JPH0784638B2 - Especially hard corrosion resistant alloy with excellent mirror finish - Google Patents

Especially hard corrosion resistant alloy with excellent mirror finish

Info

Publication number
JPH0784638B2
JPH0784638B2 JP33105187A JP33105187A JPH0784638B2 JP H0784638 B2 JPH0784638 B2 JP H0784638B2 JP 33105187 A JP33105187 A JP 33105187A JP 33105187 A JP33105187 A JP 33105187A JP H0784638 B2 JPH0784638 B2 JP H0784638B2
Authority
JP
Japan
Prior art keywords
alloy
mirror finish
resistant alloy
present
excellent mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33105187A
Other languages
Japanese (ja)
Other versions
JPH01172549A (en
Inventor
政夫 森下
洋司 川谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33105187A priority Critical patent/JPH0784638B2/en
Publication of JPH01172549A publication Critical patent/JPH01172549A/en
Publication of JPH0784638B2 publication Critical patent/JPH0784638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は硬質耐食合金に係り、特に光ディスク、プラス
チックレンズなどの樹脂成形金型材料に適する鏡面仕上
げ性に優れたFe基の硬質耐食合金に関するものである。
Description: TECHNICAL FIELD The present invention relates to a hard corrosion-resistant alloy, and more particularly to a Fe-based hard corrosion-resistant alloy suitable for resin molding die materials such as optical disks and plastic lenses, which has excellent mirror-finishing properties. It is a thing.

(従来の技術及び解決しようとする問題点) 近年、光ディスクやプラスチックレンズなどの普及に伴
って、これらを樹脂から成形すると同時に平滑で光沢の
ある表面を得るための鏡面仕上げ性に優れた樹脂成形金
型材料のニーズが急増してきている。
(Prior art and problems to be solved) In recent years, with the spread of optical discs and plastic lenses, etc., resin molding with excellent mirror-like finish to obtain smooth and glossy surfaces at the same time as molding these from resin The need for mold materials is increasing rapidly.

従来より、この種の鏡面仕上げ用金型材料としては、13
Crマルテンサイト系ステンレス鋼、マルエージング鋼な
どが用いられている。
Conventionally, as a mold material for this type of mirror finish, 13
Cr martensitic stainless steel, maraging steel, etc. are used.

しかし、前者の13Crマルテンサイト系ステンレス鋼の場
合には、Cを含むため、金型を製造する際の熱処理時に
寸法変化が生じ易く、また製造された金型で樹脂成形す
ると金型表面の粗大析出相である炭化物が樹脂に転写さ
れ、鏡面仕上げ性が劣るという問題があった。
However, in the case of the former 13Cr martensitic stainless steel, since it contains C, dimensional changes are likely to occur during heat treatment when manufacturing the mold, and when resin molding is performed using the manufactured mold, the surface of the mold becomes rough. Carbide, which is a precipitation phase, is transferred to the resin, and there is a problem that mirror finish is poor.

そこで、この問題を解決するため、製造した金型の表面
にCVD法によりTiNをコーティングする方法が試みられて
いるが、この方法では、母材とコーティング層との境界
部に歪が発生してコーティング層が剥離するという問題
があり、更にはコーティング処理費が高くつき、コスト
高になる等の欠点がある。
Therefore, in order to solve this problem, a method of coating the surface of the manufactured mold with TiN by the CVD method has been attempted, but in this method, distortion occurs at the boundary between the base material and the coating layer. There is a problem that the coating layer is peeled off, and further, the cost of coating treatment is high and the cost is high.

一方、後者のマルエージング鋼の場合には、製造された
金型に炭化物を含まないため、鏡面仕上げ性の点では優
位性を備えてはいるものの、硬さが充分でなく、また加
熱された樹脂から発生する腐食ガスに対する耐食性が不
足するという問題がある。
On the other hand, in the case of the latter maraging steel, since the manufactured mold does not contain carbides, it has an advantage in terms of mirror finish, but the hardness is not sufficient and it was heated. There is a problem that the corrosion resistance to the corrosive gas generated from the resin is insufficient.

