JPH0784644B2 - Method and apparatus for forming cubic boron nitride - Google Patents

Method and apparatus for forming cubic boron nitride

Info

Publication number
JPH0784644B2
JPH0784644B2 JP3165272A JP16527291A JPH0784644B2 JP H0784644 B2 JPH0784644 B2 JP H0784644B2 JP 3165272 A JP3165272 A JP 3165272A JP 16527291 A JP16527291 A JP 16527291A JP H0784644 B2 JPH0784644 B2 JP H0784644B2
Authority
JP
Japan
Prior art keywords
substrate
target
gas
vacuum chamber
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3165272A
Other languages
Japanese (ja)
Other versions
JPH04365850A (en
Inventor
一隆 神田
精己 竹端
昇一 吉田
良一 渡辺
憲一郎 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP3165272A priority Critical patent/JPH0784644B2/en
Publication of JPH04365850A publication Critical patent/JPH04365850A/en
Publication of JPH0784644B2 publication Critical patent/JPH0784644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、砥粒あるいは切削工具
材料として用いられる立方晶窒化ほう素を、耐摩耗部品
又は切削工具の上に気相合成方法により形成する立方晶
窒化ほう素の形成方法、及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses cubic boron nitride, which is used as an abrasive grain or a cutting tool material, for wear-resistant parts.
Or a method of forming a cubic boron nitride formed by vapor-phase synthesis method on the cutting tool, to an apparatusbenefactor.

【0002】[0002]

【従来の技術】立方晶窒化ほう素(以後cBNと言う)
はダイヤモンドに次ぐ硬さを持ち、かつダイヤモンドに
比べ空気中での熱安定性が高いため、砥粒あるいは切削
工具用材料として多く用いられており、産業上非常に有
用な材料となっている。従来立方晶窒化ほう素は高温高
圧下で人工的に合成されてきたのであるが、近年気相中
でも合成が可能であることがわかってきた。その例とし
ては、特公平3−1377号公報に示されるような電
子ビームによりほう素を溶融蒸発させるイオンプレーテ
ィング的な方法、峰田、安永:精密工学会誌、Vol.53
(1987)1532に示されるようなレーザービームによる六方
晶窒化ほう素(以後hBNと言う)の蒸発と窒素イオン
照射を併用する方法、Y. Ichinose et al.: Proc. 11
th Symp. on ISIAT'87 Tokyo(1987)469 に示されるよう
なほう素原料としてジボラン、窒素原料としてアンモニ
アを用い、誘導結合型高周波放電と熱フィラメントを併
用する方法、A. Chayahara et al. :ISPC-8 Tokyo(19
87)2440 に示されるようにジボランおよび窒素ガスを原
料としてこれを高周波と磁界ないしは高周波とマイクロ
波と磁界で活性化する方法などがあげられる。
2. Description of the Related Art Cubic boron nitride (hereinafter referred to as cBN)
Has a hardness second to that of diamond and has a higher thermal stability in air than diamond, and is therefore widely used as a material for abrasive grains or cutting tools, and is a very useful material in industry. Conventionally, cubic boron nitride has been artificially synthesized at high temperature and high pressure, but in recent years it has been found that it can be synthesized even in the gas phase. As an example thereof, an ion plating method in which boron is melted and evaporated by an electron beam as disclosed in Japanese Examined Patent Publication No. 3-1377, Mineda, Yasunaga: Journal of Precision Engineering, Vol.53.
(1987) 1532, a method using a combination of evaporation of hexagonal boron nitride (hereinafter referred to as hBN) by a laser beam and nitrogen ion irradiation, Y. Ichinose et al .: Proc. 11
th Symp. on ISIAT'87 Tokyo (1987) 469, using diborane as a boron raw material and ammonia as a nitrogen raw material, using inductively coupled high frequency discharge and a hot filament together, A. Chayahara et al .: ISPC-8 Tokyo (19
As shown in 87) 2440, there is a method in which diborane and nitrogen gas are used as raw materials and activated by high frequency and magnetic field or high frequency, microwave and magnetic field.

【0003】[0003]

【発明が解決しようとする課題】上記乃至の方法の
うち、およびの方法を除けばいずれもB2H6などのほ
う素含有ガスを原料の一部として用いている。ほう素含
有ガスは半導体分野などで多く用いられており、ほう素
原料としては手軽であるが、毒性の非常に強いガスでも
あり、従ってこれらのガスを用いる場合には安全設備の
整った施設や排気ガスの無害化処理設備が必要となるな
どの難点がある。
Among the above-mentioned methods, except for the method and, all of the methods use a boron-containing gas such as B 2 H 6 as a part of the raw material. Boron-containing gas is widely used in the field of semiconductors and the like, and it is a simple raw material for boron, but it is also a gas with extremely high toxicity. Therefore, when using these gases, facilities equipped with safety equipment and There are drawbacks such as the need for equipment for detoxifying exhaust gas.

【0004】このような有害ガスは施設や設備を万全に
整えても常に事故の危険がつきまとうため有害ガスを使
用せずに安定してcBNを合成することができれば産業
上非常に有用である。上記のように従来の方法には、ほ
う素含有ガスを用いない方法があるが、前記の方法
は、ホローカソードあるいは電子銃を用いて電子線によ
りるつぼ内のほう素を溶融蒸発させる物理蒸着法であ
り、これによれば、ほう素の蒸発量制御が難しく、ひい
てはB/N比の制御も難しいため、安定してcBNを合
成しにくいという難点がある。また、前記の方法はh
BNをレーザービームで蒸発させ、基体上にcBNを形
成するのであり、ほう素含有ガスを原料としない方法と
して試みられているが、cBN単相の膜が得られにくい
という問題点がある。
[0004] Such a harmful gas is always in danger of accidents even if facilities and equipment are thoroughly prepared. Therefore, it is industrially very useful if cBN can be stably synthesized without using a harmful gas. As described above, there is a conventional method that does not use a boron-containing gas, but the above method is a physical vapor deposition method in which a hollow cathode or an electron gun is used to melt and evaporate boron in a crucible with an electron beam. According to this, since it is difficult to control the evaporation amount of boron and the B / N ratio is difficult to control, it is difficult to stably synthesize cBN. Also, the above method is h
Although BN is vaporized by a laser beam to form cBN on the substrate, it has been attempted as a method not using a boron-containing gas as a raw material, but there is a problem that it is difficult to obtain a cBN single-phase film.

【0005】[0005]

【課頭を解決するための手段】そこで、本発明では固体
のほう素をほう素源とし、あるいはhBNをほう素およ
び窒素源として利用し、従来の方法以上に安定してcB
Nを形成する方法について研究した。その結果、ほう素
あるいはcBN板を高周波にてスパッタすることによ
り、それらの構成元素を安定して気相中へ供給でき、さ
らにこのガスを高周波電界の作用ならびに赤熱されたフ
ィラメントから高温で熱電子を放出させガス分解を促進
するようにすることによりcBNを安定して形成できる
ことがわかった。
Therefore, in the present invention, solid boron is used as a boron source or hBN is used as a boron and nitrogen source, and cB is more stable than conventional methods.
The method of forming N was studied. As a result, by sputtering a boron or cBN plate at a high frequency, these constituent elements can be stably supplied into the gas phase, and this gas is further subjected to the action of a high frequency electric field and a thermoelectron at a high temperature from a filament heated by red heat. To accelerate gas decomposition
It was found that by doing so, cBN can be stably formed.

【0006】すなわち、図1に示す本発明に係る装置を
用い、真空槽1内に対向配置された一対の平行平板型電
極のうち一方の電極(第1の平板型電極)2にほう素な
いしはhBNのターゲット4を装着し、かつ該電極に高
周波電源5を用いて高周波を印加することによりターゲ
ット構成元素であるほう素またはほう素と窒素をスパッ
タにより気相中へ供給し、これらの元素を含む混合ガス
を一対の平行平板型電極の間に置かれ通電により加熱さ
れたフィラメント6と上記第1の電極2を介して真空槽
内へ導入された高周波電界の作用で活性化し、他方の電
極(第2の平板型電極)3上に載置され加熱された基体
7上に効率よくcBNを合成するものである。
That is, using the apparatus according to the present invention shown in FIG. 1, one of the pair of parallel plate type electrodes (first plate type electrode) 2 facing each other in the vacuum chamber 1 is boron or boron. By mounting a target 4 of hBN and applying a high frequency to the electrode using a high frequency power source 5, boron or boron and nitrogen, which are target constituent elements, are supplied into the gas phase by sputtering, and these elements are supplied. The mixed gas containing the same is placed between a pair of parallel plate type electrodes and activated by the action of a high frequency electric field introduced into the vacuum chamber through the filament 6 heated by energization and the first electrode 2, and the other electrode The cBN is efficiently synthesized on the heated base 7 placed on the (second flat plate type electrode) 3.

【0007】このとき、真空槽1内の雰囲気ガスとして
はアルゴンおよび水素混合ガスに、窒素またはアンモニ
アを供給した混合ガスが用いられる。アルゴンガスは主
にターゲット材を効率良くスパッタする作用を持ち、水
素はスパッタされたほう素ガスと反応し、ほう素の水素
化合物を形成する働きとcBNと同時に析出されるhB
Nを選択的にエッチングする作用を持つ。また、窒素ガ
スまたはアンモニアガス中の窒素原子はcBNを形成す
るための原料となるのであるが、ターゲット材にhBN
を用いた場合にはこれからも窒素原子が供給されるた
め、供給ガス中の窒素ガスまたはアンモニアガスの分圧
は低くてもよい。
At this time, as the atmosphere gas in the vacuum chamber 1, a mixed gas in which nitrogen or ammonia is supplied to a mixed gas of argon and hydrogen is used. The argon gas mainly has an effect of efficiently sputtering the target material, and hydrogen reacts with the sputtered boron gas to form a hydrogen compound of boron and hB which is simultaneously deposited with cBN.
It has a function of selectively etching N. Further, nitrogen atoms in nitrogen gas or ammonia gas serve as a raw material for forming cBN.
In the case of using, since nitrogen atoms are still supplied, the partial pressure of nitrogen gas or ammonia gas in the supply gas may be low.

【0008】供給ガスの組成は比較的広い範囲に調節可
能であるが、アルゴンガスの分量は少なすぎるとスパッ
タ速度が遅くなり、多すぎると気相中のほう素量が増え
cBNが形成されにくくなるため、全ガス圧に対するア
ルゴンガスの分圧は10%以上、90%以下が好まし
い。また、(窒素分圧)/(窒素分圧+水素分圧)比が
50%以上では合成された膜中にhBN成分が多くあら
われ、2%以下では膜中にほう素の成分が多くなるので
2%以上、50%以下が好ましい。(アンモニア分圧)
/(アンモニア分圧+水素分圧)比についても同様な理
由で4%以上、70%以下が好ましい。
The composition of the supply gas can be adjusted in a relatively wide range, but if the amount of argon gas is too small, the sputtering rate becomes slow, and if it is too large, the amount of boron in the gas phase increases and cBN is difficult to form. Therefore, the partial pressure of the argon gas with respect to the total gas pressure is preferably 10% or more and 90% or less. Further, when the (nitrogen partial pressure) / (nitrogen partial pressure + hydrogen partial pressure) ratio is 50% or more, a large amount of hBN component appears in the synthesized film, and when it is 2% or less, the boron component is large in the film. It is preferably 2% or more and 50% or less. (Ammonia partial pressure)
/ (Ammonia partial pressure and hydrogen partial pressure) ratio also about the reasons of 4% or more, preferably 70% or less.

【0009】フィラメント6は高温で熱電子を放出し、
高周波との共同作用により気相中のガスの分解を促進す
る作用を持ち、その温度は高い方が好ましいのである
が、温度が高すぎるとフィラメントの寿命が短くなるの
で、タングステン線を用いた場合には実用上1600℃〜25
00℃の範囲が好ましい。基体7の加熱は基体を装着した
側の第2の平板型電極3に備えられた加熱装置8を用い
て行う。基体の温度は300 ℃以下では膜中にhBNが多
く残存し、 1000 ℃以上では原因は不明であるが、cB
N膜の形成速度が遅くなるので 300℃以上、1000℃以下
が好ましい。
The filament 6 emits thermoelectrons at high temperature,
It has the effect of promoting the decomposition of gas in the gas phase in cooperation with the high frequency, and it is preferable that the temperature is high, but if the temperature is too high, the life of the filament will be shortened. Is practically 1600 ℃ ~ 25
The range of 00 ° C is preferred. The heating of the substrate 7 is performed by using the heating device 8 provided in the second flat plate type electrode 3 on the side where the substrate is mounted. When the substrate temperature is below 300 ° C, a large amount of hBN remains in the film, and above 1000 ° C, the cause is unknown.
Since the formation rate of the N film becomes slow, it is preferably 300 ° C or higher and 1000 ° C or lower.

【0010】真空槽1内の圧力が低くなるとcBNの合
成速度が遅くなり、高すぎると高周波によるガスの活性
化が行われにくくなるので、真空槽内の圧力は0.1Pa乃
至1500Paの範囲が好ましい。
When the pressure in the vacuum chamber 1 becomes low, the synthesis rate of cBN becomes slow, and when it is too high, it becomes difficult to activate the gas by high frequency. Therefore, the pressure in the vacuum chamber is preferably 0.1 Pa to 1500 Pa. .

【0011】第1の平板型電極2に印加された高周波は
真空槽内に高周波電界を与えるが、この高周波出力が大
きくなると電極3の材料もスパッタされるようになる。
このため、雰囲気ガス中に不純物である電極物質が高周
波の出力とともに増えるようになる。この効果は、第2
の平板型電極3の少なくとも第1の平板型電極2に対向
する表面側にほう素ないしはhBNから成る保護板9を
装着し、第2の平板型電極3側からスパッタされる元素
をcBN合成に必要な元素のみとすることにより防止す
ることができる。
The high frequency applied to the first flat plate type electrode 2 gives a high frequency electric field in the vacuum chamber, and when the high frequency output is increased, the material of the electrode 3 is also sputtered.
Therefore, the electrode material, which is an impurity, increases in the atmospheric gas with the output of the high frequency. This effect is the second
The protective plate 9 made of boron or hBN is mounted on at least the surface side of the flat plate electrode 3 facing the first flat plate electrode 2, and the elements sputtered from the second flat plate electrode 3 side are used for cBN synthesis. It can be prevented by using only necessary elements.

【0012】[0012]

【作用】本発明に係る方法は、一対の平行に配置された
平板型電極のうちの一方の電極(第1の平板型電極)2
にほう素またはhBNから成るターゲットを装着し、か
つ該電極に高周波を印加することによりターゲット構成
元素であるほう素、またはほう素と窒素を連続的に雰囲
気中ヘ供給することができ、かつこれらの元素を含む混
合ガスを対向する他方の電極(第2の平板型電極)3
との間に置かれてターゲット及び基体に面しかつ基体に
近接して配置されたフィラメントを通電することによに
より高温に加熱し、フィラメントから熱電子を放出させ
ガス分解を促進するようにすることと真空槽1内ヘ導入
された高周波電界の両方の作用により活性化し、他方の
第2の平板型電極3に載置された基体上に外部から有害
なほう素含有ガスを供給することなく連続的にcBNを
合成することができる。
According to the method of the present invention, one of the pair of parallel-arranged flat plate electrodes (first flat plate electrode) 2 is used.
It is possible to supply boron, which is a target constituent element, or boron and nitrogen to the atmosphere continuously by mounting a target made of boron or hBN on the substrate and applying a high frequency to the electrode. the mixed gas containing the element, facing the other electrode (second plate electrodes) 3
Placed between and facing the target and substrate and on the substrate
By energizing the filaments arranged in close proximity,
Heating it to a higher temperature, causing the filaments to emit thermoelectrons
It is activated by both the action of promoting the gas decomposition and the action of the high frequency electric field introduced into the vacuum chamber 1 and is harmful to the outside on the substrate placed on the other second flat plate type electrode 3. It is possible to continuously synthesize cBN without supplying the element-containing gas.

【0013】[0013]

【実施例】本発明に用いる立方晶窒化ほう素の形成装置
の実施例を図1について説明する。真空槽1の上方には
前端面にほう素またはhBNからなるターゲット4を装
着した平型の第1平板電極2が位置すると共に、高周波
電源5に接続している。さらに、第1平板型電極2に対
向して第2の平板型電極3が設けられており、上記のタ
ーゲット4の対向する表面側に基体7が載置される。第
2の平板型電極3には加熱用電源15に接続した加熱装
置8が内蔵されており、基体7を加熱する。両電極間
置かれてターゲット及び基体に面しかつ基体に近接して
配置されかつ交流電源10に接続され高温で熱電子を放
出し高周波との共同作用により気相中のガスの分解を促
進するフィラメント6が設けられる。なお、図2に示す
実施例は図1に示すものとほぼ同一の構造を有するが、
第2の平板型電極3には第2の平板型電極2のターゲッ
ト4との対向する表面側にほう素またはhBNからな
り、第2の電極3からスパッタされる元素をcBNが合
成に必要な元素のみとするための保護板9が装着され、
該保護板に基体7が載置されていること、及び排気口1
1に排気バルブ13を、ガス導入口12にガス供給バル
ブ14を設けた点に差異がある。
EXAMPLE An example of an apparatus for forming cubic boron nitride used in the present invention will be described with reference to FIG. Above the vacuum chamber 1, a flat first flat plate electrode 2 having a target 4 made of boron or hBN mounted on its front end face is located and connected to a high frequency power source 5. Further, a second flat plate type electrode 3 is provided so as to face the first flat plate type electrode 2, and the base 7 is placed on the facing surface side of the target 4. A heating device 8 connected to a heating power supply 15 is built in the second flat plate electrode 3 and heats the substrate 7. Between both electrodes
Placed facing the target and substrate and in close proximity to the substrate
A filament 6 is provided which is arranged and connected to an AC power supply 10 for emitting thermoelectrons at high temperature and promoting the decomposition of gas in the gas phase in cooperation with high frequency. The embodiment shown in FIG. 2 has substantially the same structure as that shown in FIG.
The second flat plate electrode 3 is made of boron or hBN on the surface side of the second flat plate electrode 2 facing the target 4, and cBN is necessary for synthesizing the element sputtered from the second electrode 3. A protection plate 9 for only elements is attached,
The substrate 7 is placed on the protective plate, and the exhaust port 1
1 is different in that an exhaust valve 13 is provided and a gas supply valve 14 is provided at the gas inlet 12.

【0014】以下に、本発明に係る立方晶窒化ほう素の
形成方法の実施例を示す。 (1).ターゲット材料としてほう素焼結板を用い、超
硬合金製切削チップ(JIS:SNGN120308)をcBN合成用
基体とし、図1に示す装置を用いて本発明の実施を行っ
た。まず、真空槽1内を排気口11に接続される真空排
気装置(図示してない)にて1x10-3Paまで排気後、ガス
供給装置(図示してない)に接続されたガス導入口12
よりアルゴン 50%、水素 35%、アンモニア 15%の体積比
から成る混合ガスを全流量 100SCCMの割合で供給し、排
気速度を調整しながら真空槽内の圧力を 100Paとした。
次いで、第2の平板型電極3内に設置された加熱装置8
に加熱用電源15から通電加熱し、基体7の温度を500
℃に保つとともに、基体7の上方10mmの位置に置かれた
トリア入りタングステン製フィラメント6を交流電源1
0を用いて通電により約2000℃に加熱した後、高周波電
源5を用いて第1の平板型電極2に500Wの高周波を印加
した。これにより4時間の合成処理を行ったところ基体
上面に1.5 μm の厚さのcBN膜が合成された。比較例
として、フィラメントを通電加熱しない他は上記本発明
の実施例と同様な条件にて合成処理を行ったところ、基
体上にはhBNを主成分とする膜が合成され、cBNは
合成されなかった。
An example of the method for forming cubic boron nitride according to the present invention will be described below. (1). A boron sintered plate was used as a target material, a cemented carbide cutting tip (JIS: SNGN120308) was used as a base material for cBN synthesis, and the present invention was carried out using the apparatus shown in FIG. First, the inside of the vacuum chamber 1 is exhausted to 1 × 10 −3 Pa by a vacuum exhaust device (not shown) connected to the exhaust port 11, and then the gas inlet port 12 connected to a gas supply device (not shown).
A mixed gas consisting of 50% argon, 35% hydrogen, and 15% ammonia was supplied at a total flow rate of 100 SCCM, and the pressure in the vacuum chamber was set to 100 Pa while adjusting the exhaust rate.
Next, the heating device 8 installed in the second flat plate type electrode 3
The heating power source 15 is energized to heat the substrate 7 to 500
While keeping the temperature at ℃, the tungsten-made tungsten filament 6 placed 10 mm above the substrate 7 is used as an AC power source 1.
After heating to about 2000 ° C. by energization using 0, a high frequency power of 500 W was applied to the first flat plate type electrode 2 by using the high frequency power supply 5. When a synthesizing process was performed for 4 hours, a cBN film having a thickness of 1.5 μm was synthesized on the upper surface of the substrate. As a comparative example, when a synthesis treatment was performed under the same conditions as in the above-described example of the present invention except that the filament was not heated by energization, a film containing hBN as a main component was synthesized on the substrate, and cBN was not synthesized. It was

【0015】(2).ターゲット4の材料としてhBN
焼結板を用い、12mmx12mmx5mm の窒化珪素板をcBN合
成用基体とし、図2に示す装置を用いて本発明に係る立
方晶窒化ほう素を形成した。まず、第2の平板型電極3
の表面には電極材料がスパッタされるのを防止するた
め、hBN焼結体から成る保護板9を装着した。次い
で、真空槽1内を排気バルブ13を介して排気口11に
接続される真空排気装置(図示してない)にて1x10-3Pa
まで排気後、排気バルブを閉じ、ガス供給バルブ14を
介してガス供給装置(図示してない)につながるガス導
入口12よりアルゴン60% 、水素36% 、窒素4%の体積比
から成る混合ガスを充填し、真空槽内の圧力が 150Paに
達したところでガス供給バルブ14を閉じ、ガスの供給
を止めた。次いで、第2の平板型電極3内に設置された
加熱装置8を通電加熱し基体7の温度を 700℃に保つと
ともに、基体7の上方10mmの位置に置かれたタングステ
ン製フィラメント6を交流電源10を用いて通電により
約2000℃に加熱した後、高周波電源5を用いて電極2に
700Wの高周波を印加した。これにより4時間の合成処理
を行ったところ、基体7の上面に2μmの厚さのcBN
膜が合成された。このように、ほう素含有ガスを外部か
ら供給することなく、閉じた系内でcBNを連続的に合
成できた。また合成用雰囲気ガスの消費量も初期の充填
分のみでよく、経済的である。
(2). HBN as target 4 material
Using a sintered plate, a 12 mm x 12 mm x 5 mm silicon nitride plate as a base for synthesizing cBN, the cubic boron nitride according to the present invention was formed using the apparatus shown in FIG. First, the second flat plate type electrode 3
In order to prevent the electrode material from being sputtered, a protective plate 9 made of a hBN sintered body was attached to the surface of the. Then, the inside of the vacuum chamber 1 is connected to the exhaust port 11 via the exhaust valve 13 by a vacuum exhaust device (not shown) at 1 × 10 −3 Pa.
After exhausting up to, the exhaust valve is closed, and a mixed gas having a volume ratio of 60% argon, 36% hydrogen, and 4% nitrogen from a gas inlet 12 connected to a gas supply device (not shown) via a gas supply valve 14. Was filled, and when the pressure in the vacuum chamber reached 150 Pa, the gas supply valve 14 was closed and the gas supply was stopped. Next, the heating device 8 installed in the second flat plate electrode 3 is electrically heated to keep the temperature of the base 7 at 700 ° C., and the tungsten filament 6 placed 10 mm above the base 7 is used as an AC power source. 10 is heated to about 2000 ° C by energization, and then a high frequency power source 5 is used to form an electrode 2
A high frequency of 700 W was applied. As a result of performing the synthesizing process for 4 hours, the upper surface of the substrate 7 was cBN with a thickness of 2 μm.
The membrane was synthesized. Thus, cBN could be continuously synthesized in a closed system without supplying a boron-containing gas from the outside. Further, the consumption amount of the synthesis atmosphere gas is only the initial filling amount, which is economical.

【0016】[0016]

【発明の効果】本発明の方法によれば、cBN合成用元
素をほう素またはhBNのターゲット4からスパッタに
よりcBN合成雰囲気中へ供給するので、有毒なほう素
含有原料ガスを使用することなく気相中でcBNを連続
的に合成することができ、さらにはターゲット材として
hBNを用いた場合には真空槽内へ原料ガスを連続的に
供給することなくcBNを合成することができるので安
全かつ経済的であり産業上非常に有益である。
According to the method of the present invention, since the element for cBN synthesis is supplied from the boron or hBN target 4 into the cBN synthesis atmosphere by sputtering, it is possible to use a source gas containing no poisonous boron gas. CBN can be continuously synthesized in the phase, and when hBN is used as the target material, cBN can be synthesized without continuously supplying the raw material gas into the vacuum chamber. It is economical and very industrially beneficial.

【0017】さらに、本発明に係る装置は真空槽内に高
周波電源と連結するとともに、前面にほう素またはhB
Nからなるターゲットを設けた第1の平板型電極と、基
体を載置するとともに、基体を加熱する加熱装置を内装
した第2の平板型電極とを対向配置し、さらに交流また
は直流電源に接続されたフィラメントを両電極間に配置
たものであるから、上記の如く有毒なほう素含有原料ガ
スを使用せずに基体にcBNを供給することができたの
である。
Further, the apparatus according to the present invention is connected to a high frequency power source in a vacuum chamber and has boron or hB on the front surface.
A first flat plate type electrode provided with a target made of N and a second flat plate type electrode having a substrate mounted thereon and a heating device for heating the base body are arranged to face each other, and further connected to an AC or DC power source. Since the formed filaments are arranged between both electrodes, cBN could be supplied to the substrate without using the toxic boron-containing raw material gas as described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のcBN合成装置の一実施例の概略図で
ある。
FIG. 1 is a schematic view of an embodiment of the cBN synthesizer of the present invention.

【図2】本発明のcBN合成装置の他の実施例の概略図
である。
FIG. 2 is a schematic view of another embodiment of the cBN synthesizer of the present invention.

【符号の説明】[Explanation of symbols]

1 真空槽 2 第1の平板型電極 3 第2の平板型電極 4 ターゲット 5 高周波電源 6 フィラメント 7 基体 8 加熱装置 9 保護板 10 フィラメント加熱用電源 11 排気口 12 ガス供給口 13 排気バルブ 14 ガス導入バルブ 15 加熱装置用電源 1 Vacuum Tank 2 First Flat Plate Electrode 3 Second Flat Plate Electrode 4 Target 5 High Frequency Power Supply 6 Filament 7 Base 8 Heating Device 9 Protective Plate 10 Filament Heating Power Supply 11 Exhaust Port 12 Gas Supply Port 13 Exhaust Valve 14 Gas Introduction Valve 15 Power supply for heating device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 良一 富山県富山市石金20番地 株式会社不二越 内 (72)発明者 山岸 憲一郎 富山県富山市石金20番地 株式会社不二越 内 (56)参考文献 特開 平3−107450(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ryoichi Watanabe 20 Ishigane Co., Ltd., Toyama City, Toyama Prefecture (72) Kenichiro Yamagishi 20 Ishigane Co., Ltd., Toyama City, Toyama Prefecture (56) References (56) References JP-A-3-107450 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ほう素または六方晶窒化ほう素を主成分
とするターゲットが対向面に装着され、かつ高周波電源
に接続する第1の平板型電極と、加熱手段を具備し、か
つターゲットに面して基体を載置した第2の平板型電極
とを真空装置内に対向配置すると共に、通電し加熱する
ことにより高温で熱電子を放出しガス分解を促進するよ
うにしたフィラメントを両電極間に介在させ、前記フィ
ラメントは前記ターゲット及び前記基体に面しかつ前記
基体に近接して配置されたことを特徴とする立方晶窒化
ほう素の形成装置。
1. A first flat plate-type electrode, on which a target containing boron or hexagonal boron nitride as a main component is mounted on the opposite surface, and which is connected to a high frequency power source, and a heating means, and a surface of the target is provided. Then, the second flat plate-type electrode on which the substrate is placed is placed in the vacuum device so as to face it , and is energized and heated.
By doing so, thermoelectrons are emitted at high temperature to accelerate gas decomposition.
Insert the filaments soaked between the electrodes ,
Lamentr faces the target and the substrate and
An apparatus for forming cubic boron nitride, characterized in that it is arranged close to a substrate .
【請求項2】 前記第2の平型電極の、少なくとも第1
の平型電極のターゲットに面した部分をほう素板または
六方晶窒化ほう素板で覆い、該ほう素板または六方晶窒
化ほう素板上に基体を載置した請求項1記載の立方晶窒
化ほう素の形成装置。
2. The at least first of the second flat electrodes
The part of the flat electrode facing the target is covered with a boron plate or a hexagonal boron nitride plate , and the boron plate or the hexagonal nitride plate is covered.
Cubic boron nitride of the forming apparatus according to claim 1 wherein placing the substrate on a boric material plate.
【請求項3】 真空槽内を排気後、該真空槽内にアルゴ
ンと水素とを混合し、これに窒素を混合したガスを連続
的に供給し、全ガス圧に対するアルゴンガスの分圧比が
10%乃至90%であり、窒素分圧と水素分圧の和に対
する窒素分圧の比が2%乃至50%であり、かつ真空槽
内の圧力が0.1Pa乃至1500Paに達した後、対
向配置されたほう素または六方晶窒化ほう素を主成分と
するターゲットを装着した第1の平板型電極と加熱手段
を具備しかつターゲットに面して基体を載置した第2の
平板型電極の間に介在されて前記ターゲット及び前記基
体に面しかつ前記基体に近接して配置されたフィラメン
トに交流もしくは直流電圧を印加し、該フィラメントを
1600℃乃至2500℃に加熱することにより高温で
熱電子を放出しガス分解を促進するようにするととも
に、第1の平型電極に高周波を印加し、スパッタによ
りほう素またはほう素と窒素を気相中へ連続的に供給
し、該第2の平板型電極の加熱手段により基体を300
℃乃至1000℃に加熱して基体上に窒化ほう素を形成
することを特徴とする立方晶窒化ほう素の形成方法。
3. After evacuating the inside of the vacuum chamber , argon and hydrogen are mixed into the vacuum chamber, and a gas in which nitrogen is mixed is continuously supplied to the vacuum chamber, and the partial pressure ratio of the argon gas to the total gas pressure is 10. % To 90 %, the ratio of the nitrogen partial pressure to the sum of the nitrogen partial pressure and the hydrogen partial pressure is 2% to 50%, and after the pressure in the vacuum chamber reaches 0.1 Pa to 1500 Pa, the facing arrangement is performed. With boron or hexagonal boron nitride as the main component
First flat plate type electrode equipped with a target for heating and heating means
The target and the substrate interposed between a second flat plate type electrode having a substrate facing the target and having a substrate mounted thereon.
At a high temperature, an AC or DC voltage is applied to the filaments facing the body and arranged close to the substrate , and the filaments are heated to 1600 ° C to 2500 ° C.
The <br/> both a so as to facilitate release and gas decomposition thermal electrons, continuous high frequency is applied to the first flat electrode, the more boron or boron and nitrogen as a sputtering into the gas phase And the substrate is heated to 300 by the heating means of the second flat plate type electrode.
A method for forming cubic boron nitride, which comprises heating the substrate to 1000C to 1000C to form boron nitride on the substrate.
【請求項4】 真空槽内を排気後、該真空槽内にアルゴ
ンと水素とを混合し、これにアンモニアを混合したガス
を連続的に供給し、全ガス圧に対するアルゴンガスの分
圧比が10%乃至90%であり、アンモニア分圧と水素
分圧の和に対す るアンモニア分圧の比が4%乃至70%
であり、かつ真空槽内の圧力が0.1Pa乃至1500
Paに達した後、対向配置されたほう素または六方晶窒
化ほう素を主成分とするターゲットを装着した第1の平
板型電極と加熱手段を具備しかつターゲットに面して基
体を載置した第2の平板型電極の間に介在されて前記タ
ーゲット及び前記基体に面しかつ前記基体に近接して配
置されたフィラメントに交流もしくは直流電圧を印加
し、該フィラメントを1600℃乃至2500℃に加熱
することにより高温で熱電子を放出しガス分解を促進す
るようにするとともに、第1の平型電極に高周波を印
加し、スパッタによりターゲットの構成元素であるほう
素またはほう素と窒素を気相中へ連続的に供給し、基体
を300℃乃至1000℃に加熱して基体上に窒化ほう
素を形成することを特徴とする立方晶窒化ほう素の形成
方法。
4. After evacuating the inside of the vacuum chamber , argon and hydrogen are mixed into the vacuum chamber, and a gas in which ammonia is mixed is continuously supplied, and the partial pressure ratio of the argon gas to the total gas pressure is 10. % To 90 %, ammonia partial pressure and hydrogen
