JPH0783968B2 - Machining control method for wire cut electric discharge machine - Google Patents
Machining control method for wire cut electric discharge machineInfo
- Publication number
- JPH0783968B2 JPH0783968B2 JP60014382A JP1438285A JPH0783968B2 JP H0783968 B2 JPH0783968 B2 JP H0783968B2 JP 60014382 A JP60014382 A JP 60014382A JP 1438285 A JP1438285 A JP 1438285A JP H0783968 B2 JPH0783968 B2 JP H0783968B2
- Authority
- JP
- Japan
- Prior art keywords
- machining
- wire electrode
- condition
- processing
- electric discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/401—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
- G05B19/4015—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
- B23H7/06—Control of the travel curve of the relative movement between electrode and workpiece
- B23H7/065—Electric circuits specially adapted therefor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/41—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37612—Transfer function, kinematic identification, parameter estimation, response
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41123—Correction inertia of servo
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45221—Edm, electrical discharge machining, electroerosion, ecm, chemical
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49164—Corner, making corner
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はワイヤカット放電加工機の加工制御方法に関わ
り、更に詳細にはコーナー部分を所望の曲り角度により
高精度に加工して切り進める加工制御方法に関するもの
である。Description: TECHNICAL FIELD The present invention relates to a machining control method for a wire cut electric discharge machine, and more specifically, machining of a corner portion with high accuracy by a desired bending angle and cutting. It relates to a control method.
(従来技術) 従来、ワイヤカット放電加工機でコーナー部分を加工す
る場合、プログラム上の軌跡がコーナー部分の変更点に
達すると方向を変更して放電加工を進行するものであ
る。(Prior Art) Conventionally, when a corner portion is machined by a wire cut electric discharge machine, when the trajectory on the program reaches a change point of the corner portion, the direction is changed to proceed the electric discharge machining.
(発明が解決しようとする課題) ワイヤカット放電加工機によって放電加工を行なうと
き、ワイヤ電極には、進行方向の後側が凸となるような
撓み(弯曲)を生じることが知られている。このワイヤ
電極の弯曲に起因して、コーナー部分の加工時に、コー
ナー部分にダレを生じる。このダレを解消するために、
コーナー部分において相対的な進行を一時停止する制御
方法もあるが、この場合には放電ギャップが大きくなる
という問題があり、満足できるものではなかった。(Problems to be Solved by the Invention) When electric discharge machining is performed by a wire cut electric discharge machine, it is known that the wire electrode is bent (curved) such that the rear side in the traveling direction is convex. Due to the bending of the wire electrode, sagging occurs in the corner portion when processing the corner portion. In order to eliminate this sagging,
There is also a control method of temporarily stopping the relative progress at the corner portion, but in this case, there is a problem that the discharge gap becomes large, which is not satisfactory.
(課題を解決するための手段) 上述のごとき従来の問題に鑑みて、本発明は、コーナー
部におけるワイヤ電極のプログラム上での進路変更点ま
でを通常の加工条件(A)で加工を進める第1工程と、
ワイヤ電極の位置決め装置に固定されたワイヤ電極ガイ
ドの中心が前記進路変更点に達したとき、前記位置決め
装置の送りを1時停止するとともに加工条件を前記第1
加工条件(A)の放電ギャップと同一のギャップを維持
できる第2の加工条件(B)に変更してワイヤ電極が進
路変更点に達するまで加工を進める第2工程と、前記ワ
イヤ電極が前記進路変更点に達したとき進路角度を変え
るとともに前記第1の加工条件(A)よりもワイヤ電極
の撓みが小となる第3の加工条件(C)に変えて加工を
進める第3工程と、上記第3の加工条件で下記の式 l=(d/2+G)/(tanθ/2) 但しd;ワイヤ電極の直径(粍) G;放電ギャップ(粍) θ;方位角(度) で定められる距離lだけ加工を進めた後に、前記第1の
加工条件(A)にもどして直線部分の加工に復帰する第
4工程と、よりなる加工制御方法である。(Means for Solving the Problems) In view of the conventional problems as described above, the present invention is directed to a case where the machining is performed under the normal machining condition (A) up to the course change point on the program of the wire electrode in the corner portion. 1 step,
When the center of the wire electrode guide fixed to the wire electrode positioning device reaches the course change point, the feed of the positioning device is stopped at 1 o'clock and the processing condition is set to the first condition.