このように、前記いずれの金型材料も鏡面仕上げ性、耐
食性等などの所要の特性を充分兼備した材料とは云い難
く、或いは特殊な表面処理を必要とするなど、製造コス
ト上の問題もある。
As described above, it is difficult to say that any of the above-mentioned mold materials is a material having sufficient required properties such as mirror finish, corrosion resistance, etc., or a special surface treatment is required, and there is a problem in manufacturing cost. .

本発明は、上記従来技術の欠点を解消し、コーティング
処理等の表面処理を必要とせず、表面に炭化物等の粗大
析出相を含まないで優れた鏡面仕上げ性を有し、しかも
硬質で耐食性も優れている新規な合金を提供することを
目的とするものである。
The present invention eliminates the above-mentioned drawbacks of the prior art, does not require surface treatment such as coating treatment, has excellent mirror-finishing properties without containing coarse precipitation phases such as carbides on the surface, and is also hard and corrosion resistant. The object is to provide a superior new alloy.

(問題点を解決するための手段) 上記目的を達成するため、本発明者は、従来の炭化物
(セメンタイト、クロムカーバイド等)析出による硬質
化機構では、コーティング処理しなければ鏡面仕上げ性
を確保できないことに鑑みて、従来の時効硬化型とは異
なる新たな機構により、硬度及び耐食性共に充分に備え
た合金を開発すべく鋭意研究を重ねた結果、Moのクラス
ター化により合金を硬質化でき、かつ、優れた鏡面仕上
げ性と共に耐食性を充分兼ね備え得る時効硬化型のFe基
合金を見い出すに至り、ここに本発明をなしたものであ
る。
(Means for Solving Problems) In order to achieve the above-mentioned object, the present inventor cannot secure mirror finish by a conventional hardening mechanism by precipitation of carbides (cementite, chrome carbide, etc.) unless coating treatment is performed. In view of this, a new mechanism different from the conventional age-hardening type has led to intensive studies to develop an alloy having sufficient hardness and corrosion resistance, and as a result, the alloy can be hardened by clustering Mo, and The present invention has been made by finding an age-hardening Fe-based alloy that can have both excellent mirror finish and corrosion resistance.

すなわち、本発明は、Mo及びAlが第1図に示す各点c
(Mo10%、Al8%)、d(Mo8%、Al%)、e(Mo8%、A
l50%)、f(Mo22%、Al50%)、g(Mo22%、Al8%)
を順次結ぶ線で囲まれた領域内にあるように含有し、残
部が実質的にFeからなることを特徴とする特に鏡面仕上
げ性に優れた硬質耐食合金を要旨とするものである。
That is, in the present invention, Mo and Al are the points c shown in FIG.
(Mo10%, Al8%), d (Mo8%, Al%), e (Mo8%, A
l50%), f (Mo22%, Al50%), g (Mo22%, Al8%)
The present invention is directed to a hard corrosion-resistant alloy having particularly excellent mirror-finishing properties, characterized in that it is contained in a region surrounded by a line connecting in succession with the balance being substantially Fe.

以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

まず、本発明合金における各成分の作用について説明す
る。なお、各成分とも後述の適量範囲内においてその固
有な作用を発揮するものであることは云うまでもない。
First, the action of each component in the alloy of the present invention will be described. Needless to say, each component exerts its unique action within an appropriate amount range described below.