The ratio of the partial pressure of ammonia against the sum of the partial pressures of 4 to 70%
And the pressure in the vacuum chamber is 0.1 Pa to 1500
After reaching Pa, boron or hexagonal nitride arranged oppositely.
A first plate-type electrode equipped with a target containing boron as a main component and a heating means are provided, and the base is faced to the target.
The tag is interposed between the second flat plate type electrode on which the body is placed .
Target and the substrate facing the substrate and close to the substrate.
AC or DC voltage is applied to the placed filament and the filament is heated to 1600 ° C to 2500 ° C.
Discharges thermoelectrons at high temperature to accelerate gas decomposition
As well as to so that, the high frequency is applied to the first flat electrode, sputtered containing or boron and nitrogen should be constituent elements of the target was continuously fed into the gas phase by a substrate 300 ° C. to A method for forming cubic boron nitride, which comprises heating to 1000 ° C. to form boron nitride on a substrate.
【請求項5】 真空槽内を排気後、該真空槽内にアルゴ
ンと水素を混合し、これに窒素を混合したガスを連続的
に供給し、全ガス圧に対するアルゴンガスの分圧比が1
0%乃至90%であり、窒素分圧と水素分圧の和に対す
る窒素分圧の比を2%乃至50%とし、かつ真空槽内の
圧力が0.1Pa乃至1500Paに達するまで充填し
た後、真空槽内を密閉状態とし、しかる後に対向配置さ
れた六方晶窒化ほう素を主成分とするターゲットを装着
した第1の平板型電極と加熱手段を具備しかつターゲッ
トに面して基体を載置した第2の平板型電極の間に介在
されて前記ターゲット及び前記基体に面しかつ前記基体
に近接して配置されたフィラメントを通電により160
0℃乃至2500℃に加熱することにより高温で熱電子
を放出しガス分解を促進するようにするとともに
1の平板型電極に高周波を印加し、ターゲットの構成元
素であるほう素および窒素をスパッタにより連続的に気
相中へ供給し、基体を300℃乃至1000℃に加熱し
基体上に連続的に窒化ほう素を形成することを特徴と
する立方晶窒化ほう素の形成方法。
5. After evacuating the inside of the vacuum chamber, argon and hydrogen are mixed into the vacuum chamber, and a gas in which nitrogen is mixed is continuously supplied, and the partial pressure ratio of the argon gas to the total gas pressure is 1.
0% to 90 %, the ratio of the nitrogen partial pressure to the sum of the nitrogen partial pressure and the hydrogen partial pressure is 2% to 50%, and after filling until the pressure in the vacuum chamber reaches 0.1 Pa to 1500 Pa, The inside of the vacuum chamber was hermetically sealed, and then a target mainly composed of hexagonal boron nitride was placed opposite to the target.
Equipped with a first flat plate electrode and heating means
Intervening between the second flat plate type electrodes on which the substrate is placed facing the
Facing the target and the substrate and the substrate
The filament placed close to the
Thermoelectrons at high temperature by heating from 0 ℃ to 2500 ℃
Together with so as to facilitate and gas decomposition release, a high frequency is applied to the first plate electrodes, to supply oxygen and nitrogen should be constituent elements of the target to the continuous gas phase by sputtering, the substrate To 300 to 1000 ℃
A method for forming cubic boron nitride, which comprises continuously forming boron nitride on a substrate.
【請求項6】 真空槽内を排気後、該真空槽内にアルゴ
ンと水素を混合し、これにアンモニアを混合したガスを
連続的に供給し、全ガス圧に対するアルゴンガスの分圧
比が10%乃至90%であり、アンモニア分圧と水素分
圧の和に対するアンモニア分圧の比が4%乃至70%で
あり、かつ真空槽内の圧力が0.1Pa乃至1500P
aに達するまで充填した後、真空槽内を密閉状態とし、
しかる後に対向配置された六方晶窒化ほう素を主成分と
するターゲットを装着した第1の平板型電極と加熱手段
を具備しかつターゲットに面して基体を載置した第2の
平板型電極の間に介在されて前記ターゲット及び前記基
体に面しかつ前記基体に近接して配置されたフィラメン
トを通電により1600℃乃至2500℃に加熱するこ
とにより高温で熱電子を放出しガス分解を促進するよう
にするとともに第1の平板型電極に高周波を印加
し、ターゲットの構成元素であるほう素および窒素をス
パッタにより連続的に気相中ヘ供給し、基体を300℃
乃至1000℃に加熱して基体上に連続的に窒化ほう素
を形成することを特徴とする立方晶窒化ほう素の形成方
法。
6. After evacuating the inside of the vacuum chamber, argon and hydrogen are mixed into the vacuum chamber, and a gas in which ammonia is mixed is continuously supplied, and the partial pressure ratio of the argon gas to the total gas pressure is 10%. To 90 %, the ratio of the ammonia partial pressure to the sum of the ammonia partial pressure and the hydrogen partial pressure is 4% to 70%, and the pressure in the vacuum chamber is 0.1 Pa to 1500 P.
After filling until reaching a, the inside of the vacuum chamber is sealed,
Later, the main component was hexagonal boron nitride, which was placed facing each other.
First flat plate type electrode equipped with a target for heating and heating means
The target and the substrate interposed between a second flat plate type electrode having a substrate facing the target and having a substrate mounted thereon.
Heating the filament facing the body and close to the substrate to 1600 ° C to 2500 ° C by energization .
To release thermoelectrons at high temperature and accelerate gas decomposition
As well as the, the high frequency is applied to the first plate electrodes, continuously gas phase Chuhe supplied by sputtering containing and nitrogen should be constituent elements of the target, the substrate 300 ° C.
A method for forming cubic boron nitride, which comprises heating the substrate to 1000 ° C. to continuously form boron nitride on the substrate.
JP3165272A 1991-06-11 1991-06-11 Method and apparatus for forming cubic boron nitride Expired - Fee Related JPH0784644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3165272A JPH0784644B2 (en) 1991-06-11 1991-06-11 Method and apparatus for forming cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3165272A JPH0784644B2 (en) 1991-06-11 1991-06-11 Method and apparatus for forming cubic boron nitride