A second step of changing the second machining condition (B) capable of maintaining the same gap as the discharge gap of the machining condition (A) and advancing the machining until the wire electrode reaches the course change point; A third step of changing the course angle when reaching the change point and changing to the third processing condition (C) in which the deflection of the wire electrode is smaller than the first processing condition (A), and the processing is advanced, Under the third processing conditions, the following formula l = (d / 2 + G) / (tan θ / 2) where d; diameter of wire electrode (powder) G; discharge gap (powder) θ; distance determined by azimuth angle (degree) The machining control method comprises a fourth step of returning the machining to the first machining condition (A) and returning to the machining of the straight line portion after the machining is advanced by l.
(実施例) 第1図に示したのは本発明を実施したワイヤカット放電
化工機1の正面図で、被加工材Wは加工液の飛散防止の
ための四面透明板でかこまれたケース3の中のバイス装
置5に把持されてテーブル7とともにX軸、Y軸方向の
数値制御的に移動させられる。(Embodiment) FIG. 1 is a front view of a wire-cut electric discharge machine 1 embodying the present invention, in which a material W to be processed is a case 3 surrounded by a four-sided transparent plate for preventing scattering of machining liquid. It is gripped by the vice device 5 and is moved together with the table 7 numerically in the X-axis and Y-axis directions.
一方ワイヤ電極9は例えば細い裸導線などであって、リ
ール11から多数のプーリー群13を経てノズル15の中心を
垂下し、被加工材Wを貫いて下降し案内されている。On the other hand, the wire electrode 9 is, for example, a thin bare conductive wire, which hangs down from the reel 11 through a large number of pulley groups 13 at the center of the nozzle 15 and penetrates through the workpiece W and is guided.
被加工材Wの下では放電ずみの電極がプーリー群17に案
内されて第1図の右側のリール19にまきとられている。Under the work material W, the discharged electrodes are guided by the pulley group 17 and wound on the reel 19 on the right side in FIG.
ワイヤ電極9を巻きほどくリール11の近辺のプーリー群
13はワイヤ電極9に制動作用を及ぼし、電極に張力を与
えており、無負荷のときはノズル15の中心を常に垂直に
下降しているものである。A group of pulleys near the reel 11 for unwinding the wire electrode 9
A wire 13 exerts a braking action on the wire electrode 9 to give a tension to the electrode, and it always descends vertically from the center of the nozzle 15 when no load is applied.
第2図によってワイヤ電極9が被加工材Wを直線的に放
電加工してA点からB点に向って左進し、例えばB点で
進行方向を90度右に変えてC点に進むプログラムを数値
制御位置決め装置(図示省略)でテーブル7に与えてあ
る場合について説明する。A program in which the wire electrode 9 linearly discharges the workpiece W according to FIG. 2 and moves leftward from the point A toward the point B, for example, changes the traveling direction 90 degrees right at the point B and proceeds to the point C. Will be described by using a numerical control positioning device (not shown) on the table 7.
もとより第1図に示したワイヤカット放電加工機1では
ワイヤ電極9がX,Y軸方向に位置を変えず、被加工材W
の方が移動するのであるが相対的に同じ理論で説明でき
るところからワイヤ電極9の方が移動するものとして説
明してある。Of course, in the wire cut electric discharge machine 1 shown in FIG. 1, the wire electrode 9 does not change its position in the X and Y axis directions, and the workpiece W
Although the wire electrode 9 moves, the wire electrode 9 moves because it can be explained by the same theory.
第2図のA点を中心とした円はワイヤ電極9の断面で、
被加工材Wとの間にギャップGが存在する。The circle around the point A in FIG. 2 is the cross section of the wire electrode 9,
There is a gap G between the workpiece W and the workpiece.
このギャップGは第4図の左端に明らかなようにワイヤ
電極9の進行前側にも発生するもので、正常なワイヤ電
極9の被加工材Wに対する相対移動による加工であれば
ギャップGはすべて同じ寸法となる。This gap G also occurs on the front side of the wire electrode 9 as is apparent from the left end of FIG. 4, and if the normal movement of the wire electrode 9 relative to the workpiece W is performed, the gap G is the same. It becomes a dimension.
ところでワイヤカット放電加工機1でコーナー部分を加
工する場合、プログラム上のワイヤ中心の通る経路をA
点,B点,C点とするとき、ノズル15の中心がコーナー部分
の曲り角のB点に達したときにワイヤ電極9は被加工材
Wの放電加工による反力を受けて若干おくれたB′点に
位置している。By the way, when machining a corner part with the wire-cut electric discharge machine 1, the path through the center of the wire on the program is A
When the center of the nozzle 15 reaches the point B of the corner of the corner, the wire electrode 9 receives a reaction force due to the electric discharge machining of the workpiece W and is slightly delayed B '. It is located at a point.
したがって従来のように上記したおくれ或いは撓み(弯
曲)を考慮しない進路変更をすると、ワイヤ電極9の経
路はB′Cに点線で示すように進み、放電切溝21はコー
ナー部分の内外にダレ部分23を生ずるのである。Therefore, when the course is changed without taking into account the above-mentioned delay or bending (curvature) as in the conventional case, the route of the wire electrode 9 advances to B'C as shown by the dotted line, and the discharge kerf 21 is sloped inside and outside the corner portion. Produces 23.
本発明の加工制御方法では、上記した従来の方法と異な
り第1工程としてワイヤ電極9のプログラム上での進路
変更点であるノズル15の中心がB点に達するまでは直線
部分と同じ通常の加工条件(A)で加工を進める。In the machining control method of the present invention, unlike the above-mentioned conventional method, the same normal machining as the straight line portion is performed until the center of the nozzle 15 which is the course change point on the program of the wire electrode 9 reaches the point B as the first step. Processing proceeds under the condition (A).
次にワイヤ電極ガイド(ノズル15)の中心が前記進路変
更点Bに達したら、位置決め装置(テーブル7)の送り
を1時停止するとともに加工条件を前記した第1加工条
件(A)の放電ギャップGと同一量のギャップGが直進
端側にも得られるように電圧を低くした第2加工条件
(B)に変更して第2工程を進める。Next, when the center of the wire electrode guide (nozzle 15) reaches the course changing point B, the feed of the positioning device (table 7) is stopped at 1 o'clock, and the machining condition is the discharge gap of the first machining condition (A) described above. The second process is advanced by changing the second processing condition (B) in which the voltage is lowered so that the same amount of gap G as G can be obtained also on the straight-travel end side.
第2工程が進行すると第3図に示したように、プログラ
ム上の進路変更点Bにワイヤ電極9の中心が一致するに
至る。As the second step progresses, as shown in FIG. 3, the center of the wire electrode 9 comes to coincide with the course changing point B on the program.
次にワイヤ電極9の中心がプログラム上の進路変更点B
に一致すると、放電が生じなくなるので、直ちに進路変
更を行ない前記した第1の加工条件(A)よりもワイヤ
電極9の撓み或いはおくれが小となる低電圧の加工条件
(C)に変えて加工を進める第3工程を行なう。Next, the center of the wire electrode 9 is the course change point B on the program.
If it coincides with the above, electric discharge is not generated, so that the course is immediately changed and the machining is performed by changing to the low voltage machining condition (C) that causes less bending or delay of the wire electrode 9 than the first machining condition (A) described above. The third step is carried out.
この第3工程は第5図に示したように、ワイヤ電極9の
中心が前記した放電切溝21の端辺線に達するまではPで
示した斜めの反力が作用するので、この反力を小さく抑
えるべく配慮したものである。In this third step, as shown in FIG. 5, until the center of the wire electrode 9 reaches the edge line of the discharge kerf 21, the oblique reaction force indicated by P acts, so this reaction force It is designed to keep the value small.
すなわち第5図にクロスハッチングした片負荷部25があ
るので第1加工条件(A)よりもワイヤ電極の撓みが小
となる第3の加工条件(C)で放電作業を進めるのであ
る。That is, since there is a cross-hatched single load portion 25 in FIG. 5, the discharge work is carried out under the third working condition (C) in which the deflection of the wire electrode is smaller than that in the first working condition (A).
更に上記した説明からすでに明らかなように、第3の加
工条件(C)で加工を進める距離lは第3図、第4図か
ら明らかなように進路変更をした時から、ワイヤ電極9
の中心が加工済みの放電切溝端に達するまでである。Further, as is clear from the above description, the distance 1 for advancing the machining under the third machining condition (C) is the wire electrode 9 from the time when the course is changed as apparent from FIGS. 3 and 4.
Until the center of reaches the end of the electric discharge kerf that has been processed.
すなわち距離lは、 l=(d/2+G)/(tanθ/2) 但しd;ワイヤ電極の直径(粍) G;放電ギャップ(粍) θ;方位角(度) で算出できる。That is, the distance 1 can be calculated by l = (d / 2 + G) / (tan θ / 2), where d is the diameter of the wire electrode (powder) G; the discharge gap (powder) θ;
この距離lを第3の加工条件(C)で進めた後は、最初
の直線部分加工の第1加工条件(A)に復帰して加工を
進めるのである。After advancing the distance 1 under the third machining condition (C), the machining is advanced by returning to the first machining condition (A) for the first linear portion machining.
(発明の効果) 以上のごとき実施例の説明より理解されるように、要す
るに本発明は、コーナー部におけるワイヤ電極のプログ
ラム上での進路変更点までを通常の加工条件(A)で加
工を進める第1工程と:ワイヤ電極の位置決め装置に固
定されたワイヤ電極ガイドの中心が前記進路変更点に達
したとき、前記位置決め装置の送りを1時停止するとと
もに加工条件を前記第1加工条件(A)の放電ギャップ
と同一のギャップを維持できる第2の加工条件(B)に
変更してワイヤ電極が前記進路変更点に達するまで加工
を進める第2工程と:前記ワイヤ電極が前記進路変更点
に達したときに進路角度を変えるとともに前記第1の加
工条件(A)よりもワイヤ電極の撓みが小となる第3の
加工条件(C)に変えて加工を進める第3工程と:上記
第3の加工条件で下記の式 l=(d/2+G)/(tanθ/2) 但しd;ワイヤ電極の直径(粍) G;放電ギャップ(粍) θ;方位角(度) で定められる距離lだけ加工を進めた後に、前記第1の
加工条件(A)にもどして直線部分の加工に復帰する第
4工程と:よりなるワイヤカット放電加工機の加工制御
方法である。(Effects of the Invention) As will be understood from the above description of the embodiment, in short, the present invention advances processing under normal processing conditions (A) up to the course change point on the program of the wire electrode at the corner portion. First step: When the center of the wire electrode guide fixed to the wire electrode positioning device reaches the course change point, the positioning device feed is stopped for one hour and the machining condition is set to the first machining condition (A). The second step of changing the second machining condition (B) capable of maintaining the same gap as the discharge gap of (1) and advancing the machining until the wire electrode reaches the course changing point; And a third step (C) in which the path angle is changed and the deflection of the wire electrode is smaller than that in the first processing condition (A), and the processing is advanced: Under the processing conditions of No. 3, the following formula: l = (d / 2 + G) / (tan θ / 2) where d; diameter of wire electrode (powder) G; discharge gap (powder) θ; distance l determined by azimuth angle (degree) The machining control method for the wire-cut electric discharge machine comprises: a fourth step of returning the machining to the first machining condition (A) and then returning to machining of the straight line portion after the machining is advanced.
上記構成より明らかなように、本発明においては、通常
の加工条件(A)で放電加工を行い(第1工程)、ワイ
ヤ電極を案内するワイヤ電極ガイドの中心が進路変更点
に達したときに送りを一時停止し、かつ加工条件(A)
の放電ギャップと同一のギャップを維持できる第2の加
工条件(B)に変更してワイヤ電極が前記進路変更点に
達するまで加工を続行するものである(第2工程)。As is clear from the above configuration, in the present invention, when the electric discharge machining is performed under the normal machining condition (A) (first step), and the center of the wire electrode guide for guiding the wire electrode reaches the course changing point. Feeding is temporarily stopped and processing conditions (A)
The machining condition is changed to the second machining condition (B) capable of maintaining the same discharge gap as that of No. 2 and the machining is continued until the wire electrode reaches the course changing point (second step).
そして、ワイヤ電極が前記進路変更点に達したときには
放電が生じなくなるので、直ちに進路角度を変えると共
に、加工条件を、第1の加工条件(A)よりもワイヤ電
極の撓みが小となる第3の加工条件(C)に変えて加工
を進め(第3工程)、そして、所定の式で表わされる距
離lだけ加工を進めた後に、第1の加工条件(A)に変
更して直線部分の加工を行う(第4工程)ものである。Then, when the wire electrode reaches the course changing point, no electric discharge is generated, so that the course angle is changed immediately and the bending of the wire electrode becomes smaller than that of the first processing condition (A). The machining condition (C) is changed to the machining condition (third step), and after the machining is advanced by the distance l represented by the predetermined formula, the machining condition is changed to the first machining condition (A) to Processing is performed (fourth step).
すなわち、本発明においては、ワイヤ電極ガイドの中心
及びワイヤ電極が共に進路変更点に達したときに進路角
度を変えるものであり、この際の加工は第3の加工条件
で行われるものである。That is, in the present invention, the path angle is changed when both the center of the wire electrode guide and the wire electrode reach the path changing point, and the processing at this time is performed under the third processing condition.
したがって本発明によれば、進路角度を変えるときに
は、ワイヤ電極ガイドの中心及びワイヤ電極は共に進路
変更点に一致しており、コーナー部分にダレを生じるよ
うなことがなく精度の良い放電加工を行うことができる
ものである。Therefore, according to the present invention, when the path angle is changed, both the center of the wire electrode guide and the wire electrode coincide with the path change point, and accurate electric discharge machining is performed without sagging at the corners. Is something that can be done.
第1図は実施例としてのワイヤカット放電加工機の正面
図、 第2図は進路変更点付近の説明図、 第3図は同上及び第3加工条件実施距離lの説明図、 第4図は第3図と同じ、但し進路変更角が90度以上の場
合の説明図、 第5図は片負荷部による反力の説明図である。 (図面の主要部を表す符号の説明) 1……ワイヤカット放電加工機 9……ワイヤ電極、15……冷却液ノズル W……被加工材、21……放電切溝 23……ダレ部分、25……片負荷部FIG. 1 is a front view of a wire-cut electric discharge machine as an embodiment, FIG. 2 is an explanatory view of a route change point vicinity, FIG. 3 is the same as above and an explanatory view of a third processing condition execution distance l, and FIG. Same as FIG. 3, except that the course change angle is 90 degrees or more, and FIG. 5 is an explanatory view of the reaction force by the one-side load portion. (Explanation of the symbols indicating the main parts of the drawing) 1 …… Wire cut electric discharge machine 9 …… Wire electrode, 15 …… Coolant nozzle W …… Workpiece material, 21 …… Discharge kerf 23 …… Drop portion, 25 ... Single load part
Claims (1)
イヤカット放電加工機の加工制御方法。 (a)コーナー部におけるワイヤ電極のプログラム上で
の進路変更点までを通常の加工条件(A)で加工を進め
る第1工程。 (b)ワイヤ電極の位置決め装置に固定されたワイヤ電
極ガイドの中心が前記進路変更点に達したとき、前記位
置決め装置の送りを1時停止するとともに加工条件を前
記第1加工条件(A)の放電ギャップと同一のギャップ
を維持できる第2の加工条件(B)に変更してワイヤ電
極が前記進路変更点に達するまで加工を進める第2工
程。 (c)前記ワイヤ電極が前記進路変更点に達したときに
進路角度を変えるとともに前記第1の加工条件(A)よ
りもワイヤ電極の撓みが小となる第3の加工条件(C)
に変えて加工を進める第3工程。 (d)上記第3の加工条件で下記の式 l=(d/2+G)/(tanθ/2) 但しd;ワイヤ電極の直径(粍) G;放電ギャップ(粍) θ;方位角(度) で定められる距離lだけ加工を進めた後に、前記第1の
加工条件(A)にもどして直線部分の加工に復帰する第
4工程。1. A machining control method for a wire cut electric discharge machine, comprising the following steps. (A) A first step in which machining is performed under normal machining conditions (A) up to the course change point on the wire electrode program in the corner portion. (B) When the center of the wire electrode guide fixed to the wire electrode positioning device reaches the course changing point, the positioning device feed is stopped for one hour and the machining condition is set to the first machining condition (A). A second step of changing the second processing condition (B) capable of maintaining the same gap as the discharge gap and advancing the processing until the wire electrode reaches the course changing point. (C) A third processing condition (C) in which the path angle is changed when the wire electrode reaches the path change point and the deflection of the wire electrode is smaller than that in the first processing condition (A).
The third step that changes to and advances the processing. (D) The following formula under the above-mentioned third processing conditions: l = (d / 2 + G) / (tan θ / 2) where d; diameter of wire electrode (powder) G; discharge gap (powder) θ; azimuth (degree) A fourth step in which the machining is advanced by the distance 1 defined in 1. and then the machining is returned to the machining of the straight line portion by returning to the first machining condition (A).
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60014382A JPH0783968B2 (en) | 1985-01-30 | 1985-01-30 | Machining control method for wire cut electric discharge machine |
US06/811,368 US4703143A (en) | 1984-12-25 | 1985-12-20 | Wire EDM method for preventing wire lagging during machining of an angular corner and workpiece position control |
GB8531712A GB2169536B (en) | 1984-12-25 | 1985-12-23 | A method of and apparatus for controlling a wire cut electrical discharge machine |
DE3546130A DE3546130C2 (en) | 1984-12-25 | 1985-12-24 | Process for controlling machining in an electrical discharge machine with a wire electrode |
FR858519259A FR2575096B1 (en) | 1984-12-25 | 1985-12-26 | METHOD AND APPARATUS FOR CONTROLLING A WIRE ELECTROEROSION MACHINING OR CUTTING MACHINE |
IT8523393A IT1214495B (en) | 1984-12-25 | 1985-12-27 | PROCESS OF CONTROL OF THE PROCESSING TO THE MACHINE TOOL FOR ELECTRIC DISCHARGE MACHINE WITH CUTTING WIRE. |
GB8802512A GB2201263B (en) | 1984-12-25 | 1988-02-04 | A method of and apparatus for controlling movement of a moveable member in a machine tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60014382A JPH0783968B2 (en) | 1985-01-30 | 1985-01-30 | Machining control method for wire cut electric discharge machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61173817A JPS61173817A (en) | 1986-08-05 |
JPH0783968B2 true JPH0783968B2 (en) | 1995-09-13 |
Family
ID=11859492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60014382A Expired - Lifetime JPH0783968B2 (en) | 1984-12-25 | 1985-01-30 | Machining control method for wire cut electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0783968B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2571077B2 (en) * | 1987-11-13 | 1997-01-16 | 西部電機株式会社 | Control method of wire electric discharge machining |
EP0378280A1 (en) * | 1989-01-13 | 1990-07-18 | Charmilles Technologies S.A. | Device and method for controlling a parameter variation in electroerosion wire cutting |
DE69011537T2 (en) * | 1989-01-13 | 1995-04-13 | Charmilles Technologies | Control device and method for electroerosive cutting by means of a wire electrode. |
US5410117A (en) * | 1989-01-13 | 1995-04-25 | Charmilles Technologies S.A. | Device and control process for EDM machining with an electrode-wire |
DE69021096T2 (en) * | 1989-01-13 | 1996-08-01 | Charmilles Technologies | Control device and method for electroerosive cutting while avoiding wire breaks. |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55106732A (en) * | 1979-02-02 | 1980-08-15 | Inoue Japax Res Inc | Wire cut spark erosion method |
JPS5846327A (en) * | 1981-09-14 | 1983-03-17 | Hitachi Ltd | Liquid crystal display device |
JPS58120428A (en) * | 1981-12-30 | 1983-07-18 | Fanuc Ltd | Control of wire-cut electric discharge machining unit |
-
1985
- 1985-01-30 JP JP60014382A patent/JPH0783968B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61173817A (en) | 1986-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3162255B2 (en) | Laser processing method and apparatus | |
EP0068029A1 (en) | Method of controlling wire cut electric discharge machining | |
DE3546130C2 (en) | Process for controlling machining in an electrical discharge machine with a wire electrode | |
JPS56126533A (en) | Wire cut spark machining device | |
JPH0783968B2 (en) | Machining control method for wire cut electric discharge machine | |
JPS59232727A (en) | Wire electrode guide device for wire-cut electric discharge machining | |
JPH02100825A (en) | Taper machining device for wire electric discharge machine | |
JPS5828432A (en) | Electrical discharge machining device for wire cut | |
JP3054297B2 (en) | Electric discharge machine | |
JPS6247648B2 (en) | ||
JPS6257451B2 (en) | ||
JPS6149053B2 (en) | ||
JPS5993240A (en) | Wire cut electric discharge machine | |
JPH04764B2 (en) | ||
EP1393844A2 (en) | Wire electric discharge machine | |
JP2575710B2 (en) | Wire cut electric discharge machine | |
JPS5988221A (en) | Wire-cut electric discharge machine | |
JPH0230431A (en) | Power unit for discharge processing | |
CN118237867B (en) | Ultrasonic cutting method for honeycomb material outer paraboloid | |
GB2033608A (en) | Cutting by a wire electrode | |
JPS58192722A (en) | Wire cut electrospark machining method | |
JPS6237618Y2 (en) | ||
JPH0355257B2 (en) | ||
JPS618223A (en) | Electric discharge machine | |
JPS60108219A (en) | Controlling method for wire electric-discharge machining |