Moは、本発明においてクラスター化による硬化機構を活
用するために最も重要な成分であって、液体化処理後の
時効によりMoの原子同志が集合してクラスターを形成す
るが、Moのクラスターのサイズ及び平均間隔は非常に微
細であるため、クラスターによる周期的格子歪によって
合金を硬質化させることができる。この機構は、第2図
に図解するように、鉄(Fe)の格子面にMo原子を集団的
に配列させて周期的な格子歪を作るものであって、例え
ば、10個のFe原子毎にその格子面に多数のMo原子の集合
体が形成されている。このような作用を得るためには、
少なくとも8%以上のMoが必要である。しかし、22%を
超えると合金が脆化するので好ましくない。これは、一
般に、体心立方晶の結晶構造を有する元素は延性−脆性
温度が存在し、Moの場合は、24℃以下で伸びが0%とな
り、本発明合金の場合、局所的にMoの集合体をつくるた
め、過剰にMoを加えると、上記のような脆性が現われる
ためと考えられる。また、Moは、塩酸など、還元性の酸
に対する耐食性を著しく向上させる元素である。
Mo is the most important component to utilize the hardening mechanism by clustering in the present invention, and the atoms of Mo gather together to form a cluster by aging after liquefaction treatment. And the average spacing is so fine that the alloy can be hardened by the periodic lattice strain due to the clusters. This mechanism, as illustrated in FIG. 2, arranges Mo atoms collectively on the iron (Fe) lattice plane to create a periodic lattice strain. For example, for every 10 Fe atoms, At the lattice plane, a large number of Mo atom aggregates are formed. To obtain this effect,
At least 8% or more Mo is required. However, if it exceeds 22%, the alloy becomes brittle, which is not preferable. This is because, generally, an element having a body-centered cubic crystal structure has a ductility-brittleness temperature, and in the case of Mo, the elongation is 0% at 24 ° C. or less, and in the case of the alloy of the present invention, the Mo content is locally increased. It is considered that the above brittleness appears when Mo is excessively added to form an aggregate. Further, Mo is an element that significantly improves the corrosion resistance to reducing acids such as hydrochloric acid.

AlはMoのクラスターの形成を促進させる作用がある。Fe
−Mo2元系では、20%以上のMoを添加しないとMoのクラ
スター形成による硬化が生じないが、本発明者の研究に
より、Alを添加すると、Moのクラスターの形成を促進さ
せ、Moを8%まで低減できることが明らかとなった。上
述のように、Moは低濃度である方が合金の靱性面からは
望ましいが、このようにAlの添加によりMoの低濃度化が
可能になるので、Alは該合金の強度面で有効な添加元素
と云うことができる。
Al has a function of promoting the formation of Mo clusters. Fe
-In the binary Mo system, if 20% or more of Mo is not added, hardening due to Mo cluster formation does not occur. However, according to the research by the present inventors, the addition of Al promotes the formation of Mo clusters, and Mo It became clear that it could be reduced to%. As described above, it is desirable that Mo has a low concentration from the viewpoint of toughness of the alloy, but since addition of Al makes it possible to reduce the concentration of Mo, Al is effective in terms of strength of the alloy. It can be called an additive element.

また、Alは、硝酸など酸化性の酸に対する耐食性を向上
させ、大気中での耐酸化性をも著しく改善する元素であ
る。耐食性の向上には、8%以上のAlを要し、一方、50
%を超えて添加した場合には脆弱な金属間化合物ζ相が
析出するため、Alの添加量は8〜50%の範囲とする。
Further, Al is an element that improves the corrosion resistance against an oxidizing acid such as nitric acid, and significantly improves the oxidation resistance in the atmosphere. 8% or more of Al is required to improve corrosion resistance, while 50
%, The brittle intermetallic compound ζ phase precipitates, so the amount of Al added is in the range of 8 to 50%.

以上のような元素の作用により、本発明のFe基合金にお
けるMoとAlは、第1図に示す斜線部領域内に属するよう
に規制し、調整する必要があることが判明した。
By the action of the elements as described above, it was found that it is necessary to regulate and adjust Mo and Al in the Fe-based alloy of the present invention so as to belong to the shaded area shown in FIG.

すなわち、第1図は、硬化機構の主要成分であるMo量
(横軸)と硬化を促進させる成分であるAl量(縦軸)の
関係を示したものである。同図中、領域A(斜線部)
は、c(10%、8%)、d(8%、25%)、e(8%、
50%)、f(22%、50%)及びg(22%、8%)の各点
を順次結ぶ線で囲まれた領域で、本発明範囲内の組成で
あることを示している。この領域A内の成分量であれ
ば、時効によりビッカース硬さ(mHv)で550以上に硬化
可能である。特に、領域Aのうち、Alが22〜34%及び34
〜50%の範囲では、時効によりマトリックス相がそれぞ
れFe3Al、FeAlの規則格子を形成するため、時効硬化が
より著しくなる。
That is, FIG. 1 shows the relationship between the amount of Mo, which is the main component of the curing mechanism (horizontal axis), and the amount of Al, which is the component that accelerates curing (vertical axis). In the figure, area A (hatched area)
Is c (10%, 8%), d (8%, 25%), e (8%,
50%), f (22%, 50%), and g (22%, 8%) are surrounded by a line that sequentially connects the points, which indicates that the composition is within the scope of the present invention. If the amount of components in this region A, it can be hardened to 550 or more in Vickers hardness (mHv) by aging. In particular, in the region A, Al is 22 to 34% and 34
In the range of up to 50%, the matrix phase forms ordered lattices of Fe 3 Al and FeAl by aging, so that age hardening becomes more remarkable.

しかし、領域Bでは、Mo量が少なく、しかもAl量も少な
いためにクラスターが充分に形成されず、硬度mHvが550
未満で合金が硬質化しない。
However, in the region B, the amount of Mo is small and the amount of Al is also small, so that the clusters are not sufficiently formed and the hardness mHv is 550.
If less than, the alloy will not harden.

一方、領域Cでは、各点a(20%、0%)、b(15%、
1%)、c(10%、8%)を結ぶ線で示される量以上に
Mo、Alを添加すると、クラスターが形成され、硬化する
ものの、Alが少ないため、耐食性が劣り、また、大気中
での耐酸化性が劣化する。
On the other hand, in area C, each point a (20%, 0%), b (15%,
1%), c (10%, 8%) or more than the amount indicated by the line
When Mo and Al are added, clusters are formed and hardened, but since Al is small, corrosion resistance is poor and oxidation resistance in the air is deteriorated.

また、領域DではAl過剰により脆弱な金属間化合物ζ相
が析出するため、非常に脆く、領域EではMo過剰により
脆性が現れて靱性が劣るので、いずれも実用材としての
使用は不能である。
Further, in the region D, a brittle intermetallic compound ζ phase is precipitated due to excessive Al, so that the region is very brittle, and in the region E, brittleness appears due to excessive Mo and the toughness is poor, and therefore, any of them cannot be used as a practical material. .

次に上記化学成分を有するFe基合金の製造について説明
する。
Next, the production of the Fe-based alloy having the above chemical composition will be described.

Al量が8〜25%の場合は、溶解、鋳造し、均質化焼鈍の
後、熱間圧延等の熱間加工を行って素材を製造し、次い
で溶体化処理を施した後、所望の寸法、形状の製品に塑
性加工を行うのが望ましい。その場合、溶体化処理状態
では塑性加工が容易であり、その後、時効により硬質化
するので、成形加工に支障はない。一方、Al量が25〜50
%の場合には、1000℃付近よりFe原子とAl原子の規則化
が生じ、熱間加工性が劣化する。そのため、Al量が25〜
50%の場合には、溶融状態よりアトマイズ方を用いて粉
末(アトマイズ粉)を製造し、これを熱間静水圧プレス
(HIP)により最終形状に成形した後、溶体化処理及び
時効処理を施すならば、結晶粒が微細な硬質焼結合金が
得られる。なお、Al量が8〜25%の場合であっても、同
様のプロセスにより製造することは差支えなく、アトマ
イズ粉末の焼結成形は結晶粒径の微細化という点で有効
に適用できる。
When the amount of Al is 8-25%, after melting, casting, homogenizing annealing, hot working such as hot rolling to manufacture the material, and then subjecting it to solution treatment, the desired size is obtained. It is desirable to perform plastic working on shaped products. In that case, plastic working is easy in the solution heat treated state, and thereafter, it is hardened by aging, so there is no hindrance to the forming work. On the other hand, the amount of Al is 25-50
%, Regularization of Fe atoms and Al atoms occurs from around 1000 ° C., and hot workability deteriorates. Therefore, the amount of Al is 25 ~
In the case of 50%, powder (atomized powder) is produced from the molten state using the atomizing method, and this is molded into the final shape by hot isostatic pressing (HIP), and then subjected to solution treatment and aging treatment. Then, a hard sintered alloy having fine crystal grains can be obtained. Even if the amount of Al is 8 to 25%, it can be produced by the same process, and the sintering of atomized powder can be effectively applied in terms of making the crystal grain size finer.

本発明合金は、組織的には粗大な析出相を含まない状態
で硬質化されるので、金型材料に用いた場合、表面粗度
0.003μmRaを達成でき、優れた鏡面仕上げ性が得られ
る。このため、光ディスクなどの樹脂成形に高性能を発
揮する金型を製造することが可能である。また、本発明
合金は、金型材料用だけではなく、その特性を活かして
プラスチック射出成形機のシリンダー、スクリューなど
の各種部材に適用可能である。
Since the alloy of the present invention is structurally hardened in a state not containing a coarse precipitation phase, when used as a mold material, the surface roughness
Achieving 0.003 μmRa and excellent mirror finish. Therefore, it is possible to manufacture a mold that exhibits high performance in resin molding of optical disks and the like. Further, the alloy of the present invention is applicable not only to mold materials but also to various members such as cylinders and screws of plastic injection molding machines by utilizing its characteristics.

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) 第1表に示す化学成分(at%)を有する合金を溶製、鋳
造し、得られた鋳塊に1250℃×5hrの均質化焼鈍を施し
た後、1250〜1000℃の温度で熱間圧延を行った。
(Example) An alloy having the chemical composition (at%) shown in Table 1 was melted and cast, and the obtained ingot was subjected to homogenization annealing at 1250 ° C for 5 hours, and then at a temperature of 1250 to 1000 ° C. Was hot-rolled.

熱間圧延後、1250℃×20minの溶体化処理を施し、次い
で500℃×7hrの時効処理を施して供試合金とした。な
お、第1表の備考欄に「HIP」と記した合金は、該合金
のアトマイズ粉末を1250℃、1000気圧、3hrの条件でHIP
処理後、上記熱処理を施したものである。
After hot rolling, solution treatment was performed at 1250 ° C for 20 minutes, and then aging treatment was performed at 500 ° C for 7 hours to obtain a match. In addition, the alloy described as “HIP” in the remarks column of Table 1 is an atomized powder of the alloy, which is HIP under the conditions of 1250 ° C., 1000 atmospheric pressure, and 3 hours.
After the treatment, the heat treatment is applied.

各供試合金について時効硬さ(mHv)を測定すると共に
耐食性及び耐酸化性を調べた。それらの結果を第1表に
併記する。なお、耐食試験では、50℃、5%HCl溶液中
に試料を24hr浸漬し、腐食減量を測定して耐食性を評価
した。また耐酸化性については、400℃の炉中に8hr投入
し、投入後、金属光沢を保持したものを「有」、酸化皮
膜の形成により金属光沢を失ったものを「無」と記し
て、耐酸化性を評価した。
The age hardness (mHv) was measured for each match and the corrosion resistance and oxidation resistance were examined. The results are also shown in Table 1. In the corrosion resistance test, the sample was immersed in a 5% HCl solution at 50 ° C. for 24 hours, and the corrosion weight loss was measured to evaluate the corrosion resistance. Regarding the oxidation resistance, after being put in a furnace at 400 ° C for 8 hours, those having a metallic luster after being put are described as "Yes", those having a metallic luster due to the formation of an oxide film are described as "No", The oxidation resistance was evaluated.

第1表から明らかなとおり、本発明合金No.11〜No.18
は、いずれも充分な硬さを有すると共に良好な耐食性及
び耐酸化性を有している。
As is clear from Table 1, the alloys of the present invention No. 11 to No. 18
All have sufficient hardness and have good corrosion resistance and oxidation resistance.

これに対し、比較合金No.3〜No.10は、硬さ、耐食性、
耐酸化性及び靱性のいずれかで問題がある。
On the other hand, Comparative Alloys No. 3 to No. 10 have hardness, corrosion resistance,
There is a problem in either oxidation resistance or toughness.

すなわち、No.3〜No.6は、第1図の領域Bに属する成分
組成であるため、硬質化が不充分である。No.7及びNo.8
は、第1図の領域Cに属するので硬質化しているもの
の、Al量が少ないため、耐酸化性がなく、金型材料に使
用した場合には高温での溶融樹脂の成形操業に問題があ
る。
That is, since No. 3 to No. 6 are the component compositions belonging to the region B in FIG. 1, the hardening is insufficient. No.7 and No.8
Since it belongs to the region C of FIG. 1 and is hardened, it has a small amount of Al, so it does not have oxidation resistance and has a problem in the molten resin molding operation at high temperature when used as a mold material. .

またNo.9及びNo.10は、それぞれ第1図の領域D及びE
に属する例で、靱性に問題がある。すなわち、4点曲げ
試験を各試料につき8本づつ行ってワイブル係数を求め
たところ、No.9及びNo.10はいずれも非常に小さな値を
示し、実用上問題があることが確認された。
No. 9 and No. 10 are areas D and E in Fig. 1, respectively.
In this example, there is a problem in toughness. That is, when the Weibull coefficient was obtained by performing four 4-point bending tests for each sample, it was confirmed that No. 9 and No. 10 both had very small values, and that there was a problem in practical use.

次に、従来合金No.1(13Crステンレス鋼)とNo.2(マル
エージング鋼)についても同様の試験を行ったが、第1
表に示すように、いずれも耐食性に問題があり、更に、
13Crステンレス鋼の場合には、前述の如く炭化物が樹脂
に転写するという問題がある。
Next, the same test was performed for conventional alloy No. 1 (13Cr stainless steel) and No. 2 (maraging steel).
As shown in the table, all have problems in corrosion resistance,
In the case of 13Cr stainless steel, there is a problem that the carbide is transferred to the resin as described above.