Publications (2)

Publication Number Publication Date
JPH04365850A JPH04365850A (en) 1992-12-17
JPH0784644B2 true JPH0784644B2 (en) 1995-09-13

Family

ID=15809184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3165272A Expired - Fee Related JPH0784644B2 (en) 1991-06-11 1991-06-11 Method and apparatus for forming cubic boron nitride

Country Status (1)

Country Link
JP (1) JPH0784644B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972095B2 (en) * 2002-12-18 2007-09-05 独立行政法人産業技術総合研究所 Method for producing single crystal boron nanobelt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967883A (en) * 1972-11-06 1974-07-01
JP2716812B2 (en) * 1989-09-22 1998-02-18 豊信 吉田 Method for forming boron nitride deposited film having high hardness

Also Published As

Publication number Publication date
JPH04365850A (en) 1992-12-17

Similar Documents

Publication Publication Date Title
EP0439135B1 (en) Method for producing boron nitride film
KR910001359B1 (en) Method for synthesizing diamond
US5370855A (en) Conversion of fullerenes to diamond
US4683043A (en) Cubic boron nitride preparation
US4655893A (en) Cubic boron nitride preparation utilizing a boron and nitrogen bearing gas
US4412899A (en) Cubic boron nitride preparation utilizing nitrogen gas
US4415420A (en) Cubic boron nitride preparation
EP0406995B1 (en) TiN Thin film formation method
JPH0784644B2 (en) Method and apparatus for forming cubic boron nitride
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JP2611521B2 (en) Method of forming boron nitride thin film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS6395200A (en) Production of hard boron nitride film
JPH0733580B2 (en) Method for producing cubic boron nitride film
JP4294138B2 (en) Mold release processing method by reactive sputtering using ECR plasma
JP2002167206A (en) Nitrogen, carbon, silicon type hard material, its manufacturing method, and its application
JP2611522B2 (en) Method of forming boron nitride thin film
JPH0649635B2 (en) Diamond synthesis method
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPH02230734A (en) Thin film formation device
JP2761026B2 (en) Method for manufacturing boron nitride film
JPH04191358A (en) Production of boron nitride film
JPH07237996A (en) Formation of diamond film, production of industrial tool coated with the diamond film, and the tool coated therewith

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees