会社クボタ Engine exhaust heat recovery device
JP5871663B2 (en) * 2012-03-01 2016-03-01 株式会社神戸製鋼所 Control method of binary power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8862517B2 (en) 2001-05-31 2014-10-14 Contentguard Holdings, Inc. Digital rights management of content when content is a future live event
US8869293B2 (en) 2001-05-31 2014-10-21 Contentguard Holdings, Inc. Method and apparatus for hierarchical assignment of rights to documents and documents having such rights
US8892473B2 (en) 2001-05-31 2014-11-18 Contentguard Holdings, Inc. Method and system for subscription digital rights management

Also Published As

Publication number Publication date
JPS62206260A (en) 1987-09-10

Similar Documents

Publication Publication Date Title
US6192687B1 (en) Uninterruptible power supply utilizing thermal energy source
RU2462789C1 (en) Photovoltaic device
JPH0784852B2 (en) Cogeneration system
KR102614152B1 (en) Heat pump system
JPS63253102A (en) Compound generating system
KR101680516B1 (en) Load adaptive type micro-combined heat and power supply system
KR20130040320A (en) Fresh water generating equipment for vessels by using waste heat
JP4128054B2 (en) Fuel cell system and operating method thereof
CN104870781B (en) Pre-heating system for power station
JP4153910B2 (en) Fuel cell system
JP3990600B2 (en) Power generation heat utilization system
JP2001248905A (en) Home cogeneration system
JP2004293881A (en) Engine driven heat pump device
JP2606728B2 (en) Thermal energy effective use system
JPH07217915A (en) Heat/electricity jointly feeding system
JP2004039524A (en) Fuel cell generator
JPS5815705B2 (en) Heat recovery method in power generation equipment
JP2005226959A (en) Hot water storage type water heater
JP4030470B2 (en) Waste heat recovery system
JP2004053151A (en) Hot water supply device
KR100707469B1 (en) Electric generation air condition system
CN112797662B (en) Heat source tower heat pump system
JP2006024525A (en) Method for electricity storage and heat storage and its system
JP2017187190A (en) Electrothermal cogeneration system
JPH0668893A (en) Fuel cell type generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees