JPH0783658A - Surveying apparatus - Google Patents

Surveying apparatus

Info

Publication number
JPH0783658A
JPH0783658A JP22993693A JP22993693A JPH0783658A JP H0783658 A JPH0783658 A JP H0783658A JP 22993693 A JP22993693 A JP 22993693A JP 22993693 A JP22993693 A JP 22993693A JP H0783658 A JPH0783658 A JP H0783658A
Authority
JP
Japan
Prior art keywords
unit
telescope
axis
remote control
surveying instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22993693A
Other languages
Japanese (ja)
Other versions
JP3075384B2 (en
Inventor
Fumio Otomo
文夫 大友
Tsuneo Sasaki
恒夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16900051&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0783658(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP05229936A priority Critical patent/JP3075384B2/en
Publication of JPH0783658A publication Critical patent/JPH0783658A/en
Application granted granted Critical
Publication of JP3075384B2 publication Critical patent/JP3075384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To provide a surveying apparatus which can direct the collimation axis of telescope part automatically and quickly to a direction in which a corner cube exists even when an observer is not situated the side of a surveying apparatus body and which can achieve an unmanned operation while a surveying operation is made efficient. CONSTITUTION:The surveying apparatus is provided with a telescope part 12 which is supported by a support stand part 11 turned around a vertical axis 13 and which is turned around a horizontal axis 14, a rotation driving mechanism which is installed in the support stand part 11, light-receiving parts 25, 26 which receive a transmitted signal from a remote control device and a CPU which controls the rotation driving mechanism so that the collimation axis O of the telescope part 12 is directed in the arrival direction of the transmitted signal on the basis of outputs of the light-receiving units 25, 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛直軸回りに回転され
る托架部に支持されて水平軸回りに回転される望遠鏡部
を備えて、測角・測距を行う測量装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surveying device having a telescope unit which is supported by a frame unit which is rotated around a vertical axis and which is rotated around a horizontal axis, for angle measurement and distance measurement.

【0002】[0002]

【従来の技術】従来から、測量装置には、図1に示すよ
うに、鉛直軸1の回りに回転される托架部2に支持され
て水平軸3の回りに回転される望遠鏡部4と、托架部2
に設けられた回転駆動機構(図示を略す)とを有し、走
査光束に基づきコーナーキューブ(プリズムともいう)
を探索し、そのコーナキューブからの反射情報と走査情
報とに基づきコーナーキューブの存在する方向と望遠鏡
部4の視軸Oとの水平方向の角度偏差、垂直方向の角度
偏差を演算し、この角度偏差に基づき回転駆動機構を自
動制御して、望遠鏡部4の視準軸Oをコーナーキューブ
に自動追尾させ、測角・測距を行うものがある。この種
の測量装置は、省力化、無人化を図るのに貢献してい
る。
2. Description of the Related Art Conventionally, as shown in FIG. 1, a surveying instrument includes a telescope section 4 which is supported by a frame section 2 which is rotated around a vertical axis 1 and which is rotated around a horizontal axis 3. , Support section 2
A corner cube (also referred to as a prism) based on a scanning light beam.
Based on the reflection information from the corner cube and the scanning information, the horizontal angle deviation and the vertical angle deviation between the direction in which the corner cube exists and the visual axis O of the telescope unit 4 are calculated, and this angle is calculated. There is one that automatically controls the rotation drive mechanism based on the deviation to automatically track the collimation axis O of the telescope unit 4 on the corner cube to perform angle measurement and distance measurement. This type of surveying instrument contributes to labor saving and unmanned operation.

【0003】[0003]

【発明が解決しようとする課題】ところが、この種の測
量装置においては、コーナキューブが存在する方位を検
知する初期設定の際に、全方位を走査(スキャン)しな
ければならず、かなりの時間がかかる。
However, in this type of surveying instrument, all the azimuths must be scanned at the time of initial setting for detecting the azimuth in which the corner cube exists, and it takes a considerable time. Takes.

【0004】このため、従来は、観測者がその測量装置
の望遠鏡部の視準軸を手動により概略コーナキューブが
存在する方位に向けるか、あるいは、そのコーナキュー
ブが存在する方位データを入力して、測量装置の望遠鏡
部の視準軸をコーナキューブが存在する方位に向けてい
た。
Therefore, conventionally, an observer manually orients the collimation axis of the telescope section of the surveying instrument in the direction in which the rough corner cube exists, or inputs the direction data in which the corner cube exists. , The collimation axis of the telescope part of the surveying instrument was oriented toward the corner cube.

【0005】従って、本来、自動追尾式の測量装置にあ
っては、コーナーキューブを自動検知、自動追尾させる
ことにより観測者の無人化を図ることを意図していたに
もかかわらず、測量作業の迅速化を図ろうとすると、完
全なる観測者の無人化を図り難いという問題点が残存し
ていた。
Therefore, although the automatic tracking type surveying device was originally intended to unmann the observer by automatically detecting and automatically tracking the corner cube, There was a problem that it was difficult to make the observer completely unattended when trying to speed it up.

【0006】本発明は、上記の事情に鑑みて為されたも
ので、その目的とするところは、測量作業の迅速化を図
りつつ無人化を図るのに好適の測量装置を提供すること
にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surveying instrument suitable for unmanned operation while speeding up the surveying operation. .

【0007】[0007]

【課題を解決するための手段】本発明に係わる測量装置
は、鉛直軸回りに回転される托架部に支持されて水平軸
回りに回転される望遠鏡部と、前記托架部に設けられた
回転駆動機構と、リモートコントロール装置からの送信
信号を受信する受信部と、該受信部の受信出力に基づき
前記望遠鏡部の視準軸が前記送信信号の到来方向に向け
られるように前記回転駆動機構を制御する制御手段とを
有する。
A surveying instrument according to the present invention is provided in a telescope unit which is supported by a frame unit which is rotated around a vertical axis and which is rotated around a horizontal axis, and the frame unit. A rotation driving mechanism, a receiving unit that receives a transmission signal from the remote control device, and the rotation driving mechanism such that the collimation axis of the telescope unit is oriented in the arrival direction of the transmission signal based on the reception output of the reception unit. And control means for controlling.

【0008】[0008]

【作用】本発明に係わる測量装置によれば、受信部がリ
モートコントロール装置からの送信信号を受信すると、
制御手段が回転駆動機構を駆動して、望遠鏡部の視準軸
が送信信号の到来方向に向けられる。
According to the surveying instrument of the present invention, when the receiving unit receives the transmission signal from the remote control device,
The control means drives the rotary drive mechanism so that the collimation axis of the telescope unit is directed in the arrival direction of the transmission signal.

【0009】[0009]

【実施例】以下に、本発明に係わる測量装置の実施例を
図面を参照しつつ説明する。
Embodiments of a surveying instrument according to the present invention will be described below with reference to the drawings.

【0010】図2(イ)において、10は基盤、11は
托架部、12は望遠鏡部、Oはその望遠鏡の視準軸であ
る。托架部11は基盤10に対して鉛直軸13の回りに
回転可能であり、これにより、望遠鏡部12は図2
(ロ)に矢印Xで示すように水平面内で回転される。望
遠鏡部3は水平軸14に回動可能に支持されており、望
遠鏡部12は図2(イ)に矢印Yで示すように垂直面内
で回転される。
In FIG. 2A, 10 is a base, 11 is a mount, 12 is a telescope, and O is a collimation axis of the telescope. The suspension unit 11 is rotatable with respect to the base 10 about a vertical axis 13, so that the telescope unit 12 is shown in FIG.
It is rotated in a horizontal plane as indicated by an arrow X in (b). The telescope unit 3 is rotatably supported by a horizontal shaft 14, and the telescope unit 12 is rotated in a vertical plane as shown by an arrow Y in FIG.

【0011】托架部11の内部には、図3に示すように
制御手段としてのCPU15、水平方向駆動用のモータ
ードライバ16、高低方向駆動用のモータドライバ1
7、回転伝達機構の一部を構成するモータ18、19が
設けられている。
As shown in FIG. 3, a CPU 15 as a control means, a motor driver 16 for driving in the horizontal direction, and a motor driver 1 for driving in the elevation direction are provided inside the suspension unit 11.
7. Motors 18 and 19 that form part of the rotation transmission mechanism are provided.

【0012】CPU15には水平用のエンコーダ20と
垂直用のエンコーダ21の出力が入力される。エンコー
ダ20は垂直軸13に取り付けられて、水平角を演算す
るのに用いられる。エンコーダ21は水平軸14に取り
付けられて高低角を演算するのに用いられる。また、C
PU15は測距用電気回路22に接続されている。測距
用電気回路22はターゲットとしてのコーナーキューブ
23までの距離を測定するのに用いられる。なお、この
測量装置では、図示を略す走査光学系により自動追尾を
行うことができるが、その構成については公知であるの
で、その説明は省略する。
The outputs of the horizontal encoder 20 and the vertical encoder 21 are input to the CPU 15. The encoder 20 is attached to the vertical shaft 13 and is used to calculate the horizontal angle. The encoder 21 is attached to the horizontal shaft 14 and is used to calculate the elevation angle. Also, C
The PU 15 is connected to the electric circuit 22 for distance measurement. The electric circuit 22 for distance measurement is used to measure the distance to the corner cube 23 as a target. In this surveying device, automatic tracking can be performed by a scanning optical system (not shown), but the configuration thereof is publicly known, and therefore its explanation is omitted.

【0013】托架部11の上部にはハンドル部24が取
り付けられている。ハンドル部24の前面と後面とには
受信部としての受光ユニット25、26が設けられてい
る。この受光ユニット25、26はここでは図2(ハ)
に拡大して示すように四角錘から構成されている。この
受光ユニット25、26の底面を符号G、各側面を符号
A〜D、頂点をTで示し、各側面A〜Dが受光面となっ
ている。
A handle portion 24 is attached to an upper portion of the suspension portion 11. Light-receiving units 25 and 26 as receiving portions are provided on the front surface and the rear surface of the handle portion 24. The light receiving units 25 and 26 are shown in FIG.
It is composed of a quadrangular pyramid as shown enlarged. The bottom surfaces of the light receiving units 25 and 26 are denoted by reference numeral G, the side surfaces are denoted by reference numerals A to D, and the vertices are denoted by T, and the side surfaces A to D are light receiving surfaces.

【0014】その頂点Tは図2(イ)、(ロ)に示すよ
うに水平方向を向くようにして取り付けられており、各
側面A〜Dは水平に対して傾き角aだけ傾いているもの
とする。この受光ユニット25、26にはリモートコン
トロール装置27からの送信信号としての光束Qが変調
光またはパルス光として照射されるものである。このリ
モートコントロール装置27はコーナーキューブ22の
側に位置する測量作業者が携帯している。
The apex T is attached so as to be oriented in the horizontal direction as shown in FIGS. 2 (a) and 2 (b), and the side surfaces A to D are inclined by the inclination angle a with respect to the horizontal. And The light receiving units 25 and 26 are irradiated with a light beam Q as a transmission signal from the remote control device 27 as modulated light or pulsed light. This remote control device 27 is carried by a surveyor located on the side of the corner cube 22.

【0015】今、図4(イ)に示すように、頂点Tがリ
モートコントロール装置27の方を向いており、かつ、
水平方向Hから光束Qが照射されるものとすると、各側
面A〜Dの受光量Pa、Pb、Pc、Pdは以下に示す
式で表わされる。
Now, as shown in FIG. 4A, the apex T faces the remote control device 27, and
Assuming that the light flux Q is emitted from the horizontal direction H, the light receiving amounts Pa, Pb, Pc, and Pd on the side surfaces A to D are expressed by the following equations.

【0016】Pa=Pb=Pc=Pd=P・S・sina 全ての側面A〜Dに等量に光束が照射されると考えられ
るからである。
This is because it can be considered that Pa = Pb = Pc = Pd = P.S.sina is irradiated to all the side surfaces A to D in equal amounts.

【0017】ここで、符号Sは各側面A〜Dの受光面
積、Pは距離等に起因する係数である。また、各側面A
〜Dには平行光束が入射されるものと考えた。
Here, reference symbol S is a light receiving area of each of the side faces A to D, and P is a coefficient resulting from distance and the like. Also, each side A
It was considered that a parallel light beam was incident on D.

【0018】次に、図4(ロ)に示すように、水平方向
Hに対してαだけ傾いた角度から光束Qを照射した場合
には、側面A、Cの受光量Pa、Pcは、Pa=Pc=
P・S・sin(a+α)であり、側面B、Dの受光量P
b、PdはPb=Pd=P・S・sin(a−α)であ
る。
Next, as shown in FIG. 4B, when the light beam Q is irradiated from an angle inclined by α with respect to the horizontal direction H, the light receiving amounts Pa and Pc on the side surfaces A and C are Pa. = Pc =
P · S · sin (a + α), and the amount of light received P on the side surfaces B and D
b and Pd are Pb = Pd = P.S.sin (a-.alpha.).

【0019】すなわち、光束Qの水平に対する入射角が
変化することによって、各側面A〜Dの受光出力が変化
する。図4の(ハ)に示すように、実線で示す光束Qと
受光ユニット25、26の頂点Tとが水平面内において
90度傾いているときには、側面A、Bのみに受光出力
が得られ、このときの受光出力は、Pa=Pb=P・S
・sinaである。
That is, as the incident angle of the light beam Q with respect to the horizontal changes, the light receiving outputs of the side surfaces A to D change. As shown in FIG. 4C, when the light flux Q indicated by the solid line and the apex T of the light receiving units 25 and 26 are inclined by 90 degrees in the horizontal plane, the light receiving output is obtained only on the side surfaces A and B. The received light output at this time is Pa = Pb = P · S
・ Sina.

【0020】また、図4の(ハ)において、光束Qが水
平方向に対して角度αで側面A、Bに入射するときに
は、 Pa=P・S・sin(a+α) Pb=P・S・sin(a−α) Pc=Pd〜0 である。
Further, in FIG. 4C, when the light flux Q is incident on the side surfaces A and B at an angle α with respect to the horizontal direction, Pa = P · S · sin (a + α) Pb = P · S · sin (A−α) Pc = Pd˜0.

【0021】これらの式からわかるように、受光素子の
傾き角aにより検出感度が変化する。検出感度を高くす
るには、傾き角aを大きくするとよい。
As can be seen from these equations, the detection sensitivity changes depending on the inclination angle a of the light receiving element. To increase the detection sensitivity, the tilt angle a should be increased.

【0022】図4の(ホ)はこの出力関係をグラフで示
したものである。
FIG. 4 (e) is a graph showing this output relationship.

【0023】受光ユニット25、26の出力は差動増幅
器28、29に入力され、この差動増幅器28、29は
演算器30に入力される。演算器30は受光ユニット2
5、26の出力の差に基づいて光束Qの到来方向を演算
する。すなわち、側面A、B(又はC、D)の出力差に
より高低方向を演算し、側面A、C(又はB、D)の出
力差により水平方向の角度を演算する。
The outputs of the light receiving units 25 and 26 are input to the differential amplifiers 28 and 29, and the differential amplifiers 28 and 29 are input to the arithmetic unit 30. The calculator 30 is the light receiving unit 2
The arrival direction of the light beam Q is calculated on the basis of the difference between the outputs of 5 and 26. That is, the height direction is calculated by the output difference between the side surfaces A and B (or C, D), and the horizontal angle is calculated by the output difference between the side surfaces A, C (or B, D).

【0024】すなわち、水平方向についての光束Qの到
来方向に対して望遠鏡部12の視準軸Oが何度傾いてい
るか、高低方向についての光束Qの到来方向対して望遠
鏡部12の視準軸Oが何度傾いているかを演算する。
That is, how many times the collimation axis O of the telescope unit 12 is inclined with respect to the arrival direction of the light beam Q in the horizontal direction, or the collimation axis of the telescope unit 12 with respect to the arrival direction of the light beam Q in the elevation direction. Calculate how many times O is tilted.

【0025】その演算結果がCPU15に入力される。
CPU15はその演算結果に基づいて望遠鏡部12の視
準軸Oが送信信号の到来方向に向けられるように回転駆
動機構を制御する制御手段としての役割を果たす。CP
U15はモータドライバ16、17に駆動信号を出力
し、これによりモータ18、19が駆動されて、望遠鏡
部12の視準軸Oが送信信号の到来方向に向けられる。
The calculation result is input to the CPU 15.
The CPU 15 serves as a control means for controlling the rotary drive mechanism so that the collimation axis O of the telescope unit 12 is directed in the arrival direction of the transmission signal based on the calculation result. CP
U15 outputs a drive signal to the motor drivers 16 and 17, whereby the motors 18 and 19 are driven, and the collimation axis O of the telescope unit 12 is oriented in the arrival direction of the transmission signal.

【0026】測量装置はその前面にLED31が設けら
れ、このLED31は視準軸Oが送信信号の到来方向に
概略向けられると、CPU15により点灯される。これ
により、測量作業者はコーナーキューブ23の側から望
遠鏡部12の視準軸Oがコーナキューブ22の位置する
方向に向けられたか否かを確認できる。また、CPU1
5には表示器32が接続されており、表示器32は従来
通りコーナキューブ23の水平角、高低角、コーナキュ
ーブ22までの距離を表示する。
An LED 31 is provided on the front surface of the surveying instrument, and this LED 31 is turned on by the CPU 15 when the collimation axis O is roughly oriented in the arrival direction of the transmission signal. Thereby, the surveying operator can confirm from the side of the corner cube 23 whether or not the collimation axis O of the telescope unit 12 is oriented in the direction in which the corner cube 22 is located. Also, CPU1
A display 32 is connected to the display 5, and the display 32 displays the horizontal angle, the elevation angle, and the distance to the corner cube 22 of the corner cube 23 as in the conventional case.

【0027】図5は本発明に係わる測量装置の他の実施
例で、この実施例では、受光ユニットを立方体33と
し、この立方体33の側面A〜Dを受光面としたもので
ある。この立方体33は水平方向についての受信信号の
到来方向を検出するのに使用される。また、望遠鏡部1
2の前面には対物レンズObを挟んで上下に受光素子3
4、35が設けられている。この受光素子34、35は
高低方向についての受信信号の到来方向を検出するのに
用いられる。
FIG. 5 shows another embodiment of the surveying instrument according to the present invention. In this embodiment, the light receiving unit is a cube 33, and the side surfaces A to D of the cube 33 are light receiving surfaces. This cube 33 is used to detect the direction of arrival of the received signal in the horizontal direction. Also, the telescope unit 1
On the front surface of 2, the light receiving element 3 is vertically arranged with the objective lens Ob interposed therebetween.
4, 35 are provided. The light receiving elements 34 and 35 are used to detect the arrival direction of the received signal in the high and low directions.

【0028】リモートコントロール装置27には、図6
(イ)に示すように双眼光学系36、37が組み込まれ
ている。双眼光学系36にはハーフミラー38と照準板
39(図6の(ロ)参照)が設けられている。測量作業
者が立方体33を視認しつつボタン40を押すと、駆動
回路41により発光素子42が駆動される。この発光素
子42により光束Qが立方体33に向けて照射され、こ
れにより、望遠鏡部12の視準軸Oが水平方向に回転さ
れて、水平方向に関して望遠鏡部12の視準軸Oがコー
ナキューブ22の存在する方向に向けられる。次に、測
量作業者が受光素子34、35のいずれか一方を視認し
ながらボタン40を押すと、その視認された受光素子に
光束Qが照射され、これにより高低方向に望遠鏡部12
の視準軸Oが回転され、高低方向に関して視準軸Oがコ
ーナキューブ22の存在する方向に向けられる。
The remote control device 27 is shown in FIG.
As shown in (a), binocular optical systems 36 and 37 are incorporated. The binocular optical system 36 is provided with a half mirror 38 and an aiming plate 39 (see FIG. 6B). When the surveying operator presses the button 40 while visually recognizing the cube 33, the drive circuit 41 drives the light emitting element 42. The luminous flux Q is emitted toward the cube 33 by the light emitting element 42, whereby the collimation axis O of the telescope unit 12 is rotated in the horizontal direction, and the collimation axis O of the telescope unit 12 is rotated in the horizontal direction. Is directed in the direction of existence. Next, when the surveying operator presses the button 40 while visually recognizing one of the light receiving elements 34 and 35, the visually recognized light receiving element is irradiated with the light beam Q, whereby the telescope unit 12 is moved upward and downward.
The collimation axis O of is rotated, and the collimation axis O is oriented in the direction in which the corner cube 22 exists with respect to the elevation direction.

【0029】通常、測量作業者は近くの次の測定ポイン
トに移動して測定を行うので、受光素子34、35は観
測者の視界からはずれることはないので、このような場
合は、各1回のリモートコントロール操作で視準軸Oを
コーナキューブ23の存在する方位に向けさせることが
できる。
Usually, the surveying operator moves to the next measurement point near the point where the measurement is performed, so that the light receiving elements 34 and 35 do not deviate from the observer's field of view. The collimation axis O can be directed to the direction in which the corner cube 23 exists by the remote control operation.

【0030】なお、この実施例では、リモートコントロ
ール装置27の内部に双眼光学系36、37を組み込む
構成としたが、1個の望遠光学系をリモートコントロー
ル装置の外部に組み付けてもよい。
Although the binocular optical systems 36 and 37 are incorporated in the remote control device 27 in this embodiment, one telephoto optical system may be incorporated in the outside of the remote control device.

【0031】以上、実施例においては、リモートコント
ロール装置として光送信器を使用したが、無線電波、超
音波等を用いてもよく、この実施例では、受光ユニット
を四角錘、立方体としたが、四角錘の上部を切断した形
状のもの、受光素子単体を六方向に向けて測量装置本体
外周に配置する構成のもの等、受信部には各種の構造が
考えられる。
Although the optical transmitter is used as the remote control device in the above embodiment, radio waves, ultrasonic waves or the like may be used. In this embodiment, the light receiving unit is a square pyramid or a cube. Various structures are conceivable for the receiving unit, such as a quadrangular pyramid with the upper part cut off, and a structure in which the light receiving elements are arranged in six directions on the outer circumference of the surveying device body.

【0032】また、リモートコントロールにより水平方
向と高低方向の動作を連続的に行わせることもできる。
Further, the operation in the horizontal direction and the elevation direction can be continuously performed by the remote control.

【0033】[0033]

【効果】本発明に係わる測量装置は、以上説明したよう
に構成したので、観測者が測量装置本体の側にいなくて
もコーナーキューブの存在する方位に自動的に迅速に望
遠鏡部の視準軸を向けることができ、測量作業の効率化
を図りつつ無人化を図ることができるという効果を奏す
る。
[Effect] Since the surveying instrument according to the present invention is configured as described above, even if the observer is not on the surveying instrument body side, the sighting of the telescope unit is automatically and quickly performed in the direction in which the corner cube exists. The axis can be oriented, and there is an effect that unmanned operation can be achieved while improving the efficiency of the surveying work.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の測量装置の正面図を示す。FIG. 1 shows a front view of a conventional surveying instrument.

【図2】本発明に係わる測量装置の実施例を示し、
(イ)はその側面図を示し、(ロ)は平面図を示し、
(ハ)は(イ)に示す受光ユニットの形状を示す。
FIG. 2 shows an embodiment of a surveying instrument according to the present invention,
(A) shows its side view, (b) shows a plan view,
(C) shows the shape of the light receiving unit shown in (A).

【図3】本発明に係わる測量装置の実施例のブロック回
路を示す。
FIG. 3 shows a block circuit of an embodiment of a surveying instrument according to the present invention.

【図4】本発明に係わる受光ユニットの受光状態の説明
図で、(イ)は受光ユニットの頂点がリモートコントロ
ール装置の存在する方位に向けられ、かつ、水平方向か
ら送信信号が側面に到来する場合の説明であり、(ロ)
は水平方向に関し受光ユニットの頂点がリモートコント
ロール装置の存在する方位に向けられ、送信信号が水平
に対して角度αだけ傾いた状態で側面に到来する場合の
説明であり、(ハ)は水平方向に関し受光ユニットの頂
点がリモートコントロール装置の存在する方位に対して
直交する方位に向けられた状態で送信信号が側面に到来
する場合の説明図であり、(ニ)は(ハ)に示す場合に
水平に対して角度α傾いた状態で送信信号が側面A、B
に到来した場合の各側面の出力特性を示している。
FIG. 4 is an explanatory view of a light receiving state of a light receiving unit according to the present invention, in which (a) the apex of the light receiving unit is directed to the direction in which the remote control device exists, and the transmission signal arrives at the side surface from the horizontal direction. It is a description of the case, (b)
Is a case in which the apex of the light receiving unit is oriented in the horizontal direction in the direction in which the remote control device exists, and the transmitted signal arrives at the side surface with an inclination of an angle α with respect to the horizontal direction. Is an explanatory diagram in the case where the transmission signal arrives at the side face in a state where the apex of the light receiving unit is oriented in an azimuth orthogonal to the azimuth in which the remote control device is present. The transmission signal is inclined from the horizontal by an angle α,
The output characteristics of each side are shown.

【図5】本発明に係わる測量装置の他の実施例を示し、
(イ)はその測量装置の正面図、(ロ)はその測量装置
の側面図を示している。
FIG. 5 shows another embodiment of the surveying instrument according to the present invention,
(A) is a front view of the surveying instrument, and (b) is a side view of the surveying instrument.

【図6】本発明に係わるリモートコントロール装置の一
例を示す図で、(イ)はそのリモートコントロール装置
の内部構造を示す概略図、(ロ)は(イ)に示す照準板
の平面図である。
FIG. 6 is a diagram showing an example of a remote control device according to the present invention, (a) is a schematic diagram showing the internal structure of the remote control device, and (b) is a plan view of the sighting plate shown in (a). .

【符号の説明】[Explanation of symbols]

11…托架部 12…望遠鏡部 13…鉛直軸 14…水平軸 15…CPU 23…コーナキューブ 25、26…受光ユニット(受信部) 27…リモートコントロール装置 O…視準軸 11 ... Frame section 12 ... Telescope section 13 ... Vertical axis 14 ... Horizontal axis 15 ... CPU 23 ... Corner cube 25, 26 ... Light receiving unit (reception section) 27 ... Remote control device O ... Collimation axis

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉛直軸回りに回転される托架部に支持さ
れて水平軸回りに回転される望遠鏡部と、前記托架部に
設けられた回転駆動機構と、リモートコントロール装置
からの送信信号を受信する受信部と、該受信部の受信出
力に基づき前記望遠鏡部の視準軸が前記送信信号の到来
方向に向けられるように前記回転駆動機構を制御する制
御手段とを有する測量装置。
1. A telescope unit that is supported by a suspension unit that is rotated about a vertical axis and that is rotated about a horizontal axis, a rotary drive mechanism that is provided on the suspension unit, and a transmission signal from a remote control device. And a control unit that controls the rotation drive mechanism so that the collimation axis of the telescope unit is directed to the arrival direction of the transmission signal based on the reception output of the reception unit.
【請求項2】 前記リモートコントロール装置が光送信
器であり、前記受信部が受光器であることを特徴とする
請求項1に記載の測量装置。
2. The surveying instrument according to claim 1, wherein the remote control device is an optical transmitter, and the receiving unit is a light receiver.
【請求項3】 前記受光器が三以上の受光面を有する錘
体形であることを特徴とする請求項2に記載の測量装
置。
3. The surveying instrument according to claim 2, wherein the light receiver is of a pyramidal shape having three or more light receiving surfaces.
【請求項4】 前記リモートコントロール装置が望遠鏡
を有する請求項1ないし請求項3に記載の測量装置。
4. The surveying instrument according to claim 1, wherein the remote control device has a telescope.
【請求項5】 前記請求項1に記載の望遠鏡の視軸が前
記到来方向に略一致したことが確認できる手段を有する
請求項1ないし請求項4に記載の測量装置。
5. The surveying instrument according to claim 1, further comprising means for confirming that the visual axis of the telescope according to claim 1 substantially coincides with the arrival direction.
JP05229936A 1993-09-16 1993-09-16 Surveying equipment Expired - Fee Related JP3075384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05229936A JP3075384B2 (en) 1993-09-16 1993-09-16 Surveying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05229936A JP3075384B2 (en) 1993-09-16 1993-09-16 Surveying equipment

Publications (2)

Publication Number Publication Date
JPH0783658A true JPH0783658A (en) 1995-03-28
JP3075384B2 JP3075384B2 (en) 2000-08-14

Family

ID=16900051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05229936A Expired - Fee Related JP3075384B2 (en) 1993-09-16 1993-09-16 Surveying equipment

Country Status (1)

Country Link
JP (1) JP3075384B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023326A (en) * 1996-03-18 2000-02-08 Kabushiki Kaisha Topcon Surveying system
JP2008014864A (en) * 2006-07-07 2008-01-24 Topcon Corp Surveying instrument
US7739803B2 (en) 2007-12-07 2010-06-22 Kabushiki Kaisha Topcon Surveying system
JP2017101937A (en) * 2015-11-30 2017-06-08 株式会社トプコン Surveying device
JP2019100898A (en) * 2017-12-05 2019-06-24 株式会社トプコン Measurement device, and assembling method of total station and two-dimensional scanner
JP2019158340A (en) * 2018-03-07 2019-09-19 株式会社トプコン Surveying instrument
DE102005019058B4 (en) * 2004-05-14 2020-08-06 Topcon Corporation Surveying system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648025B2 (en) 2005-02-09 2011-03-09 株式会社 ソキア・トプコン Surveying system
JP2006242755A (en) 2005-03-03 2006-09-14 Sokkia Co Ltd Surveying system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023326A (en) * 1996-03-18 2000-02-08 Kabushiki Kaisha Topcon Surveying system
DE102005019058B4 (en) * 2004-05-14 2020-08-06 Topcon Corporation Surveying system
JP2008014864A (en) * 2006-07-07 2008-01-24 Topcon Corp Surveying instrument
US7739803B2 (en) 2007-12-07 2010-06-22 Kabushiki Kaisha Topcon Surveying system
JP2017101937A (en) * 2015-11-30 2017-06-08 株式会社トプコン Surveying device
WO2017094679A1 (en) * 2015-11-30 2017-06-08 株式会社トプコン Surveying device
CN108474659A (en) * 2015-11-30 2018-08-31 株式会社拓普康 Measuring device
US10816338B2 (en) 2015-11-30 2020-10-27 Topcon Corporation Surveying device
JP2019100898A (en) * 2017-12-05 2019-06-24 株式会社トプコン Measurement device, and assembling method of total station and two-dimensional scanner
JP2019158340A (en) * 2018-03-07 2019-09-19 株式会社トプコン Surveying instrument

Also Published As

Publication number Publication date
JP3075384B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US10185026B2 (en) Measuring instrument
EP3407013B1 (en) Surveying instrument and three-dimensional camera
EP3056857B1 (en) Posture detecting device and data acquiring device
US5610711A (en) Remote pointing system for a self-leveling laser instrument
US5218770A (en) Surveying machine for construction work
US6462810B1 (en) Surveying system
US7141772B2 (en) Three-dimensional location measurement sensor
US8355118B2 (en) Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration
US9989632B2 (en) Measuring system, and portable radio transceiver and measurement pole used in measuring system
CN101153795A (en) Laser scanner
JPH09250927A (en) Surveying system
GB2121166A (en) Laser alignment
JPH09210687A (en) Laser level
EP3457081B1 (en) Surveying system
SE527489C2 (en) Land Survey System
JP6807628B2 (en) Measuring device and measuring method
JP6753961B2 (en) A method for comparing the received beam incident on the laser receiver with the rotating laser beam
JP2000193454A (en) Rotating laser device
JPH11326499A (en) Distance measuring device and vehicle controller using the device
JP6653028B2 (en) Method for comparing a receiving laser beam and a rotating laser beam incident on a laser receiver
JPH0783658A (en) Surveying apparatus
JP2019106942A (en) Mower automatic travel system
EP1852675B1 (en) Guide laser beam direction setting method
US6151106A (en) Laser irradiation system
JPH0260124B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130609

LAPS Cancellation because of no payment of annual fees