(発明の効果) 以上詳述したように、本発明によれば、Fe基合金に適量
のMo及びAlを添加し、従来とは異なる新たな硬質化機構
を利用したので、粗大な析出相を含まないで硬質化さ
れ、優れた鏡面仕上げ性を有し、しかも耐食性の優れた
合金を提供することができる。特に光ディスク、プラス
チックレンズなどの樹脂成形金型材料に好適である。
(Effects of the Invention) As described in detail above, according to the present invention, since a proper amount of Mo and Al are added to the Fe-based alloy and a new hardening mechanism different from the conventional one is used, a coarse precipitation phase is formed. It is possible to provide an alloy that is hardened without containing it, has an excellent mirror-finishing property, and has excellent corrosion resistance. It is particularly suitable for resin molding die materials such as optical disks and plastic lenses.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明合金におけるMo量(横軸)とAl量(縦
軸)の関係を示す図、 第2図は、Fe原子の格子面に形成されたMoのクラスター
を示す説明図である。
FIG. 1 is a diagram showing the relationship between the amount of Mo (horizontal axis) and the amount of Al (vertical axis) in the alloy of the present invention, and FIG. 2 is an explanatory diagram showing Mo clusters formed on the lattice plane of Fe atoms. is there.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子%で(以下、同じ)、Mo及びAlが第1
図に示す各点c(Mo10%、Al8%)、d(Mo8%、Al25
%)、e(Mo8%、Al50%)、f(Mo22%、Al50%)、
g(Mo22%、Al8%)を順次結ぶ線で囲まれた領域内に
あるように含有し、残部が実質的にFeからなることを特
徴とする特に鏡面仕上げ性に優れた硬質耐食合金。
1. Mo and Al are first in atomic% (hereinafter the same).
Each point c (Mo10%, Al8%), d (Mo8%, Al25) shown in the figure
%), E (Mo8%, Al50%), f (Mo22%, Al50%),
g (Mo22%, Al8%) so that it is contained in the area surrounded by the line connecting in sequence, and the balance is substantially Fe, which is a hard corrosion-resistant alloy with particularly excellent mirror finish.
JP33105187A 1987-12-25 1987-12-25 Especially hard corrosion resistant alloy with excellent mirror finish Expired - Fee Related JPH0784638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33105187A JPH0784638B2 (en) 1987-12-25 1987-12-25 Especially hard corrosion resistant alloy with excellent mirror finish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33105187A JPH0784638B2 (en) 1987-12-25 1987-12-25 Especially hard corrosion resistant alloy with excellent mirror finish

Publications (2)

Publication Number Publication Date
JPH01172549A JPH01172549A (en) 1989-07-07
JPH0784638B2 true JPH0784638B2 (en) 1995-09-13

Family

ID=18239295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33105187A Expired - Fee Related JPH0784638B2 (en) 1987-12-25 1987-12-25 Especially hard corrosion resistant alloy with excellent mirror finish

Country Status (1)

Country Link
JP (1) JPH0784638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11693123B2 (en) * 2019-10-22 2023-07-04 Neutron Holdings, Inc. Leveraging operations depots for antenna placement to gather phase and position data

Also Published As

Publication number Publication date
JPH01172549A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
JP3083225B2 (en) Manufacturing method of titanium alloy decorative article and watch exterior part
US11850659B2 (en) High entropy alloy powder for laser cladding and application method thereof
CN1082098C (en) Bake hardenable vanadium contg. steel
EP2773786B1 (en) Low nickel austenitic stainless steel
JP4284405B2 (en) Tapping screw and its manufacturing method
JPH0784638B2 (en) Especially hard corrosion resistant alloy with excellent mirror finish
JPS5967365A (en) Production of machine parts
JP2674715B2 (en) Method for manufacturing porous mold
JPH0688166A (en) Die for hot working excellent in heat cracking resistance
JPH0535203B2 (en)
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP4488386B2 (en) Die for hot working and manufacturing method of mold material for hot working
CN1087683A (en) High-temperature wearable Ni 3Al base alloy
JPS63303037A (en) Hard corrosion-resisting alloy excellent in mirror-finish characteristic
JPH06306508A (en) Production of low anisotropy and high fatigue strength titanium base composite material
JP3206438B2 (en) Plastic molds and steels with excellent finishing accuracy
TWI838077B (en) Alloy steel and method of manufacturing the same
CN114672633B (en) Method for synchronously carrying out rolling annealing and surface hardening in all-austenitic high-manganese steel by utilizing decarburization
JP2912761B2 (en) Manufacturing method of ferritic stainless steel
KR100672839B1 (en) Heat resistant and high oxidation resistant mold material for Cu-alloy die casting and hot-working
JPS62250141A (en) Ni-base alloy for boronizing treatment
JP3750835B2 (en) High hardness corrosion resistant powder die steel excellent in mirror finish and method for producing the same
JPH07116548B2 (en) High hardness alloy steel manufacturing method
JP2824519B2 (en) Alumina-dispersed aluminum-titanium intermetallic compound composite material and method for producing the same
JPH06342086A (en) Time piece frame and its production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees